
RESEARCH ARTICLE

miRNA expression profiling and zeatin

dynamic changes in a new model system of in

vivo indirect regeneration of tomato

Huiying Cao☯, Xinyue Zhang☯, Yanye RuanID*, Lijun Zhang*, Zhenhai Cui, Xuxiao Li,

Bing Jia

College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic

Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang

Agricultural University, Shenyang, China

☯ These authors contributed equally to this work.

* yanyeruan@syau.edu.cn (YR); ljzhang@syau.edu.cn (LZ)

Abstract

Callus formation and adventitious shoot differentiation could be observed on the cut surface

of completely decapitated tomato plants. We propose that this process can be used as a

model system to investigate the mechanisms that regulate indirect regeneration of higher

plants without the addition of exogenous hormones. This study analyzed the patterns of

trans-zeatin and miRNA expression during in vivo regeneration of tomato. Analysis of trans-

zeatin revealed that the hormone cytokinin played an important role in in vivo regeneration

of tomato. Among 183 miRNAs and 1168 predicted target genes sequences identified, 93

miRNAs and 505 potential targets were selected based on differential expression levels for

further characterization. Expression patterns of six miRNAs, including sly-miR166, sly-

miR167, sly-miR396, sly-miR397, novel 156, and novel 128, were further validated by qRT-

PCR. We speculate that sly-miR156, sly-miR160, sly-miR166, and sly-miR397 play major

roles in callus formation of tomato during in vivo regeneration by regulating cytokinin, IAA,

and laccase levels. Overall, our microRNA sequence and target analyses of callus formation

during in vivo regeneration of tomato provide novel insights into the regulation of regenera-

tion in higher plants.

Introduction

Tissue culture established over 150 years ago continues to play an important role in plant

propagation, and continues to be utilized in both basic and applied plant research, including

gene transformation and molecular breeding [1,2]. In-depth studies into mechanisms of regu-

lation of regeneration of higher plants using in vitro culture techniques, identified several pro-

teins and transcription factors such as WUSCHEL (WUS), SHOOT MERISTEMLESS (STM),

BABY BOOM (BBM), and MONOPTEROS (MP) [3–6]. However, both direct regeneration

and indirect regeneration via an intermediate callus phase are introduced by various plant

growth regulators supplemented media in traditional tissue culture. Yin [7] reported that 157
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unique proteins were significantly differentially expressed during callus differentiation in rice

when treated with different relative concentrations of the hormones cytokinin and auxin.

Additionally, even though somatic embryogenesis (SEG) has been proposed to be a model sys-

tem of plant embryogenesis, the expression of gene families such as those of miR397 and

miR408 was detected in somatic embryos (SE), but greatly decreased in zygotic embryos (ZE)

in conifer species [8].

An interesting phenomenon has been observed that in vivo adventitious shoots can be

regenerated from cut surfaces of stems or hypocotyls after removal of both apical and axillary

meristems in some species such as Cucurbita pepo [9], tomato [10], and poinsettia [11]. In

tomato, the surface of cut stems regenerates plenty of shoots via callus formation. This in vivo
generation does not depend on the presence of exogenous hormones. We propose that this

phenomenon is particularly useful as a model system to study the innate molecular mecha-

nisms of plant regeneration.

MicroRNAs (miRNAs) are a class of small noncoding-RNAs (20–24 nt) that regulate gene

expression at post-transcriptional levels by directly binding to their targets [12,13]. In the past

20 years, miRNAs have been shown to play key roles at each major stage of plant development

[14–17]. Furthermore, recent studies have shown that miRNAs are involved in callus initia-

tion, formation and differentiation. For example, the expression levels of miR408, miR164,

miR397, miR156, miR398, miR168, and miR528 were up-regulated during maize SE induction

[18]. Another study demonstrated that over-expression of miR167 inhibited somatic embryo

formation by inhibiting the auxin signaling pathway in Arabidopsis [19]. In citrus, the ability

of the callus to form SEs was significantly enhanced by either over-expression of csi-miR156a

or by individual knock-down of its two target genes, CsSPL3 and CsSPL14 [20].

