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ABSTRACT
Background and objectives. Red blood cells (RBC) are continuously exposed to
oxidative agents, affecting their membrane lipid function. However, the amount
of lipid in RBCs is higher than the lipids of the cell membrane, and includes
triacylglycerols, which are no membrane components. We assumed that the extra
lipids originated from lipoproteins attached to the cell surface, and we intended to
analyse whether the size and composition of this lipid pool were affected by sex or
diet.
Experimental design. Adult male and female Wistar rats were fed control or cafeteria
diets. Packed blood cells and plasma lipids were extracted and analysed for fatty acids
by methylation and GC-MS, taking care of not extracting membrane lipids.
Results. The absence of ω3-PUFA in RBC extracts (but not in plasma) suggest that
the lipids extracted were essentially those in the postulated lipid surface pool and
not those in cell membrane. In cells’ extracts, there was a marked depletion of PUFA
(and, in general, of insaturation). Fatty acid patterns were similar for all groups
studied, with limited effects of sex and no effects of diet in RBC (but not in plasma)
fatty acids. Presence of trans fatty acids was small but higher in RBC lipids, and could
not be justified by dietary sources.
Conclusions. The presence of a small layer of lipid on the RBC surface may limit
oxidative damage to the cell outer structures, and help explain its role in the transport
of lipophilic compounds. However, there may be other, so far uncovered, additional
functions for this lipid pool.
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INTRODUCTION
Most blood-borne lipids are carried by plasma lipoproteins which play a critical role in

the transfer and distribution of energy between organs and tissues. Red blood cell (RBC)

integrity is essential, and largely depends on their external membranes; thus, there is

abundant literature on RBC lipids, and their modulation by diet (Gibson et al., 1984;

Rotimi et al., 2012; Volek et al., 2004) or disease (Ferreri et al., 2005; Labagambe et al., 2008;

Lemaitre et al., 2002).

Analysis of RBC lipid classes showed the presence of different types of phospholipids,

cholesterol (and its esters), but also significant amounts of triacylglycerols (TAG) (Rotimi

et al., 2012; Volek et al., 2004). However, TAG are not components of cell membranes;

mammal RBCs could not oxidize lipids, and thus are devoid of reserves. Consequently, the

presence of TAG in RBC, widely demonstrated (Volek et al., 2004), remains unexplained,

since mammalian RBCs do not contain intracellular membranous structures. The

outstanding presence of TAG adds to the ample variability on the proportions of lipid

classes (and fatty acids) found by different studies (Carlson, Carver & House, 1986; Rotimi

et al., 2012) in RBC. These data, taken together, hint at the existence of lipid depots in RBCs

that are different from (true) membrane lipids. As far as we know, however, in RBC no

specific lipid stores have been described which could explain the presence of TAG and other

lipid classes in excess of those forming part of cell membrane structure.

RBCs are in constant contact with plasma lipids (and lipophilic hormones); they have

a direct relation with apolipoproteins (Cooper, Durocher & Leslie, 1977), bind lipoproteins

(Hui, Noel & Harmony, 1981), and have been found to carry free cholesterol to the liver

(Hung et al., 2012). RBCs carry/harbour a number of steroid hormones (Romero et al.,

2012), as well as extra glucose and amino acids loosely adsorbed on their surface (Proenza,

Palou & Roca, 1994). This disposition has been suggested to speed up the interchange of

substrates with the epithelial cells lining the capillary walls (Elwyn et al., 1972).

RBC membranes are periodically in close contact with those of endothelial cells

due to constant blood cycling. This also causes cyclic exposure of the membranes to

contact with different tissues and blood changes (arterial/venous) in pH and pO2.

These changes compound the continuous variations in other plasma components (fatty

acids, lipoproteins, cholesterol, glucose, etc.) and exposure to free radicals (superoxide,

peroxynitrite, nitric oxide) in tissues (Kagota et al., 2009). Consequently, the structure

and fatty acid composition of RBC membrane lipids change with their age, in spite of an

active lipid turnover, affecting especially its external layer (Dise, Goodman & Rasmussen,

1980; Quarfordt & Hilderman, 1970), which composition is markedly different from the

more stable inner layer (Zwaal & Schroit, 1997). In any case, constant exposure results

in a relative loss of function, with increased rigidity, a condition aggravated in metabolic

syndrome (Van Blitterswijk, Van der Meer & Hilkmann, 1987).

Studies on the incorporation of labelled fatty acids showed a small but significant

incorporation of them in RBCs in just 24 h (Leyton, Drury & Crawford, 1987); this

implies the existence of a rapid system for plasma fatty acid interchange with RBC lipids.

This could not be fully explained by phospholipid or cholesterol turnover (Quarfordt
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& Hilderman, 1970; Reed, Murphy & Roberts, 1968), which are slower and related to

median RBC half-life: 45–50 days in rats (Burwell, Brickley & Finch, 1953). In addition,

the substitution of internal membrane phospholipids is extremely slow (Zwaal & Schroit,

1997). We hypothesized that the rapid lipid interchange repeatedly observed in RBC

may be related to a more accessible pool, in equilibrium with plasma, rather than to the

necessarily stable cell membrane lipid bilayer.

