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ABSTRACT

Methylage is an epigenetic marker of biological age
that exploits the correlation between the methyla-
tion state of specific CG dinucleotides (CpGs) and
chronological age (in years), gestational age (in
weeks), cellular age (in cell cycles or as telomere
length, in kilobases). Using DNA methylation data,
methylage is measurable via the so called epige-
netic clocks. Importantly, alterations of the correla-
tion between methylage and age (age acceleration
or deceleration) have been stably associated with
pathological states and occur long before clinical
signs of diseases become overt, making epigenetic
clocks a potentially disruptive tool in preventive, di-
agnostic and also in forensic applications. Neverthe-
less, methylage dependency from CpGs selection,
mathematical modelling, tissue specificity and age
range, still makes the potential of this biomarker
limited. In order to enhance model comparisons, in-
terchange, availability, robustness and standardiza-
tion, we organized a selected set of clocks within a
hub webservice, EstimAge (Estimate of methylation
Age, http://estimage.iac.rm.cnr.it), which intuitively
and informatively enables quick identification, com-
putation and comparison of available clocks, with the
support of standard statistics.

GRAPHICAL ABSTRACT

INTRODUCTION

The discovery of the relevance, ubiquity and, importantly,
stability of methylation changes (i.e. reversible and heritable
addition of a methyl group at the 5-carbon of the cytosine
ring on the DNA chain), has gained popularity in recent
years, fostering the systematic study of recurring areas of al-
tered methylation along the genome (CpG islands). Methy-
lation changes, like other epigenetic modifications, can im-
pact on the final quality and yield of proteins translation,
in ways that have been recognized crucial in pathological
conditions, in physiological embryo development, and as a
ubiquitous (by)product of ageing (1–3).

It is particularly in this latter area that epigenomic
biomarkers have been under deep and constant investiga-
tion. Ageing is (also) the strongest risk factor for multi-
morbidities, representing the major economic and social
burden in our societies (4). Several biological markers of
age have therefore been proposed to track the physiology
of ageing, in the hope to better unravel the complexity hid-
den behind this process and with the aim to identify early
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divergences (i.e. with an added value in prevention) between
chronological and biological ageing, that is age accelera-
tion, a recognized proxy of pathological conditions (5).

Although conceptually not novel, biological estimate of
senescence (6) has recently been enriched and quickly dom-
inated by the computation of methylage, via the so called
epigenetic clocks (5). In practice, methylage exploits the ob-
served alteration of the methylation state of specific CpGs,
that correlate with chronological age in healthy conditions.
Regression coefficients that model this relationship can then
be reused on the same methylated CpGs, measured across
different individuals carrying a variety of pathologies or
conditions (7–12). This well conserved mechanism enables
also veterinary applications (13–15) with relevance in ani-
mal model studies. Similarly, the indication on chronologi-
cal age that can potentially be extracted from biospecimens
such as saliva, blood, or semen, make epigenetic clocks a
highly desirable tool in forensic applications (16–20). Fi-
nally, the correlation with chronological age that is observ-
able at the systemic level can be identified at the cellu-
lar level, with increased cell cycles (i.e. high proliferation,
a measure of tumour aggressiveness) being proxied by in-
creased methylage in cells, an issue addressed with mitotic
clocks (21,22) and ribosomal clocks, whose conserved struc-
ture makes it a trans-species tool for the estimate of age (23).