Recently, the large scale application of next-generation sequencing has proved to be a useful

tool to identify the patterns of miRNA expression during plant regeneration. Genome-wide

miRNAs and their targets have been analyzed during explant regeneration in vitro in wheat

[21], rice [22,23], cotton [24], peanut [25], sweet orange [26], coconut [27], larch [28], mari-

time pine [8], Norway Spruce [29], longan [30], yellow-poplar [31], radish [32], Lilium [33],

and Tuxpeno maize [34]. However, all these studies were performed on in vitro specimens,

which relys on the presence of exogenous hormones to regenerate plantlets. The aim of the

present study was to identify the pattern of miRNA expression during callus formation in in
vivo regeneration in tomato through sequencing. We assessed 92 known miRNAs and identi-

fied 91 novel miRNAs, of which several were found to be developmentally regulated. We also

analyzed dynamic changes in cytokinin levels during in vivo regeneration of tomato.

Materials and methods

Plant materials

The tomato cultivar micro-TOM was used in this study. Seeds were placed on moistened filter

papers for approximately 3 to 4 d until the seeds sprouted. The germinated seeds were seeded

into a tray of 72 cells filled with a mixture of nutrient soil, matrix, vermiculite and perlite

(2:2:1.5:0.5(v/v/v/v)), and grown in a culture room with temperature ranging from 23 to 28˚C

and 16/8 h light/dark photoperiod. When the seedlings had grown 6 to 8 true leaves, the pri-

mary shoot was decapitated horizontally. All axillary buds that appeared after decapitation

were resected at the base (dx.doi.org/10.17504/protocols.io.bn5xmg7n).

HPLC analysis of trans-zeatin

Cutting surfaces of stems (3 mm long) were sampled at 0, 9, 12, 15, 18, 21, 24 and 30 d after

decapitation inthree biological replicates. Each biological replicate was from a pool of 3–5
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tomato plants, and weighed to obtain the fresh weight. The samples were immediately frozen in

liquid nitrogen and stored at –80˚C. Trans-zeatin was extracted with 80% methanol from sam-

ples and standard substance, and analyzed using HPLC (Agilent 1100, Agilent Technologies,

CA, USA) connected to an UV detector (λ = 274 nm). The HPLC of each sample was repeated

three times.The passing fraction was further purified by Sep-pak C18 column (Waters, Milford,

MA, USA). Gradient elution was with a mixture of water-methanol (75:25 (v/v)) with an elution

rate of 1.0 mL/ min at a column temperature of 35˚C. The absorbing material was Agilent C18

with a particle size of 5 μm loaded into a stainless steel column (250 × 4.6 mm).

Lovastatin addition during the tomato regeneration in vivo
A lovastatin (Sigma-Aldrich, St. Louis, MO, USA) stock solution at a concentration of 0.124 M

was prepared by dissolving in DMSO and applied at a final concentration of 123.6 μM. A solu-

tion of 20 μL lovastatin and 1 μL Tween-20 was applied on the cut surfaces of 10 tomato stems

after decapitation. An additional equal number of tomato plants were treated with water as

control. The number of regenerated adventitious buds was counted on 0, 30, 37, 44, 51 and 58

d after decapitation, respectively. We used ANOVA to test the difference between the treat-

ment with and without lovastatin added.

sRNA library construction and RNA sequencing

Total RNA was extracted from decapitated stem at 0 and 15 d in three biological replicates.

Each biological replicate was from a pool of 8–10 tomato plants. RNA samples of the three bio-

logical replicates were mixed in equal amount and used for the construction of libraries. The

small RNA library was constructed using 3 μg total RNA from each treatment respectively as

input materials. The sequencing library was generated by NEBNext1Multiplex Small RNA

Library Prep Set for Illumina1 (NEB, Ipswich, MA, USA), with added index codes to attribute

sequences of each sample as recommended by the manufacturer. Briefly, the NEB 30 SR Adap-

tor was connected to 30 end of miRNA, siRNA and piRNA directly. After the 30 ligation reac-

tion, the single-stranded DNA adaptor was transformed into a double-stranded DNA

molecule by hybridization of the SR RT Primer with excess of 30 SR Adaptor (kept free after

the 30 ligation reaction). This step significantly reduced the formation of adaptor-dimers. In

addition; dsDNAs were not the T4 RNA Ligase 1-mediated-substrates, and therefore were not

ligated to the 50 SR Adaptor in the following ligation step. The 50 ends adapter was connected

to the 50 ends of miRNAs, siRNA, and piRNA. Reverse transcription reaction was performed

using M-MuLV Reverse Transcriptase (RNase H–) after ligation with adapters, and Long Amp

Taq 2X Master Mix, SR Primer for Illumina and index (X) primer was used for PCR amplifica-

tion. An 8% polyacrylamide gel was used for purifying PCR products, small RNA fragments

approximately 140–160 bp were recovered and dissolved in elution buffer. Finally, the quality

of library was evaluated on the 2100 system of Agilent Bioanalyzer using DNA High Sensitivity