A report suggest the presence of a fuzzy (probably lipid) cover on the RBC of

hyperlipidemic blood when examined under the microscope (Miller, Hirani & Bain, 2013),

and the overall lipid content of packed blood cells is higher than what can be expected from

its membrane lipids alone. We hypothesized that the ability of RBC to transport lipophilic

compounds and the presence of non-membrane lipids may be a consequence of the more

or less loose presence of lipoprotein-derived lipids attached/bound to the surface of the

RBC. This pool may participate in the turnover/repletion of RBC membrane lipid fatty

acids. In order to test the hypothesis we analysed RBC lipids using a known mild lipid

extraction procedure (i.e., assumedly not affecting their membrane lipids), comparing the

fatty acid patterns and quantitative analysis of the lipids extracted in function of sex and

exposure to a hyperlipidic diet.

MATERIALS & METHODS
Animals, diets, and experimental setup
All animal handling procedures were carried out in accordance with the norms of

European, Spanish and Catalan Governments. The Animal Ethics Committee of the

University of Barcelona approved the specific procedures used.

Nine week old female and male Wistar rats (Harlan Laboratory Models, Sant Feliu

de Codines, Spain) were used. Six animals per group were housed in two-rat cages, had

free access to water. The animals were kept in a controlled environment (lights on from

08:00 to 20:00; 21.5–22.5 ◦C; 50–60% humidity). Two groups of animals for each sex

were randomly selected and were fed ad libitum, for 30 days, with either normal rat chow

(Harlan #2014) or a simplified cafeteria diet (Ferrer-Lorente et al., 2005). This diet was

made up by chow pellets, plain cookies, with liver pâté, bacon, whole milk with 300 g/L

sucrose and a mineral plus vitamin supplemens. We used the procedures for food intake

estimation and analysis described previously (Prats et al., 1989). Diet composition was

(expressed as energy content): carbohydrate 67%, protein 20%, and lipid 13% for controls;

the mean composition of the cafeteria diet ingested was carbohydrate 47%, protein 12%

and lipid 41%. This diet induced a significant increase in body fat and has been used

for a long time in comparative studies on metabolic syndrome (Ferrer-Lorente et al.,

2010; Ferrer-Lorente et al., 2005; Romero et al., 2009).

The known composition and analysed fatty acid composition of the food items (includ-

ing the control rat chow pellets) allowed us to estimate the energy and nutrient content of

the diets consumed. Table 1 shows the amount of each food consumed per rat and day, as

well as their nutrient energy equivalences of the four experimental groups (N = 6 for each)

female-control (FC), female-cafeteria (FK), male-control (MC) and male-cafeteria (MK).
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Table 1 Food intake of control and cafeteria diet-fed rats. The data are the mean ± sem of at least 20
days taken from three cages (2 rats in each) per group. Statistical significance of the differences between
groups (2-way ANOVA): the columns represent the P values for each variable: sex and diet.

Units Male rats Female rats P values

Control Cafeteria Control Cafeteria Sex Diet

Nutrient energy intake

Total energy kJ/d 272 ± 15 630 ± 13 209 ± 13 527 ± 10 <0.0001 <0.0001

Carbohydrate kJ/d 184 ± 11 312 ± 4 141 ± 6 274 ± 9 <0.0001 <0.0001

Lipid kJ/d 33.3 ± 1.6 259 ± 4 25.6 ± 2.0 210 ± 10 <0.0001 <0.0001

Protein kJ/d 54.8 ± 2.3 78.2 ± 1.4 40.1 ± 3.1 64.2 ± 5.0 0.0002 <0.0001

Food items’ intake

Rat chow g/d 22.5 ± 1.3 5.53 ± 0.45 17.3 ± 1.1 4.95 ± 0.95 0.0079 <0.0001

Sugared milk mL/d 19.9 ± 1.1 20.6 ± 0.4 NS <0.0001

Plain cookies g/d 11.7 ± 0.9 8.74 ± 1.03 0.0384 <0.0001

Bacon g/d 7.26 ± 0.55 5.06 ± 0.32 0.0025 <0.0001

Pâté g/d 6.76 ± 0.36 5.56 ± 0.24 0.0117 <0.0001

Sampling
At the end of the experiment, the animals were anesthetized with isoflurane and

immediately killed by exsanguination from the exposed aorta, using dry heparinized

syringes. Blood was centrifuged 20 min at 2,000 × g, at 2–4 ◦C. Plasma was frozen; the

plasma-free packed cells were also frozen; all samples were kept at −20 ◦C.

Packed cell volume was calculated from its weight and density (previously measured:

1.11 g/mL); the percentage ratio of this volume vs. that of blood gave us the haematocrit

value (Hc). Under the conditions of centrifugation used, packed cells included 9.4%

of its volume as trapped plasma, calculated according to previously published data

(Romero et al., 2012).

Plasma general analytical procedures
Plasma triacylglycerols and total cholesterol were measured using the Biosystems kits

#11828, and #11505, respectively. Plasma non-esterified fatty acids were estimated with kit

NEFA-HR(2) (Wako, Neuss, Germany).

Sample lipid extraction
Samples of 0.050 mL of just thawed plasma, or about 0.20 g of frozen packed cells, were

suspended (and gently vortexed) in 10 mL of trichloromethane: methanol (3:1 v/v)

(Folch, Lees & Sloane-Stanley, 1957) in screw-cap tubes with Teflon liners. The samples

were extracted for 24 h in rotary mixers at room temperature. Then 2 mL of 9 g/L NaCl in

water were added, and the extraction was continued for 1 h. The aqueous supernatants,

and, eventually, interface protein, were discarded. The organic phase was carried to

clean tubes and dried under a gentle stream of nitrogen at room temperature; the lipid

residue was used for fatty acid derivatization. This extraction procedure was repeated using

samples of 0.500 ml of plasma and about 0.5 g of packed cells, but now the dry residue
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was carefully weighed in order to measure the total lipid extracted from the samples using

this procedure.