In this scenario, the EstimAge (Estimate of methylation
Age, http://estimage.iac.rm.cnr.it) web server, offers a
uniquely broad and curated repository of heterogenous epi-
genetic clocks and methylages characterized by the broad-
est number of variables currently available in literature: tis-
sue, age time unit, cell count correction, imputation pre-
processing, and technology (high and low throughput). In
particular, we carefully selected from the vast peer-reviewed
literature 18 clocks whose source code was available, as
proxy of thorough testing and hence robustness (additional
clocks not fulfilling these criteria can be found in Supple-
mentary Table S1). We categorized them by tissue, age-
span and technology, and we integrated them into EstimAge
intuitive web server interface. As an additional feature,
tissue-specificity for all clocks is reported according to the
National Library of Medicine’s (MeSH, (https://meshb-
prev.nlm.nih.gov/search) controlled vocabulary thesaurus
to avoid ambiguity and enhance standardization. Conse-
quently, EstimAge automatically checks and proposes ap-
propriate clocks for the users’ submitted query, including
appropriate reference sets for cells count estimation using
standard data sets well known in the community (24,25),
although custom computations are also possible. Further,
the result page includes publication-quality plots and sum-
mary statistics that can be either readily employed for final
reports, or used as intermediate exploratory steps towards
additional bioinformatic analyses. To the best of our knowl-
edge, this is the most comprehensive effort in this direction.

In fact, we identified only two prior hubs of epigenetic
clocks: first the popular, pioneering and prolific work of
Horvath’s group, that offers a handful of multi- and tissue-
specific clocks and variants (1,7–9,26), whose exact algo-
rithms are not fully public (https://dnamage.genetics.ucla.
edu, DNAMAGE (1)), and second the recent Bioconduc-
tor package methylclock (27), that collects 11 clocks, offline
and accessible through R, and hence targets a slightly differ-

ent type of end-users. Overall EstimAge offers 18 clocks that
includes and extends the offer beyond the above mentioned
hubs, with the exclusion of two clocks that were either not
published in peer-reviewed journals or did not provide the
source code (see Supplementary Table S1). Differently from
the DNAMAGE and methylclock, EstimAge enables three
different types of imputation, manages the presence of miss-
ing data if no imputation is selected, and includes clocks
whose input comes from low-throughput methylation tech-
niques (see Materials and Methods for details). Further,
EstimAge provides four types of clocks, to compute as many
types of ages: biological human age (in years, y), gestational
age (in weeks, w) and cellular age (cell cycles, cc and telom-
ere length in kilobase, kb). As a direct and intuitive statistic
for comparison among clocks, the explicit number of CpGs
used by each clock to estimate methylage for the submitted
data is also returned.

This comprehensive effort may contribute to overcome
four major procedural limitations that hamper the full ex-
ploitation of this remarkable biomarker.

First, despite the stability of methylation itself, the iden-
tification of the CpGs that present the highest correlation
with age remains controversial, as it is highly prone to vari-
ations. Indeed, given the cyclic structure of the compacted
DNA helix within the cells’ nucleus, accession to the DNA
molecule for (de)methylation occurs with remarkable corre-
lation among CpGs (a fact exploited, for example, for effi-
cient imputation of methylation values (28,29)), offering in-
deed a multiplicity of potentially useful, but non standard-
ized, candidate markers for epigenetic clocks. EstimAge en-
ables a broad spectrum of direct inspection of such clocks,
automatically selected by the system once the data tissue
is provided, or via custom choices defined by the user, en-
abling exploratory analyses on the correlation and causa-
tion of such divergences.

Second, the reporting for models of epigenetic clocks is
not only far from unique, but also in lack of a community
consensus. This affects robustness and reproducibility of the
results. In particular, clocks are available in three major va-
riety of formats of increasing robustness: (i) the list of CpGs,
alone or accompanied by regression coefficients is reported,
leading to ambiguous reproducibility; (ii) code and model
coefficients are reported within the publication, as online
tools or in public repositories; (iii) the code is available in
broadly used public repositories (GitHub) or standardized
formats (Bioconductor packages (30), Python Package In-
dex (PyPI) packages (https://pypi.org)) granting maximum
portability and reproducibility. Only the latter are reported
in EstimAge, supporting results robustness, while a list of
potentially additional clocks is available in Supplementary
Table S1.