Chips. TruSeq SR Cluster Kit v3-cBot-HS (Illumina, San Diego, CA, USA) was used to evaluate

index-coded samples on a cBot Cluster Generation System. After clustering, the library prepa-

rations were sequenced on an Illumina Hiseq 2500 platform, and 50 bp single-end reads were

generated.

miRNA identification and target prediction

All sequenced data were firstly filtered with the removal of N%>10% reads, length<18 nt or

>30 nt, with 50 adapter contamination, 30 adapter null or insert null and low quality reads to

obtain clean reads. The remaining clean reads were mapped to the reference sequence by Bow-

tie to obtain unique reads and analyze the length distribution and expression of unique sRNAs.
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Unique reads were mapped to miRNA, rRNA, tRNA, snRNA, snoRNA, repeat masker, NAT,

TAS, exon, intron, and others. Mapped sRNA tags were used to search for known miRNAs.

With miRBase20.0 (http://www.mirbase.org) as reference, the potential miRNAs were identified

using modified software mirdeep2 [35] and srna-tools-cli (http://srna-tools.cmp.uea.ac.uk/),

and then the secondary structures were drawn. We used miREvo [36] and mirdeep2 to predict

novel miRNAs through the precursor structure of each miRNA unannotated in the previous

steps, including the analysis of the secondary structure, the dicer cleavage site, and the mini-

mum free energy. We used miFam.dat (http://www.mirbase.org/ftp.shtml) to compare our can-

didate miRNA families with known miRNA families from other species.

We used psRobot_tar in psRobot [37] to identify the potential gene targets of known and

novel miRNAs.

Differential expression analysis of miRNAs

We used the TPM (transcript per million) value to estimate the differential expression levels of

miRNAs between stem and callus [38]. The TPM ratio of miRNAs between stem and callus

libraries was computed as log2 (callus/stem). miRNAs with p value <0.05 and log2 (callus/

stem)<−1 or>1 were regarded to have as significantly differential expression levels through

the Bayesian method.

miRNAs quantification by qRT-PCR

Primers were designed by stem-loop method to perform RT-PCR assays according to Chen’s

design [39]. A 20 μL final volume Reverse transcription (RT) reaction was carried out to vali-

date the expression levels of selected miRNAs extracted from stem and callus respectively. The

final 20 μL reaction system included 1 μL template, 1 μL stem-loop primer, 1 μL dNTP mix-

ture, 4 μL buffer, 1 μL reverse transcriptase and 0.5 μL RNase inhibitor. In the reaction tube,

stem-loop primer, dNTP mix and template were added first, and then the template was dena-

tured at 65˚C for 5 min to improve the efficiency of reverse transcription. The tube was placed

on ice to cool for 2 min, followed by the addition of the buffer, reverse transcriptase and

RNase inhibitor. The tube was then incubated at 45˚C for 60 min, followed by 95˚C for 5 min.

The reverse transcription reaction was completed by cooling on ice for 2 min. After reverse

transcription, 1 μL of the RT reaction mixture was used for PCR. The PCR system was 25 μL,

containing 12.5 μL PCR mix, 1 μL template, 1 μL downstream primer and 1 μL upstream

primer, supplemented to 25 μL with nuclease-free water. The PCR conditions were as follows:

94˚C for 2 min, 94˚C for 30 s, 60˚C for 1 min for 35 cycles, followed by a final extension of

72˚C for 5 min. Following the PCR assay, gel electrophoresis was used to detect the amplified

products.

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays were per-

formed using a C1000 TouchTM Thermal Cycler (Bio-Rad, Hercules, CA, USA). The reaction sys-

tem included 5 μL SYBR1 Premix Ex TaqTM (Takara, China), 1 μL template, 0.2 μL upstream

primer, 0.2 μL downstream primer and 3.6 μL nuclease-free water. The reaction conditions were

as follows: 94˚C for 2 min, 94˚C for 30 s, 60˚C for 1 min, and final extension at 72˚C for 5 min for

35 cycles. The sequences of all primers used in this study are compiled in S1 Table.

Results

Phenotypic analysis of in vivo regeneration

In tomato, a primary shoot shows apical dominance and inhibits outgrowth of axillary buds.

After excising the main shoot apex, the dormant axillary buds began to develop immediately
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to replace the lost shoot apex. Since all new axillary buds were excised, light-green callus grad-

ually formed at the cut surface of primary shoots and axillary buds followed by progression to

the compact and nodular stage with a maximum diameter of up to 1 cm. When the callus

entered its differentiation stage, a large number of purple dots appeared on its surface, and

finally the shoots appeared to regenerate through callus (Fig 1). It took 30 days to obtain mac-

roscopic shoots after decapitation at 25˚C. These features of in vivo regeneration were similar

to the responses seen in tissue culture [58].