Food samples were powdered under liquid nitrogen and extracted overnight with

trichloromethane: methanol (3:1 v/v) (Folch, Lees & Sloane-Stanley, 1957) and the samples

processed for fatty acid analysis using the same procedure described for tissue samples.

Fatty acid analysis
Lipid residues were used for methylation (Christie, 1993). In short, they were suspended

in 0.50 mL of 100 g/L boron trifluoride in methanol (Fluka, Buchs, Switzerland)

(i.e., 116 µmol F3B), taking care to suspend and dissolve all residues. The tubes were

left standing in the dark at 4 ◦C for 12 h, coarsely covered with aluminium foil. Later,

1 mL hexane (Panreac, Castellar del Vallès Barcelona, Spain) and 2 mL pure water were

added; the mixture was vortexed, the tubes capped again and left in an orbital rotary

mixer for 15 min. The upper (aqueous) phase was transferred to another tube, which was

again brought to dryness under a gentle stream of nitrogen. The residues were dissolved in

0.150 mL of HPLC-quality hexane (Panreac). The whole volume was then transferred to

0.200 mL Mandrel GLS inserts (BC Scientific, Miami, FL, USA) within Agilent screw cap

vials (Agilent, Santa Clara, CA, USA) which had 8 mm PTFE/silicone septa (Soltec, Bether,

CT, USA). The samples were kept tightly closed at −20 ◦C until measurement.

Samples were analysed with a CG-MS system (QP2010; Shimadzu, Kyoto, Japan) using

a SP-2560 Supelco (Supelco, Bellefonte, PA, USA) column. The samples were run using,

as standards, an extended methylated fatty acid mixture (Supelco FAME mix C4–C24).

Calculations were done using the Shimadzu FASST for GC-MS program (version 2).

The rates of recovery of lipids (and in particular fatty acids) were analysed with

internal standards of bis-C17:0 diacylglycerol (Sigma) randomly added to a number of

duplicate samples.

Calculations
The contribution of trapped plasma in packed blood cells to total lipids and to each

individual FA measurement was calculated for each individual rat from their matching

analyses of plasma and RBC-extracted lipids (Table 2).

The approximate amount of RBC membrane lipid was estimated from the mean

rat cell volume, 69 µm3 (69 fL) (Balazs, Grice & Airth, 1960), normal cell counts

(7.2 × 106 cells/µL of blood) (Balazs, Grice & Airth, 1960), corrected by the hematocrit

value. The mean cell diameter (6.7 µm) was that of the biconcaval RBC flattened disk.

If we calculate the diameter of a sphere with the same volume than the actual RBC, we

would obtain a smaller diameter, 5.08 µm, but the actual surface area of the RBC is higher

than that of a sphere of the same volume. By comparing data on human RBCs (i.e., 90 fL

volume were equivalent to a surface of about 136 µm2 (McLaren, Brittenham & Hasselblad,

1987) we obtained diameters for volume- or surface-equivalent spheres of, respectively,

5.5 and 6.6 µm. That is, the real RBC surface was equivalent to that of a sphere with a

volume about 20% higher than that obtained from the simple translation of the actual RBC

volume to a sphere. Applying the same relationship to rat cells, the “sphere diameter” was
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Table 2 Blood lipid distribution in female and male rats subjected 30 days to a cafeteria diet. All values are the mean ± sem of 6 different animals
per group. Statistical analysis was done using a 2-way ANOVA.

Units Male rats Female rats P values

Control Cafeteria Control Cafeteria Sex Diet

Plasma triacylglycerols mM 1.28 ± 0.07 1.40 ± 0.11 1.35 ± 0.08 1.48 ± 0.07 NS NS

Plasma total cholesterol mM 1.76 ± 0.11 2.15 ± 0.17 2.25 ± 0.21 2.56 ± 0.13 0.0404 0.0106

Plasma free fatty acids mM 0.35 ± 0.04 0.43 ± 0.03 0.75 ± 0.04 0.68 ± 0.08 <0.0001 NS

Blood cell extracted lipid mg/ga 12.0 ± 3.5 11.5 ± 2.1 12.8 ± 3.2 10.1 ± 2.8 NS NS

FA extracted from RBC µmol/ga 21.9 ± 0.4 20.8 ± 6.6 23.2 ± 1.9 18.2 ± 2.6 NS NS

µmol/ga 0.37 ± 0.04 0.88 ± 0.29 0.68 ± 0.08 0.82 ± 0.30 NS NS
FA in trapped plasma

%b 1.7 ± 0.2 3.6 ± 1.6 3.0 ± 0.4 5.5 ± 1.8 NS NS

Packed RBC volume % 41.3 ± 0.6 44.1 ± 1.6 40.9 ± 0.9 42.1 ± 0.6 NS NS

Notes.
FA, fatty acids.

a Data per gram of fresh packed cells.
b Percentage (in weight) of fatty acids in trapped plasma with respect to total fatty acids recovered from cells.

increased 20% to obtain an estimation of RBC surface; this way, we obtained a probably

better approximation to a sphere with the surface area of a rat RBC using a mean diameter

of 6.1 µm. The corresponding mean individual surface area of a rat RBC would then

be 117 µm2. Since the thickness of a RBC bilayer membrane is in the range of 8–10 nm

(Shkulipa, 2006), we used a mean value of 9 nm. These data allowed an estimation of the

total volume of membrane (i.e., lipid bilayer) in a single RBC: surface area multiplied by

the layer thickness, i.e., 117 × 0.009 = 1.05 µm3. Since the corrected haematocrit value was

in the range of 43%, in 1 ml of packed cells there will be about 16.7 × 109 cells, and thus

the lipid bilayer volume in 1 ml of packed cells will be: 1.05 × 16.7 × 109 µm3, i.e., 17.5 µL.