Third, the data hungry mathematical models adopted in
epigenetic clocks can be applied with limited effectiveness to
public data, offering a large predominance of blood sam-
ples on other tissues. It is therefore still matter of debate
whether multi-tissue clocks are sufficient to explain methy-
lage, whether they are indeed blood clocks and whether
tissue-specific clocks must be designed in order to address
differential ageing organ-wise. Fair comparisons require
therefore to assess side-by-side tissue-specific clocks that
have been generated by project-specific data sets. EstimAge
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collection provides a natural place to showcase all existing
robust clocks controlling the potentially redundant prolif-
eration of clocks, and enhancing cross fertilization among
neighbouring areas. A definitely needed approach as it is,
for example, easily observable from the citation patterns be-
tween forensic and biomedical published clocks, or mathe-
matical modelling with the non-linear EPM model (31) vir-
tually not cited, i.e. unexplored despite its inception in 2016
within the biomedical area.

Fourth, the theoretical exploration of mathematical mod-
els that best describe the relationship between ageing and
methylation is to date very limited. Indeed, from its incep-
tion in 2013, when the pioneering publications of Horvath
(1), Hannum (26) and Wiedner (32) described the concept of
epigenomic clocks, methylage computation has been dom-
inated by the elastic net regression model that has become
a de facto standard, with very few examples of non-linear
mathematical modelling of the phenomenon (33). EstimAge
is currently not only the broadest, but also the only reposi-
tory including also non-linear modelling of methylage.

We expect this service to be further expanded: in ad-
dition to continuing patrolling the upcoming literature,
Supplementary Table S1 lists several potential additional
clocks currently only lacking of public source code or peer-
reviewed publication to be added.

MATERIALS AND METHODS

Clock selection

In addition to the work known by our team, a systematic
search of the terms ‘methylage’, ‘epigenetic clock’, ‘methyla-
tion clock’ was run on Google and Pubmed, backed by cross
referencing. Curation with respect to the form in which the
clock was provided was done manually (Supplementary Ta-
ble S1). In order to provide validated models and repro-
ducible results, only clocks published in peer-reviewed ar-
ticles and whose source code was available were retained in
EstimAge. Among the clocks that did not provide the code
within their publication, five (8,34–37) were implemented
within the methylclock R package (27) and were therefore
included in EstimAge as shown in Table 1.

Input data

EstimAge requires two comma separated csv files: one con-
taining the DNA methylation beta-values, and the other
containing associated metadata, as described below (see
also Tutorial as well as examples on the webservice main
page).

The beta-values table should contain CpGs on the rows
and samples on the columns and its first column, named
‘ID REF’, should contain the CpGs IDs.

The associated metadata table should have the samples
on the rows and contain the following columns. (i) ‘Sam-
pleID’, that are the same IDs used in the beta-values ta-
ble columns; (ii) ‘Age’, containing the samples age (in years,
weeks, cell counts or kilobases); (iii) (optional) ‘Ctrl.Case’,
specifying if the sample is in the control group (‘Ctrl’) or
not (‘Case’). This column is used by EstimAge to generate
the outputs discussed in Results. When this information is
missing, all samples are considered to be controls; (iv) (op-
tional, only used in EPM) ‘Train.Test’, specifying whether

the sample should be in the training or in the test set. This
information is required and used only when running EPM.
In fact, while all other clocks provide the selected sets of
CpGs and the respective model coefficients in the original
publications, EPM needs to be trained data set-specifically.
It is hence up to the user to group the samples effectively
into the training set (which EPM will be trained on) and test
set (whose methylage will be predicted based on the trained
model). If the ‘Train.Test’ column is missing from the meta-
data, all samples will be included in the training set when
running EPM.

All clocks can be run in EstimAge if the two input ta-
bles are available. However, since in the original implemen-
tations the required format is not unique (e.g. some clocks
expect the presence of the CpGs identifiers column in the
beta-values table, others do not), we added, where needed,
a formatting step before the computation of the clocks, thus
removing the need of ad hoc data formatting from the user.