Analysis of trans-zeatin during in vivo regeneration

We used HPLC to determine the standard substance firstly, the standard curve of peak area

and trans-zeatin weight was y = 0.0651x–3.3111, R2 = 0.9963. Then the peak areas of the sam-

ples were detected by HPLC, and the weight of trans-zeatin were calculated and taking the

average value for three biological replicates. Finally, the contents of trans-zeatin in the samples

were obtained by dividing the weight by the fresh weights of the samples. HPLC analysis of

trans-zeatin during in vivo regeneration of tomato micro-TOM is presented in Fig 2 and S2

Table. Trans-zeatin was not detected in 0 d stem, but was detected in gradually increasing

amounts correlated with the progress of callus initiation, formation and differentiation. These

results show that cytokinin plays a key role during in vivo regeneration of tomato.

The samples were the cutting surface of stem at 0, 9, 12, 15, 18, 21, 24 and 30 d after decapi-

tation, 3–5 tomato plants were collected in each sample.

Cytokinins are a heterogenous group of N6-substituted adenine derivatives [40]. Lovastatin

is a potent inhibitor of the mevalonate pathway, and in principle blocks the synthesis of iso-

pentenyl-pyrophosphate and inhibit the biosynthesis of cytokinin [41]. Lovastatin (1 μM) has

been shown to completely inhibit the growth of cultured tobacco cells [42]. However, in this

study, the addition of high levels lovastatin (123 μM) to the cut surface of decapitated stems

did not inhibit tomato regeneration in vivo. There was no obvious difference (the P-value was

Fig 1. External appearance of the different stages of in vivo regeneration in tomato. (A) The decapitated primary

shoot; (B),(C) The callus formed on the cutting surface at 15 and 25d after decapitation; (D) The adventitious shoots

differentiated from callus.

https://doi.org/10.1371/journal.pone.0237690.g001
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0.8524) in the number of regenerated adventitious shoots between lovastatin and control

treated plants by variance analysis (Fig 3 and S3 Table). Together, these observations suggested

that cytokinin was not biosynthesized de novo in the cells at the cut surface or in the callus

during in vivo regeneration.

Deep-sequencing of sRNAs in stem and callus

To study the vital role of miRNAs during in vivo regeneration, the cut surfaces of stems at 0

and 15 days after decapitation were used to construct two sRNA libraries. Both of these librar-

ies were sequenced with 13.6 and 11.0 million raw reads obtained from stem and callus librar-

ies, respectively (S4 Table). After removal of the low quality reads as described in the Materials

and Methods section, 9.5 and 7.5 million clean sRNAs were obtained from the stem and callus

Fig 2. HPLC analysis of trans-zeatin levels during in vivo regeneration of tomato micro-TOM.

https://doi.org/10.1371/journal.pone.0237690.g002

Fig 3. Regenerated adventitious shoots levels in lovastatin and control treated tomato plants.

https://doi.org/10.1371/journal.pone.0237690.g003
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libraries. Among these, 7.4 and 6.6 million were unique reads aligned to the reference

sequences (Table 1). Unique sRNAs ranged from 18 to 30 nt in length in the two libraries (Fig

4). The most common lengths of unique sequences in each library were 21–24 nt, with 24 nt

long reads being the majority, followed by 23 nt.

Table 2 summarizes the categories of unique reads. High levels of small RNA expression

from rRNA and NAT genes were observed in both libraries. The number of miRNAs was

more abundant in stem tissue as compared to the callus of tomato, mainly due to the high

expression of sly-miR171, sly-miR396 and sly-miR397.

Identification of known miRNAs

To identify known miRNAs, sRNA sequences obtained from deep sequencing were contrasted

to other currently annotated miRNAs of known mature plant species in miRBase. A total of 92

known miRNAs were identified, belonging to 29 miRNA gene families in the two sRNA librar-

ies. Overall, 88 and 91 mature miRNAs were identified in the stem and callus tissues, respec-

tively (S5 Table). As shown in Fig 5, the sly-miR159 family was the most abundantly

expressed, while sly-miR9471, sly-miR6022, sly-miR396, and sly-miR166 families were moder-

ately abundant. Furthermore, the secondary structures of known miRNAs are shown in Fig 6A

and S1 Fig.

Table 1. Sequencing data filtering of two sRNA libraries produced from stem and callus.