The density of lecithin (as representative membrane lipid) is 1.03 g/mL, thus, the weight of

lipids in 1 ml (i.e., 1.1 g) of packed RBC would be in the range of 18.4 mg (1.7% w/w). This

accounts for about half of the lipids estimated in packed RBC, a value concordant with the

3% of lipid contained in clotted animal blood, when analysed as food.

The normal composition of RBC phospholipid, a main lipid component (Vayá et al.,

1993), is known (Cooper, Durocher & Leslie, 1977; Pöschl et al., 1999); consequently, the

weight of fatty acids account for about 57% of the total membrane lipid. Taking oleic acid

a “model” for molecular weight and abundance (an oleoyl residue has a molecular weight

of 270), and applying this value and the proportion of fatty acids to the estimated weight of

membrane lipid for packed RBC we obtain about 39 µmol fatty acids per g of packed cells.

This figure is an approximate estimate of the amount of lipids expected in packed RBC if

the bilayer membrane was the only source of cell lipid.

Statistical methods
Statistical analyses were carried out with two- or three-way ANOVA comparisons, using

the Statgraphics Centurion XVI program package (Statpoint Technologies, Warrengton,

VA, USA).
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Table 3 Sum of SFA, MUFA, PUFA and trans-FA levels in plasma and blood lipids of male and female rats subjected to a control or a cafeteria
diet for 30 days. All values are the mean ± sem of 6 different animals per group. Statistical analysis was done using a 2-way ANOVA.

Units Male rats Female rats P values

Control Cafeteria Control Cafeteria Sex Ciet

Plasma

SFA mM 1.53 ± 0.17 3.25 ± 1.02 2.16 ± 0.25 3.67 ± 1.18 0.0300 NS

MUFA mM 0.76 ± 0.12 2.42 ± 0.91 0.96 ± 0.10 2.05 ± 0.88 NS 0.0235

ω-3 PUFA mM 0.027 ± 0.005 0.038 ± 0.014 0.027 ± 0.005 0.032 ± 0.014 NS NS

ω-6 PUFA mM 1.75 ± 0.24 4.12 ± 1.35 2.11 ± 0.31 3.43 ± 1.32 NS 0.0435

trans-FA mM 0.007 ± 0.004 0.006 ± 0.004 0.005 ± 0.001 0.014 ± 0.008 NS NS

RBC

SFA µmol/g 12.43 ± 0.77 11.52 ± 3.22 13.54 ± 1.25 9.52 ± 0.61 NS NS

MUFA µmol/g 6.78 ± 0.47 6.60 ± 2.49 6,62 ± 0.79 6.04 ± 0.83 NS NS

ω-3 PUFA µmol/g 0.00 0.00 0.00 0.00

ω − 6 PUFA µmol/g 2.58 ± 0.08 2.59 ± 1.25 2.92 ± 0.28 2.50 ± 1.08 NS NS

trans-FA µmol/g 0.12 ± 0.02 0.11 ± 0.03 0.08 ± 0.03 0.12 ± 0.01 NS NS

Notes.
FA, fatty acids.

RESULTS
Plasma lipids
There were no significant differences in plasma triacylglycerols and packed cell volume

between the four groups of rats studied (Table 2). However, total cholesterol was modified

by sex and diet (higher for females and cafeteria diet). Non-esterified fatty acids were

unaffected by diet, but females showed higher plasma levels than males. There were no

clear relationships between the plasma lipid parameters. Table 2 also shows the proportion

of lipids recovered from packed RBC. There were no differences attributable to sex and

diet, the data was remarkably uniform.

The patterns of distribution of individual fatty acids in plasma total-lipids were also

similar between the sex/diet groups (Fig. 1). There were only a few statistical differences

between individual fatty acids between them. In plasma, exposure to a cafeteria diet

resulted in significant differences in palmitoleic and oleic acids. Sex affected the levels

of stearic, α-linolenic, eicosadienoic, gondoic and heneicosanoic acids. The similitude

of overall distribution pattern was repeated when fatty acids were grouped in their main

classes: saturated (SFA), monounsaturated (MUFA), polyunsaturated (PUFA, ω-3 and

ω-6) and trans (Table 3); SFA and PUFA (mostly ω-6) were predominant, there were only

trace amounts of ω-3 PUFA and trans fatty acids were practically absent. Only a few female

rats treated with the cafeteria diet showed measurable levels of trans fatty acids. However,

the grouped sums of fatty acids showed a significant effect of diet for MUFA and ω-6

PUFA, and effects for sex in SAT fatty acids. Total plasma fatty acids (i.e., the sum of all

individual fatty acids analysed, expressed as mM) were 4.1 ± 0.4 (male control), 9.8 ± 3.3

(male cafeteria), 5.3 ± 0.6 (female control), and 9.2 ± 3.3 (female cafeteria); the differences

were significant (P = 0.029) for diet but not for sex.
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Figure 1 Fatty acids present in plasma lipids of male and female rats, after exposure of 30 days to a
hyperlipidic cafeteria diet, compared with controls. The data are the mean ± sem of 6 different animals
per group. Pale grey, SFA (saturated fatty acids); cross-patterned blue, MUFA (monounsaturated fatty
acids); dash-patterned orange, ω-3 PUFA (polyunsaturated fatty acids); red, ω-6 PUFA; black, trans fatty
acids. Statistical significance of the differences between groups (2-way ANOVA): green star, P < 0.05 for
diet; purple diamond, P < 0.05 for sex.