Data imputation

EstimAge provides three possible algorithms for data impu-
tation: k-nearest neighbours (knn), the mean or methyLImp
(28). However, in the absence of users’ preference (i.e. no
selection) EstimAge follows the original publication clock’s
solution to guarantee maximum adherence to the original
intent of the authors. It has to be noted that imputation al-
gorithms fail when the values of a CpG are missing in all
the samples, therefore NA value are still possible after the
imputation step. Additional details are given in the Supple-
mentary Data.

Additional notes on implementation

In addition to the standard outputs statistics and figures
(R2, regression and box plots) EstimAge returns the num-
ber of clock CpGs (after imputation) that are in fact avail-
able in the data set, over the number of CpGs that model the
clock (i.e. CpGs available versus total CpGs needed, param-
eter Used/Total). Since EPM computes a new set of CpGs
(whose size is CpGtraining) for each new data set, the ratio
will always be 1, i.e. CpGtraining/CpGtraining. For Horvath13
and Knight16, the clock is computed only if all CpGs are
present in the data set, therefore the ratio will again always
be 1. Shall the clock computation fail, the result will return
NA (see Supplementary Data for further details).

Webserver implementation

The front-end for EstimAge follows the Model-View-
Controller (MVC) paradigm, thanks to the web2py frame-
work (http://www.web2py.com/). Technical strategies for
safety and ease of use include: (i) rename safely the up-
loaded files to ensure anonymity and prevent directory
traversal attacks; (ii) use a local scheduler that runs the jobs
sequentially in order to prevent system overload; (iii) keep
the uploaded data until the job is completed and then erase
them; (iv) allow access to the computation results through
an html page. The EstimAge webserver has been tested with
Chrome and Firefox (on Linux, MacOS, Window), Edge
and Safari (Windows and MacOS).

http://www.web2py.com/
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Table 1. List of EstimAge available clocks characterized by the original publication Name when available, or FirstAuthorLastName followed by Publica-
tionYear; Tissue characterized by MeSH heading; Unique ID, enabling automatic filtering of appropriate clocks; Life phase, i.e. training age span, where
Pediatric corresponds to 0–18 years and Adult to 18–80 years; Technology it can compute data from; Cit. reporting the reference. All clocks are loosely
grouped by application: multi-tissue for general purpose investigation, tissue-specific for more focused applications; gestational (which output results in
weeks, w), forensic, as well as miscellaneous clocks computing acceleration in cell cycles (cc) or kilobases (kb).

Name Tissue Life phase Technology Cit.

Multi-tissue (years)
Zhang19.enpred
Zhang19.blupred

Tissues; D014024 lifespan HM450, HMEPIC (13)

Horvath13 Tissues; D014024 lifespan HM27, HM450 (1)
EPM Tissues; D014024 lifespan HM450 (33)
PhenoAge Tissues; D014024 adult HM450, HMEPIC (8)
Tissue-specific (years)
Hannum13 Blood; D001769 adult HM450 (26)
CorticalClock Cerebral Cortex; D002540 lifespan HM450, HMEPIC (38)
MEAT Muscle, Skeletal; D018482 adult HM27, HM450,

HMEPIC
(11)

PedBE Mouth Mucosa; D009061 pediatric HM450, HMEPIC (10)
Horvath18 Mouth Mucosa;D009061

Blood;D001769 Saliva; D012463 Skin;
D012867 Endothelial cells; D042783

lifespan HM450, HMEPIC (7)

Gestational* (weeks)
Knight16 Fetal Blood; D005312 foetal HM27, HM450 (39)
Bohlin16 Fetal Blood; D005312 foetal HM450 (34)
Mayne17 Placenta; A16.710; D010920 foetal HM27, HM450 (37)
Lee19.RPC Lee19.CPC
Lee19.rRPC

Placenta; D010920 foetal HM450 (35)

Forensic applications (years)
ZPiekarska15 Blood; D001769 lifespan Bisulfite conversion+

pyrosequencing assays
(20)