Type Number of reads (Percentage of reads)

Stem Callus

Raw reads 13,563,211 (100.00%) 10,988,386 (100.00%)

Low quality reads 37,106 (0.27%) 9,399 (0.09%)

N% > 10% reads 722 (0.01%) 197 (0.00%)

Length <18nt and >30nt 3,576,896(26.37%) 3,162,932(28.78%)

5’ adapter contamine 6,440 (0.05%) 7,265 (0.07%)

3’ adapter null or Insert null 466,960 (3.44%) 329,058 (2.99%)

Clean reads 9,475,087(69.86%) 7,479,535(68.07%)

Unique reads 7,385,048 (54.45%) 6,653,378 (60.55%)

https://doi.org/10.1371/journal.pone.0237690.t001

Fig 4. Length distributions of unique sRNAs in stem and callus.

https://doi.org/10.1371/journal.pone.0237690.g004
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Predicted novel miRNAs

Unannotated miRNAs were used to predict novel miRNAs. We identified 91 novel miRNAs

were identified in total, of which 82 were mapped in both libraries (S6 Table). The expression

levels of novel miRNAs were distinctly different. Most of them showed comparatively low

expression levels (63 novel miRNAs in stem samples and 68 novel miRNAs in callus had less

than 120 raw reads). In contrast, two novel miRNAs (annotated as novel 1 and novel 9) in

both libraries contained more than 1,000 reads. The most abundantly expressed novel miRNA

was novel 1 with a total of 23,938 reads in both libraries. The predicted secondary structures of

novel pre-miRNAs are showed in Fig 6B and S2 Fig.

Identification of differentially expressed miRNAs

A total of 49 known and 44 novel miRNAs pertaining to the two libraries were expressed with

significant differences with regards to log2 (callus/stem) (>1 or<–1) and P-value (<0.05) cri-

teria (Fig 7) (S7 Table). For known miRNAs, 24 miRNAs were up-regulated and 25 miRNAs

were down-regulated in callus vs. stem tissue samples. Among the novel miRNAs, 17 were up-

regulated and 27 were down-regulated in callus vs. stem tissues (Fig 8). When miRNA distri-

butions were assessed between the two libraries, 44 known defined miRNAs and 37 novel miR-

NAs were generally expressed in both libraries. The comparison of miRNA expression showed

that 1 known and 7 novel miRNAs were expressed only in the stem, while 4 novel miRNAs

were expressed solely in callus tissue, respectively (Fig 9).

The miRNAs with lower p-value include sly-miR166 and sly-miR397. The significantly

down-regulated expression of sly-miR166 in callus cells could be related to its role in promot-

ing callus formation by down-regulating homeodomain leucine zipper class III (HD-ZIP III)

levels [43–45]. The most significantly down-regulated gene in callus tissue was sly-miR397,

which is known to play an important role in the accumulation of laccases during callus forma-

tion [46,47].

To confirm miRNAs expression levels in stem and callus and verify the deep-sequencing

results, four known and two novel miRNAs were selected randomly for qRT-PCR. These

Table 2. Reads categories of two small RNA libraries derived from stem and callus.

Type Number of reads (Percentage of reads)

Stem Callus

Unique reads 7,385,048 (100%) 6,653,378 (100%)

Known miRNA 175634 (2.38%) 128569(1.93%)

rRNA 318166(4.31%) 295130(4.44%)

tRNA 0(0.00%) 0(0.00%)

snRNA 3493(0.05%) 4302(0.06%)

snoRNA 16964(0.23%) 18823(0.28%)

Repeat 525093(7.11%) 521017(7.83%)

NAT 648360(8.78%) 646505(9.72%)

Novel miRNA 28342(0.38%) 21589(0.33%)

TAS 16594(0.22%) 17806(0.27%)

Exon 203176(2.75%) 197359(2.96%)

Intron 357484(4.84%) 323339(4.86%)

Othersa 5091742(68.95%) 4478939(67.32%)

aOthers, refers to the number and proportion of the sRNA aligned to the reference sequences but not aligned to the

known miRNA, ncRNA, repeat, NAT, novel miRNA, TAS, Exon and Intron.

https://doi.org/10.1371/journal.pone.0237690.t002
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miRNAs expression patterns resembled the deep-sequencing results, suggesting that sRNA

sequencing data were reliable (Fig 10).

The bars represents the relative expression and standard deviation of the 6 miRNAs.

qRT-PCR value of miRNAs in stem was set to 1, and values of miRNAs in callus were scaled.