Red blood cell extractable lipids
Figure 2 shows the individual fatty acid levels in packed cell extracts of the four groups of

rats. The patterns were highly similar, with only small differences induced by diet (palmitic

and heneicosanoic acids), and none due to the effect of sex. In addition, there was a lesser

variety of fatty acids than in plasma, with lower levels of PUFAs, and a small but clear

presence of trans fatty acids (essentially elaidic acid). When considering the classes of fatty

acids (Table 3), all groups showed a similar pattern, with low ω-6 PUFA, nil presence of ω-3

PUFA and a token presence of trans fatty acids.
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Figure 2 Fatty acids present in packed blood cell lipids of male and female rats, after exposure of 30
days to a hyperlipidic cafeteria diet, compared with controls. The data are the mean ± sem of 6 different
animals per group, and are expressed in nmol/g of fresh cells. Pale grey, SFA; cross-patterned blue, MUFA;
red, ω-6 PUFA; black: trans fatty acids. Statistical significance of the differences between groups (2-way
ANOVA): green star, P < 0.05 for diet.

Double bond distribution
The differences between plasma and RBC fatty acids widened when the number of double

bonds was computed. The lower proportion of PUFA in RBC compared with plasma, and

the nil influence on this parameter of SFA, resulted in a proportion of double bonds in the

range of 0.5 per fatty acid molecule in RBC versus almost 1.5 in plasma lipids (Fig. 3). The

proportion of double bonds in PUFA with respect to the total sum of double bonds showed

the same pattern; in plasma, insaturation was mostly due to PUFA, but in RBC, the share

of MUFA was much higher. Finally, the proportion of trans double bonds with respect to

the sum of total double bonds was small but significantly higher in the RBC lipids of all
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Figure 3 Distribution of double bonds in the lipids of RBC and plasma of male and female rats, during
exposure of 30 days to a hyperlipidic cafeteria diet, compared with controls. (A) presents the mean
number of double bonds per fatty acid molecule in RBC lipids (dashed red columns) and plasma (pale
yellow columns). (B) depicts the percentage of trans fatty acid double bonds with respect to the total
double bonds in RBC and plasma lipids. (C) shows the percentage of double bonds that correspond to
combined PUFAs in RBC and plasma lipids. All data are the mean ±sem of 6 animals per group. M-C,
male control; F-C, female control; M-K, male cafeteria, F-K, female cafeteria. Statistical significance of
the differences between compartments (cell vs. plasma lipids) calculated using a three-way ANOVA: a
blue star, P < 0.05. There were no significant differences related to sex or diet.

experimental groups than in plasma, where trans fatty acids showed higher variability and

lower values.

Estimation of fatty acids intake
Table 4 presents an estimation of the mean intake (in mmol/day) of dietary fatty acids for

controls and cafeteria-fed rats. The data were calculated from the consumption of each

type of food item per cage and day and the composition in fatty acids of the foods offered to

the rats shown in Table 1.

The distribution of the different types of fatty acids in both standard chow and

self-selected cafeteria diet were considerably different, both in proportions and (in part)

variety, giving rise to widely marked differences for sex, significant for all fatty acids except

for the short-chain capric, lauric and myristic acids. The cafeteria diet-fed rats ingested

daily a much higher proportion (and variety) of fatty acids than controls (P < 0.0001 for

all fatty acids studied), and male rats ate more than females.

An analysis of the correlation between daily fatty acid intake vs. circulating plasma fatty

acids showed that the only correlations observed (using all animals) were for oleic and

gondoic acids (P = 0.026 and P = 0.046, respectively), there were no correlations for any

of the other fatty acids, and the significance was lost when analysing the four groups of

animals separately.

DISCUSSION
A critical aspect of the validity of the data presented here showing the existence of a

secondary lipid pool in RBC, different from that constituted by membrane lipids, is

the comparison of the methodology used and the fatty acid profiles. Those found were

different from those expected from membrane composition as described by other authors

(Cooper, Durocher & Leslie, 1977; Ferreri et al., 2005; Lemaitre et al., 2002).
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Table 4 Fatty acid intake of control and cafeteria-fed diet rats. The data were calculated from the mean fatty acid composition of all foods given
to the rats and the data of consumption indicated in Table 1. Values are the mean ± sem. Statistical significance of the differences between groups
(2-way ANOVA): the columns represent the P values for each variable: sex and diet.