FAradas16 Blood; D001769 adult HM450k EpiTYPER (17)
Miscellaneous clocks (cell cycles, kilobases)
EPIToc (mitotic clock**) Neoplasms; D009369 adult HM450 (21)
MiAge (mitotic clock**) Neoplasms; D009369 adult HM450 (22)
DNAmTL (telomere Length
estimator***)

Blood; D001769 adult HM450, HMEPIC (36)

RESULTS

EstimAge requires: two input tables with CpGs methyla-
tion values and matching samples meta information; sam-
ples tissue to be selected among MeSH terms; age units
(years for human tissues, weeks for gestational clocks, cell
cycles for mitoclocks and kilobases for telomere clocks); it
offers (methylation-specific) imputation options and auto-
matically recommends the appropriate tissue-specific clocks
and reference data sets for cell count estimation (Supple-
mentary Table S2). All options can be skipped (no selection)
or overruled (options ‘other’ or ‘none’). EstimAge com-
putes the samples methylages and age accelerations using
the selected clocks and options. The results are reported
in intuitive tabular formats and plots. In the following, the
results obtained from the example provided on the web-
page is presented for clarity. The input data and metadata
used as example are a subset of GEO Series GSE72776 (see
Supplementary Data for details), containing DNA methyla-
tion profiles of human blood samples from healthy subjects
and subjects with Parkinson’s disease (PD). The example
includes 40 of the original 84 samples: 20 healthy and 20
PD subjects. Moreover, while in the tutorial all CpG sites
are preserved (485 512), the example in this article was fur-
ther pruned and only the first 299 999 rows were kept, en-
abling observation of additional variations in the parame-
ters (namely, Used/Total CpGs). In this example no impu-
tation was explicitly run by EstimAge.

First, given the relatively large number of parameters, a
summary table containing the clocks selected by the user
and all input specifications is provided. It is here that the
user can check at a glance also the compliance of her dataset
with the models: column ‘Used/Total CpGs’ returns for
each computed clock the ratio of CpGs in the data set (fol-
lowing imputation, if any) over the total number of CpGs
that model the clock (see Figure 1). The presence of miss-
ing data can affect the computation of all the clocks except
EPM, which computes on-the-fly the reference CpGs to be
used. In particular, missing data may cause a clock to fail in
the computation of methylage. This is the case of Horvath13
and ZPierkarska15 in the example in Figure 1, which failed
to produce an output due to the high number of missing
values in the input data.

Follow two tables with computation of methylage, R2 of
the regression model of methylage versus age, and clock-
specific regression plots (see Figure 2). For all clocks but
EPM, the regression model used to relate methylage and
age is a linear regression. In EPM, instead, non-linear re-
lationships between methylage and age are allowed and the
regression model is of the form methylage = a + b

√
Age as

in (33).
In the regression plots, samples are color-coded accord-

ing to input metadata (Ctrl.Case column, see Methods for
details). If control samples (Ctrl) are available, a regression
line for such samples is also shown, together with its con-
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Figure 1. Summary table including all features and appropriateness of the selected clocks based on the number of available CpGs in the data set, over the
number of CpGs that model the clock. The high variability of the total number of CpGs included in the clocks (ranging from 3 to 513) and of the number
(ranging from 0 to 210) and percentage (ranging from 0 to 100%) of CpGs actually used to compute methylage, is clear in the ‘Used/Total CpGs’ column.
‘TotalCpGs’ is the number of reference CpGs used by the clock, while ‘Used’ is the number of reference CpGs actually available in the input data. As
shown in the following results, when no CpG of the clock is present in the data (e.g. in Zpiekarska15), the clock is not usable. The ‘Used/Total CpGs’ of
Horvath13 is NA because, besides the availability of some of the CpGs of the clock, the computation of methylage failed (due to the presence of too many
missing data, in this example, see Supplementary Information for details.