Fig 5. Reads of known miRNA families at stem and callus.

https://doi.org/10.1371/journal.pone.0237690.g005
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Target prediction

To analyze the biological functions of differentially expressed miRNAs in stem and callus tissues,

the psRobot software was used to predict target genes. Among 1186 predicted target genes, a

total of 505 known and 6 novel differentially expressed miRNA target genes were identified (S8

Table). Functional annotations of BLAST analysis for predicted target genes indicated that these

targets contained mRNA coding regions for zinc finger protein (sly-miR165, sly-miR164, sly-

miR391, sly-miR394, sly-miR396, sly-miR477, sly-miR482, sly-miR6027, sly-miR9469, sly-

miR9478, and sly-miR9479), and MYB (sly-miR156, sly-miR319, sly-miR9469, and sly-miR9478)

protein. Furthermore, some miRNAs were found to target transcription factors, such as SQUA-

MOSA promoter binding protein-like gene (SPL) (sly-miR156) [48], Auxin response factors

(ARFs) (sly-miR160) [18], HD-ZIP III (sly-miR166) [21], NAM (sly-miR164 and sly-miR9478)

[49], and MADS (sly-miR396 and sly-miR9477) [50], which are all known to be involved in plant

regeneration. Laccase(sly-miR397) was also important in the regulation of plant development

and regeneration [22,23]. The target genes of some miRNAs specifically expressed in the callus

were CCAAT-binding (sly-miR169a), zinc finger (sly-miR9469-3p and sly-miR9469-5p), SQUA-

MOSA promoter binding protein (SBP-box), MADS-box and K-box (sly-miR9477-5p). Interest-

ingly, all the target genes of novel 46 (solyc05g015840.2, solyc12g038520.1, solyc10g078700.1,

solyc05g015510.2, solyc05g012040.2, and solyc04g045560.2) were the same as those targeted by

sly-miR156e-5p, sly-miR156d-5p, and sly-miR156a.

Discussion

Recently great progress has been made in understanding the role of miRNAs in regulating the

transitions between different development stage in plants, such as those from vegetative-to-

reproductive, juvenile-to-adult and aerial stem-to-rhizome transitions [51–54]. In the present

study, we demonstrate that miRNAs are involved in complex regulatory networks during

stem-callus transition during in vivo regeneration of tomato. We identified a total of 183 miR-

NAs (92 conserved and 91 novel miRNAs) by next-generation sequencing. Previous studies on

miRNAs, including Xu et al. [30] identified 289 known miRNAs and 1087 novel miRNAs in

longan, while Wu et al. [26] reported 50 known and 45 novel miRNAs in citrus. Taken

together, these data show that distinct types of miRNAs are expressed at different levels during

the process of regeneration in different species.

Cytokinin triggers a complex gene expression program in plant tissue culture that results in

adventitious shoot regeneration [55]. The current model for cytokinin signal transduction is a

multi-step phosphorelay. First, Arabidopsis histidine kinase (AHKs), the cytokinin receptors

in the plasma membrane, perceive the cytokinin signal triggering a multi-step phosphorelay.

At the end of this pathway, B-ARR receives the phosphoryl group and becomes active. As tran-

scription factors, B-type ARRs can activate the expression of cytokinin-responsive genes and

Fig 6. Secondary structure of identified miRNA precursors. The red protrusions are the mature sequences. (A)

Known miRNA: sly-miR162; (B) Novel miRNA: novel 101.

https://doi.org/10.1371/journal.pone.0237690.g006
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A-type ARRs. Interestingly, the expression of A-type ARRs interferes with the function of B-

type ARR proteins through a negative feedback loop [56,57]. Cytokinin thus plays a vital role

during in vitro regeneration. It can not only induce adventitious buds alone, but also cooperate

with auxin. Many studies have confirmed that miRNA regulate hormone signaling genes

involved in regeneration.

Fig 7. Cluster analyses of differentially expressed miRNAs. Red denotes highly expressed miRNAs, while blue

denotes weakly expressed miRNAs. The color is from red to blue, indicating that log10 (TPM + 1) is from large to

small.

https://doi.org/10.1371/journal.pone.0237690.g007
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miRNA does not regulate in vivo regeneration through cytokinin synthesis

The content of trans-zeatin increased with the in vivo regeneration process in our study, which

was related well with previous studies that 6-benzyladenine treatment increased the number of

adventitious shoot amounts during in vivo regeneration of tomato [58]. Furthermore, our

findings are also supported by other studies which used zeatin as the only exogenous hormone

during in vitro regeneration of tomato [59–61]. So we considered that cytokinin played a role

in in vivo regeneration of tomato.