Fatty acid
mmol/day

Male rats Female rats P values

Control Cafeteria Control Cafeteria Sex Diet

Capric 10:0 <0.1 0.52 ± 0.03 <0.1 0.43 ± 0.04 NS <0.0001

Lauric 12:0 <0.1 2.66 ± 0.22 <0.1 2.20 ± 0.21 NS <0.0001

Myristic 14:0 0.03 ± 0.0 1.12 ± 0.07 0.02 ± 0.0 0.93 ± 0.07 NS <0.0001

Palmitic 16:0 0.44 ± 0.02 5.32 ± 0.21 0.34 ± 0.01 4.17 ± 0.13 <0.0001 <0.0001

Stearic 18:0 0.08 ± 0.00 1.94 ± 0.09 0.06 ± 0.00 1.54 ± 0.06 0.0009 <0.0001

Arachic 20:0 0.12 ± 0.00 0.23 ± 0.00 0.09 ± 0.00 0.18 ± 0.00 <0.0001 <0.0001

Behenic 22:0 0.16 ± 0.00 0.35 ± 0.00 0.13 ± 0.00 0.27 ± 0.00 <0.0001 <0.0001

Lignoceric 24:0 <0.1 0.43 ± 0.02 <0.1 0.34 ± 0.01 <0.0001 <0.0001

Palmitoleic 16:1 <0.1 0.42 ± 0.02 <0.1 0.32 ± 0.02 <0.0001 <0.0001

Oleic 18:1 0.56 ± 0.02 6.99 ± 0.27 0.42 ± 0.02 3.38 ± 0.16 <0.0001 <0.0001

Elaidic trans18:1 <0.1 <0.1 <0.1 <0.1 – –

Gondoic 20:1 0.11 ± 0.0 0.25 ± 0.0 0.09 ± 0.0 0.19 ± 0.0 <0.0001 <0.0001

Erucic 22:1 <0.1 0.15 ± 0.1 <0.1 0.12 ± 0.01 <0.0001 <0.0001

Linoleic 18:2 1.61 ± 0.06 2.15 ± 0.04 1.24 ± 0.05 1.63 ± 0.02 <0.0001 <0.0001

Linolenic 18:3 0.08 ± 0.00 0.20 ± 0.00 0.06 ± 0.00 0.15 ± 0.00 <0.0001 <0.0001

Arachidonic 20:4 <0.1 0.14 ± 0.01 <0.1 0.11 ± 0.00 <0.0001 <0.0001

The usual procedure for the estimation of blood cell-membrane fatty acids, followed

almost universally is: (A) Separation and washing of RBC in order to remove all traces

of plasma lipids. (B) Breakup of the cells and separation of a membrane fraction clean

of non-membrane proteins, especially haemoglobin, but also structural fibres such as

spectrin. (C) Solvent extraction (twice in most cases) with a suitable solvent and extraction

conditions and time (Rose & Oklander, 1965), the remaining lipid (bound to proteins)

being usually discarded. (D) Overall methylation, usually in strong acid to hydrolyse

complex phospholipids. (E) Analysis through GC or CG-MS. (F) Presentation of the

results as percentages of total fatty acids measured, since step (B), and in part step (C),

could hardly be quantitative, and the effectiveness of step (D) is often problematic.

Since we assumed that the most probable place for the RBC non-membrane-bilayer

lipid “stores” (i.e., the site containing the TAG found in RBC lipid extracts) was the cell

surface, we decided not to wash the cells and extrude the plasma by centrifugation (but

taking care to limit cell breakage). We estimated the mass of trapped plasma, which allowed

discounting its contribution to the total (mildly) extracted lipids of packed cells. Evidently,

our intention was to keep the membranes as inaccessible as possible to our extraction

method, and thus we used a procedure suitable for the extraction of all lipid classes (Folch,

Lees & Sloane-Stanley, 1957) which has been found inadequate/ ineffective for RBC mem-

brane lipid extraction (Eder, Reichlmayr-Lais & Kirchgeßner, 1993; Rose & Oklander, 1965).
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The extracted lipids were methylated with a method sufficiently powerful to release

methyl-fatty acids from most phospholipids (Christie, 1993), but which, in turn, was not

sufficiently strong for all classes of complex membrane phospholipids (Eder, 1995); in

addition, we used internal standards to check the effectiveness of methylation.

The results obtained suggest that the RBC lipid extract was not representative of

membrane lipids. First because of the practical absence of critical PUFA membrane

components (such as docosahexaenoic), even when compared with plasma. Second

because of the impoverishment in double bonds, compared with plasma (which we assume

was its origin), essentially at the expense of PUFA. There was, also, a relative abundance of

SFA. Both factors reflected a situation extremely different from that found in membranes

(Carlson, Carver & House, 1986; Lemaitre et al., 2002). In any case, these results do not

preclude the possibility that an unknown proportion of RBC membrane lipids would be

extracted with the procedure used. The trichloromethane: methanol method indeed can

dissolve most lipids from complex matrices, including membranes, as in brain (Folch et

al., 1951), but we did not break massively all cells, only compressed and snap froze them,

preserving in part their structure. In addition, we discounted the lipids of trapped plasma.

Nevertheless, since the mass of lipid recovered from cells was similar to the calculated

weight of membrane lipids, a higher share of PUFA should be detected if membrane lipids

were extracted in a significant proportion. Contrary to that, the results obtained strongly

suggest that membrane lipids were not extracted in a proportion high enough to allow us

to detect their typical PUFA presence/pattern.

Most studies on RBC lipids first purified cell membranes from washed cells’ ghosts

(Eder, Reichlmayr-Lais & Kirchgeßner, 1993; Rose & Oklander, 1965; Vayá et al., 1993).

Using these methods, PUFA levels were higher, in contrast with studies analyzing

“erythrocyte lipids” (Labagambe et al., 2008; Rotimi et al., 2012; Volek et al., 2004). The

differences between these approaches support our assumption that the RBC lipid we

obtained represented largely non-membrane RBC lipids.