Figure 2. On the left, table of R2 of the regression of methylage versus age obtained for each selected clock considering all samples (All), only controls
(Ctrl), or only cases (Case). DNAmTL outputs results in kb, ZPiekarska15 uses CpGs from low-throughput technologies and therefore returns NA, the
current input being from HM450. EPM has used for training the CpGs correlating at 80% with age (see Materials and Methods for details). The model
performances are highly variable and depend on both the selected clock and the selected samples (Ctrl, Case or All). For example, EPM fits the Ctrl group
(R2 = 0.73) better than the Case group (R2 = 0.22) and, besides using only three CpGs (see Figure 1), its performances on the Ctrl group are better than
those of PhenoAge (R2 = 0.32), that was computed with 210 CpGs. The user could for example choose to attempt imputation to improve the performances,
or decide to adopt for this specific data set Hannum13, whose R2 is the highest when considering all samples (All). On the right, example of regression plot
for the Hannum13 clock, showing age (y) on the x axis and methlyage (y) on the y axis.
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Figure 3. EEAA acceleration table, EEAA box plots for clocks in years, and EEAA box plot for telomere length clock, in kb.

fidence interval. When the samples age and the methylage
units are the same, the scale of the x and y axes are forced
to be the same and the bisector is also plotted (black line).

Three standard types of age acceleration are also pro-
vided in the form of (i) tables reporting the acceleration of
each sample and (ii) box plots, in which, for each clock, age
accelerations are drawn separately for cases and controls.

The first age acceleration estimate is obtained as the dif-
ference between methylage and age. In this case, age accel-
eration is meaningful only when the samples age is compati-
ble with the clock’s methylage units (y/w/cc/kb). Therefore,
EstimAge reports only the clocks for which this condition
is true.

The second estimate, Extrinsic Epigenetic Age Accelera-
tion (EEAA), is computed as the residuals from a regression
(non-linear for EPM, linear for all other clocks) of methy-

lage on the samples age (40,41). Regression is computed in
priority on control samples, but if less than three are avail-
able, then all samples are considered. If the total number of
samples is less than three, EEAA cannot be computed. The
R2 coefficients of each regression model are those reported
in the R2 table previously described (Figure 2).

The third estimate, Intrinsic Epigenetic AgeAaccelera-
tion (IEAA), is computed as the residuals from a regres-
sion (non-linear for EPM, linear for all other clocks) of
methylage on the samples age, adjusted for the estimated
cell counts (40,41). In this case, the table of the estimated cell
counts is also provided (only for cell types whose maximum
relative abundance is higher than 10−5). IEAA is computed
in priority on control samples. If the number of control sam-
ples is equal or less than number of cell types included in the
model, then all samples are considered. If the total number
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Figure 4. Cells count table for the calculation of IEAA.

of samples is less than the number of cell types, IEAA can-
not be computed. A table including the R2 of each regres-
sion model is also returned.

Overall, the output tables and plots of EstimAge offer
the possibility to qualitatively see and quantitatively inspect
and compare the results of different methylage clocks. Start-
ing from the immediate feedback on the appropriateness of
the clock to the data set (number of CpGs available ver-
sus number of CpGs needed, Figure 1), the R2 tables and
the regression plots (Figure 2) highlight the goodness of fit
of the models; Finally the age acceleration tables and box
plots (Figure 3) allow to verify whether, for example, the
case samples are biologically older than the control sam-
ples, and to determine which clock captures which amount
of such age acceleration; the cell-adjusted age acceleration
tables and box-plots (not shown) reveal how age accelera-
tion is different between samples and between clocks, when
the complex tissue composition is taken into account (Fig-
ure 4). The variability observed in the proposed example
(real data) shows how relevant it is to assess this parame-
ter with a variety of approaches and enable easy refinement
of the clocks choice.

DATA AVAILABILITY

EstimAge is an open source webserver available at: http://
estimage.iac.rm.cnr.it.

A portion of the data set GSE72776 on GEO has been
elaborated and further used as example as described in the
Results or on the Website.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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