There was no significant difference in the regeneration of wound between lovastatin with

and without, which indicated that cytokinin could not synthesized at the wound. Meanwhile,

the target genes of significant differential expression miRNA were not found to be related to

cytokinin synthesis. Therefore, we suggested that miRNAs were not involved in cytokinin syn-

thesis but participated in cytokinin signal transduction during in vivo regulation.

miR156/SPL module involved in callus formation by regulating cytokinin

signaling pathway

Siddiqui et al. [62] summarized the most common expressed miRNAs during SEG in 11 eco-

nomically plants. Of these, miRNA156 was found to be most frequently detected in six of the

11 plant species tested. Sequences of miR156 were highly conserved in plants [63]. In the pres-

ent study, sly-miR156d-5p and sly-miR156e-5p were newly identified and shown to be

expressed differently in stem and callus tissue. Promoter binding protein (SBP) domain

SQUAMOSA was predicted to be one of the targets of sly-miR156d-5p and sly-miR156e-5p.

SBP domain proteins, putative plant-specific transcription factor gene families, have been

shown to participate in various plant biological processes and to be involved in vegetative-to-

reproductive phase transition [64–66], pollen sac development [67], gibberellins (GAs) signal-

ing network [68] and establishment of lateral meristems [69]. As SBP-box gene family mem-

bers, 10 of 16 SPL genes were shown to be targets of miR156 in Arabidopsis, while 10 of the 15

Fig 8. The number of known and novel up- and down- regulated miRNAs in callus vs. stem tissue.

https://doi.org/10.1371/journal.pone.0237690.g008
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SPL genes were proposed to be targets of miR156 in citrus [70,71]. The function of the

miR156-SPLs module was confirmed to be crucial in callus production in citrus in vitro callus

through targeted inhibition of miR156-targeted SPLs and over-expression of csi-miR156a

[20]. Therefore, differential expression levels of miR156 during tomato callus generation in the

present study, suggest that is likely to play an important role in in vivo regeneration.

Zhang et al. [72] demonstrated that miR156 participates in regulation of shoot regeneration in
vitro. miR156 expression gradually increases with age and suppresses the expression of its target SPL
genes. Down-regulated SPLs attenuate cytokinin signaling by binding to the B-type Arabidopsis

response regulators (ARR) transcription factor. The data presented here show that cytokinin levels

increase during in vivo regeneration in tomato. However, sly-miR156d-5p and sly-miR156e-5p were

found to be up- and down-regulated, respectively. Thus, the regulation of miR156-SPL-ARR module

during in vivo callus formation and shoot regeneration in tomato needs to be further investigated.

IAA level regulated by miR166 in callus formation

Low expression levels of sly-miR166c-5p and sly-miR166c-3p were observed during the

change from stem to callus stages in this study. Previous research has shown that miR166,

Fig 9. Venn diagram of the number of specifically expressed miRNAs at stem and callus. (A) Known miRNAs; (B)

Novel miRNAs.

https://doi.org/10.1371/journal.pone.0237690.g009
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together with miR156 and miR396 were down-regulated during callus formation from tea

plant stem explants [73]. miR166 was identified to target Class III homeodomain leucine zip-

per (HD-Zip III) gene family of transcription factors, including REVOLUTA (REV), PHABU-

LOSA (PHB), PHAVOLUTA (PHV), CORONA (CNA), and ATHB8 in Arabidopsis [43].

HD-ZIP III proteins play an important role in plant regeneration by regulating the differentia-

tion of stem cells and the establishment of shoot apical meristem (SAM) and RAM [74–76].

More recently, REV was demonstrated to activate genes upstream of several auxin biosyn-

thesis, transport, and response genes. Brandt et al. [77] identified that REV targeted the auxin

biosynthetic enzymes TAA1 and YUCCA5(YUC5), and directly affected the levels of free

auxin. In Arabidopsis, loss-of-function mutants of REV showed lower expression levels of the

PIN1 and PIN2 auxin transporters and reduction in the tip-to-base transport of auxin [78].

Additionally, REV function is necessary for polar auxin transport in the shoot [79]. Li et al.

[45,80,81] demonstrated that over-expression of La-miR166a and down-regulated of LaHD-

ZIP31-34 genes results in different IAA levels in pro-embryogenic masses of L. leptolepis. The

authors speculated that La-miR166 targeted HD-ZIP III genes likely regulate auxin biosynthe-

sis and response genes. Overall, these results indicated the complex regulaory relationships

between miR166 and plant development. Further, Ma et al. [54] reviewed five key microRNAs

involved in developmental phase transitions in seed plant, and miR166 was one of them.