The quantitative importance of the extracted lipids was highly dependent on diet, but

not on sex, with a proportion of 0.26 to 0.89% w/wet RBC weight, i.e., 1–2% w/dry RBC

weight. However, the generalized lack of correlation of dietary fatty acid intake and the

levels found in plasma lipids showed that these relationships are not straightforward and

may be modulated by overall energy (largely lipid/ glucose) metabolism and substrate

plasma turnover.

The easy availability for extraction of these RBC lipids, together with their abundance

in MUFA and SFA agree with a lipoprotein origin of the deposits and their placement

on the RBC surface. The findings of fuzzy borders in direct microscopic examination of

blood cells from hyperlipidic plasma (Cooper et al., 1975; Miller, Hirani & Bain, 2013) may

support this assumption. In addition, as far as we know, no internal RBC membrane

or lipid depots have been described for mammals. However, the lack of significant

effects of diet (hyperlipidic in our case) on the mass of recovered RBC lipids suggests

that the lipid “cover” of RBC should be rather thin (it would be similar in thickness to

the membrane lipid bilayer if it were spread uniformly) and not directly dependent on
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plasma lipid content. The lack of relationship seems to preclude the occasional weak

bonding of lipoproteins as such, a possibility based on the presence of anchor proteins

for apolipoproteins on the RBC surface (Hui, Noel & Harmony, 1981). The thin layer

(or discontinuous blobs) of lipid is bound, probably, rather permanently to the actual

membrane, since its proportion of double bonds (compared with plasma), essentially

from PUFA, and the small presence of transfatty acids suggests a sustained exposure of

these lipids to oxidizing or nitrating agents (at least to a higher degree than their plasma

counterparts). In any case, these differences show that their turnover is slower than that of

plasma lipids.

Nitric oxide is known to favour the conversion of cis to trans double bonds (Proell et

al., 2002), lowering the fluidity of membranes and affecting their function. Oxidative

attacks by superoxide and other free radicals tend to break down unsaturated fatty acids,

mainly PUFA (Mattson & Grundy, 1985; Trotschansky & Rubbo, 2008), which levels tend

to decrease in structures continuously exposed to oxidizing environments. This is in part

corrected by turnover of membranes in cells, and by interchange with lipoproteins in RBC

(Cooper et al., 1975; Dise, Goodman & Rasmussen, 1980; Quarfordt & Hilderman, 1970;

Reed, Murphy & Roberts, 1968). However, the marked lack of PUFA (and absence of ω-3)

indicate that: (A) The postulated outer layer of lipid in RBC should be rather permanent, at

least enough to show the effects of oxidation and nitration on its fatty acids. (B) This lipid

is repeatedly exposed (for all its functional life) to highly oxidative microenvironments in

capillary beds. (C) The lipid occupies a limited and defined space on the cells, which is not

directly affected by the availability (or turnover) of lipids in plasma.

In any case, there must be a certain degree of interchange of lipids between the RBC

outer lipid layer and plasma lipids since its comparison with lipoprotein fatty acid patterns

shows a considerable degree of similitude if PUFA are excluded. Labelled fatty acids are

rapidly incorporated into RBC (Leyton, Drury & Crawford, 1987), and interchange or

reposition of PUFA in the outer layer of RBC membranes has been previously described

(Dise, Goodman & Rasmussen, 1980; Reed, Murphy & Roberts, 1968). Furthermore, diets

high in PUFA decrease the stiffness of RBC membranes in metabolic syndrome (Katan

et al., 1997; Pöschl et al., 1999). Probably there is a direct relationship between these

phenomena, and this can be a function, so far not defined, of the external lipid layer of

RBC. We postulate that it may act as an intermediate step for repairs (or protection) of

the RBC membrane, since in mammals most maintenance systems must be external to the

RBC, because they lack nuclei, ribosomes and most of the cell turnover machinery.

We expected, at least in the rats with overweight, that as a consequence of the cyclic

exposure and close contact of RBC with endothelia there would be a marked increase in

trans fatty acids (Alemany, 2012), a consequence of the higher production of nitric oxide

and other oxidative and nitrating agents (Ghasemi, Zahediasl & Azizi, 2012). The levels of

trans fatty acids we actually found were small, but could not be justified by the residual

levels found in the diet (<0.1 nmol/day). Endogenous production of trans fatty acids

is linked to the production of nitric oxide by RBC themselves or by the neighbouring

endothelial lining (Zambonin et al., 2006). In any case, PUFA are easily affected by oxidative
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and nitrative processes (Trotschansky & Rubbo, 2008), inducing membrane damages (Van

Blitterswijk, Van der Meer & Hilkmann, 1987). Perhaps, the presence of the outer RBC

lipid layer may help the transfer (or interchange) of trans or damaged fatty acids (in

exchange for “fresh” PUFA) to plasma lipid for disposal elsewhere, helping to extend

the functionality of RBCs for a longer time.

In the end, the presence of this lipid pool results in a net loss of PUFA, probably a

consequence of oxidative processes affecting first the lipid layer over the RBC, protecting

the underlying membrane. The external lipid layer could, then, constitute a first line of

defence against deleterious oxidative processes that shorten the lifespan and functionality

of RBCs. In metabolic syndrome, RBC half-life is reduced, probably because of increased

fragility and loss of flexibility (Kung, Tseng & Wang, 2009). Increased dietary supply of

PUFA tends to reduce the extent of this damage (Pöschl et al., 1999), probably via lipid

interchange with lipoproteins or cells (blood, endothelial, foamy, etc.) and the external

lipid pool of RBCs.