Other miRNAs related to the phytohormone signaling during in vivo
regeneration

There is no doubt that auxin signaling and transport is a versatile trigger of plant developmen-

tal changes incluing regeneration [82]. Based on a number of previous studies, which focussed

on miRNAs involved in regulation of the auxin signaling, in Arabidopsis, miR393 was shown

to contribute to SE, leaf development and antibacterial resistance by repressing auxin signaling

[83–85]. Two auxin response factors genes, ARF6 and ARF8, are targeted by miR167 [86].

During callus formation, miR160 was defined as a key repressor by modulating the interplay

between auxin and cytokinin. The callus initiation was repressed by over-expression of

miR160 or reduced expression of its target ARF10. ARF10 can inhibit cytokinin signaling A-

type genes ARR15 [87]. Although A-type genes ARR15 and ARR7 were identified to inhibit

Fig 10. The relative expression levels of 6 (four known and two novel) miRNAs by qRT-PCR.

https://doi.org/10.1371/journal.pone.0237690.g010
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callus formation, those of the B-type genes ARR1 and ARR21 can enhance its initiation [88,89]

(Fig 11). Although the expression of miR160 was low, in many previous studies, the read of

miRNA greater than 10 was regarded as expression [2,27,90]. Therefore, we speculated that

miR160 may play a role in tomato in vivo regeneration.

Arrows represent activation, while lines with a bar represent repression. The solid lines rep-

resent the results predicted by this study, and the dotted lines represent the results from refer-

ences. The up-regulated miRNAs are shown in the blue box, while the down-regulated

miRNAs are shown in orange ones. miRNA targets are shown in green oval frames. Cell prolif-

eration relied not only on high levels of auxin but also on low level of cytokinin during in vitro

callus induction in Arabidopsis [91]. This study showed the down-regulation of sly-miR160

and low concentrations of cytokinin in callus were crucial in callus formation. We predict that

a similar interplay between microRNA/phytohormone levels may exist between in vivo and in
vitro regeneration in tomato.

miR397 repressed callus formation through inhibition of laccases expression

The expression of Sly-miR397 was most significantly down-regulated in callus tissue. MiR397

has been validated to target laccases (LAC2 and LAC17 in this study), a group of polyphenol

oxidases [46,92]. In higher plants, laccases are associated with lignin and xylem synthesis, and

are proposed to play a role in secondary cell wall thickening [23,93,94]. Lignin is an essential

component of plant secondary cell walls, which influence plant growth and differentiation

[95]. Previous studies indicated that callus tissue first contains lignified parenchyma cells, fol-

lowed by the formation of short vessels and traumatic resin ducts after plant injury, and the

induction of vessels requires the involvement of lignin [47,96]. Overall, we predict that low

expression levels of Sly-miR397 in callus tissue permits the accumulation of laccases, leading to

the increase of lignin deposition within the callus.

Conclusion

We used a new model system to study the dynamic changes in trans-zeatin levels and the regula-

tory patterns of miRNA expression during in vivo regeneration of tomato. The significant changes

in trans-zeatin levels at 0, 9, 12, 15, 18, 21, 24 and 30 d after decapitation proves that trans-zeatin

plays a crucial role during in vivo regeneration in tomato. However, the treatment with excess lov-

astatin on the cut surface of tomato stems did not inhibit callus formation, which indicated that

Fig 11. Genetic networks of callus formation during in vivo regeneration of tomato regulated by miRNA-target

modules together with their downstream targets.

https://doi.org/10.1371/journal.pone.0237690.g011
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de novo biosynthesis of cytokinin did not occur in the cut surface of tomato stems. A total of 92

known and 91 novel miRNAs were identified from the stem explant and the callus regenerated

from the cutting surfaces after decapitation, respectively, of which 49 known and 44 novel miR-

NAs exhibited differential expression between the two libraries. In addition, a total of 505 known

miRNA target genes and 6 novel miRNA target genes were further identified. We predict that

these differentially expressed miRNAs and their relevant target genes play an important role in

callus formation during in vivo regeneration of tomato. Among these, sly-miR156, sly-miR160,

sly-miR166, and sly-miR397 are predicted to be involved in callus formation during in vivo regen-

eration of tomato by targeting SPL, HD-ZIP III, ARFs, and LAC proteins, as well as by regulating

cytokinin, IAA, and laccase levels. The findings of this study provide a useful resource for further

investigation on callus formation during in vivo regeneration of tomato.
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