CONCLUSIONS
We postulate the presence of a small lipid pool on the RBC surface. This layer may

help minimize the effects of oxidative damage on RBC membranes, which affects the

functionality and lifespan of RBCs, as shown by its marked deficit of PUFA. We speculate

that the loss of PUFA is probably compensated through interchange with lipoproteins.

Only residual trans fatty acids remained. The external lipid pool may, also help explain

the role of RBCs in the transport of lipophilic compounds. The possible importance of

the external lipid RBC layer should be analysed under the light of available information

on the role of blood cells under conditions of hyperlipidemia and inflammation. So far,

these questions have not been studied in depth, in spite of their potential importance in the

transport of lipids and regulatory agents between organs and in the cell-to-cell interactions

(transfer, signalling) within the tight space of tissue capillary lumen and its cell lining.
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Ferrer-Lorente R, Cabot C, Fernández-López JA, Remesar X, Alemany M. 2005. Effects of
oleoyl-estrone with dexfenfluramine, sibutramine or phentermine on overweight rats. European
Journal of Pharmacology 513:243–248 DOI 10.1016/j.ejphar.2005.02.044.

Folch J, Ascoli I, Lees M, Meath JA, LeBaron FN. 1951. Preparation of lipide extracts from brain
tissue. Journal of Biological Chemistry 191:833–841.

Folch J, Lees M, Sloane-Stanley GH. 1957. A simple method for the isolation and purification of
total lipides from animal tissues. Journal of Biological Chemistry 226:497–509.

Ghasemi A, Zahediasl S, Azizi F. 2012. High serum nitric oxide metabolites and incident
metabolic syndrome. Scandinavian Journal of Clinical and Laboratory Investigation 72:523–530
DOI 10.3109/00365513.2012.701322.

Gibson RA, McMurchie EJ, Charnock JS, Kneebone GM. 1984. Homeostatic control of
membrane fatty acid composition in the rat after dietary lipid treatment. Lipids 19:942–951
DOI 10.1007/BF02534730.

Hui DY, Noel JG, Harmony JA. 1981. Binding of low density lipoproteins to erythrocytes.
Biochimica et Biophysica Acta 664:513–526 DOI 10.1016/0005-2760(81)90129-6.

Remesar et al. (2015), PeerJ, DOI 10.7717/peerj.1083 16/18

https://peerj.com
http://dx.doi.org/10.1172/JCI107901
http://dx.doi.org/10.1172/JCI108747
http://dx.doi.org/10.1016/0378-4347(95)00142-6
http://dx.doi.org/10.1016/0009-8981(93)90200-N
http://dx.doi.org/10.1007/s11745-005-1428-7
http://dx.doi.org/10.1007/s00210-010-0495-8
http://dx.doi.org/10.1016/j.ejphar.2005.02.044
http://dx.doi.org/10.3109/00365513.2012.701322
http://dx.doi.org/10.1007/BF02534730
http://dx.doi.org/10.1016/0005-2760(81)90129-6
http://dx.doi.org/10.7717/peerj.1083


Hung KT, Berisha SZ, Ritchey BM, Santore J, Smith JD. 2012. Red blood cells play a role in
reverse cholesterol transport. Arteriosclerosis Thrombosis and Vascular Biology 32:1460–1465
DOI 10.1161/ATVBAHA.112.248971.

Kagota S, Tada Y, Nejime N, Nakamura K, Kunitomo M, Shinozuka K. 2009. Chronic production
of peroxynitrite in the vascular wall impairs vasorelaxation function in SHR/NDmcr-cp rats,
an animal model of metabolic syndrome. Journal of Pharmacological Sciences 109:556–564
DOI 10.1254/jphs.08273FP.

Katan MB, Deslypere JP, Van Birgelen AP, Penders M, Zegwaard M. 1997. Kinetics of the
incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes,
and adipose tissue: an 18-month controlled study. Journal of Lipid Research 38:2012–2022.

Kung CM, Tseng ZL, Wang HL. 2009. Erythrocyte fragility increases with level of glycosylated
hemoglobin in type 2 diabetic patients. Clinical Hemorheology and Microcirculation 43:345–351
DOI 10.3233/CH-2009-1245.

Labagambe EK, Tsai MY, Hopkins PN, Ordovas JM, Peacock JM, Borecki IB, Arnett DK. 2008.
Erythrocyte fatty acid composition and the metabolic syndrome: a national heart, lung, and
blood institute GOLDN study. Clinical Chemistry 54:154–162
DOI 10.1373/clinchem.2007.095059.

Lemaitre RN, King IB, Raghunathan TE, Pearce RM, Weinmann S, Knopp RH, Copass MK,
Cobb LA, Siscovick DS. 2002. Cell membrane trans-fatty acids and the risk of primary cardiac
arrest. Circulation 105:697–701 DOI 10.1161/hc0602.103583.

Leyton J, Drury PJ, Crawford MA. 1987. Differential oxidation of saturated and unsaturated fatty
acids in vivo in the rat. British Journal of Nutrition 57:383–393 DOI 10.1079/BJN19870046.

Mattson FH, Grundy SM. 1985. Comparison of effects of dietary saturated, monounsaturated,
and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. Journal of Lipid
Research 26:194–202.

McLaren CE, Brittenham GM, Hasselblad V. 1987. Statistical and graphical evaluation of
erythrocyte volume distributions. American Journal of Physiology 252:H857–H866.

Miller CE, Hirani B, Bain BJ. 2013. Hyperlipidemia revealed by erythrocyte morphology.
American Journal of Hematology 88:625–625 DOI 10.1002/ajh.23473.
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