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Abstract

Alternative splicing of pre-mRNA is a highly regulated process that allows cells to change their genetic informational output.
These changes are mediated by protein factors that directly bind specific pre-mRNA sequences. Although much is known
about how these splicing factors regulate pre-mRNA splicing events, comparatively little is known about the regulation of
the splicing factors themselves. Here, we show that the Drosophila splicing factor P element Somatic Inhibitor (PSI) is
phosphorylated at at least two different sites by at minimum two different kinases, casein kinase II (CK II) and tousled-like
kinase (tlk). These phosphorylation events may be important for regulating protein-protein interactions involving PSI.
Additionally, we show that PSI interacts with several proteins in Drosophila S2 tissue culture cells, the majority of which are
splicing factors.
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Introduction

Alternative splicing of pre-mRNA transcripts is widespread

among eukaryotes. It is currently believed that over 90% of human

genes and over 60% of Drosophila multi-exon genes are alterna-

tively spliced [1,2]. The list of splicing events regulated by a

particular protein in a particular cellular context is known for

many factors, usually through the use of RNAi and splicing-

sensitive microarrays or high throughput mRNA-seq [3,4]. Using

splicing-sensitive microarrays, PSI was found to regulate 43

splicing events in S2 cells [5].

PSI was originally identified as a protein factor necessary for the

retention of the third intron of the P element transposon, leading

to the production of a truncated protein [6,7]. PSI, like its

mammalian homologs contains four N-terminal KH-type RNA

binding domains. This repression of splicing occurs through an

interaction between a C-terminal region of PSI and the U1 snRNP

70 K subunit [8,9] and also requires the presence of a PSI binding

motif near the affected intron [10,11]. PSI deletion mutants are

embryonic lethal, and its protein-protein interaction with U1

snRNP 70 K is necessary for male fertility [12].

Although many studies have investigated the effects that splicing

factors have on alternative splicing, few have looked at the

regulation of the factors themselves. Many of these instances of

regulation occur pre-translationally, often at the level of splicing.

For example, many SR proteins regulate their own splicing as well

as that of heterologous SR proteins in a way that shunts those

transcripts into the NMD pathway [13,14].

Some splicing factors are known to be post-translationally

modified. These events can affect the RNA binding capabilities of

the protein [15] as well as the assembly of higher-order structures

like the spliceosome [16]. The spliceosomal proteins SAP155 and

NIPP1 are phosphorylated, and this modification is necessary for

their interaction [17]. SR proteins and other splicing factors are

highly phosphorylated in vivo [18]. Additionally, the RS domain of

the splicing factor ASF/SF2 greatly affects the protein and RNA

binding capabilities of the protein, and is necessary for splicing

[15,19].

We have identified two phosphorylation sites on PSI by mass

spectrometry and identified two kinases that phosphorylate the N-

terminus of PSI. These phosphorylation events may play a role in

the ability of PSI to interact with other proteins. Additionally, we

have identified several interaction partners of PSI, suggesting that

PSI is present in cells a member of large ribonucleoprotein

complexes.

Results

PSI is Phosphorylated in vivo
Using a Polyoma (also known as Glu-Glu) tagged version of PSI,

we purified PSI from Drosophila Kc cells. Interestingly, PSI purified

from Drosophila cells migrated on SDS-PAGE gels as a doublet

(Figure 1A, Figure 4B) while recombinant PSI purified from E. coli

migrated as a single species (Figure 1A). We reasoned that PSI

phosphorylation events occurring in Drosophila cells could be

responsible for the doublet. Consistent with this idea, treatment of
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PSI purified from Kc cells with calf intestinal phosphatase (CIP)

collapsed the doublet to a faster migrating band while having no

effect on the migration of recombinantly produced PSI (Figure 1A).

To characterize this apparent phosphorylation, we digested

purified endogenous Drosophila PSI with multiple proteases and

analyzed the resulting peptides by multidimensional chromatog-

raphy/mass spectrometry. The resulting data covered 84.5% of

the sequence to an average depth of 10 observations per peptide.

Manual evaluation of the spectra assigned to phosphopeptides

confirmed two phosphorylation sites at Ser 42 and Ser

61(Figure 1B). Spectra showing phosphorylation at Ser42 were

measured 51 times in four different peptides. Spectra showing

phosphorylation at Ser61 were measured 5 times in two different

peptides. Spectra of the corresponding unmodified peptides were

measured 86 and 5 times, respectively. The characteristics of the

unmodified spectra supported the interpretation of the modified

spectra (Supplemental Figure 1).

The global phosphoproteomic analyses of Drosophila embryos

by Zhai et al. [20] also identified Ser 42 and Ser 61 as

phosphorylation sites. A third site, Ser 85, identified in that study

was not detected on our analysis. Inspection of the supporting data

from Zhai et al for Ser 85 showed that the CID spectrum

contained no neutral loss peak; consequently, the identification is

likely to be a false positive.

PSI is Phosphorylated in Drosophila Cells by Casein
Kinase II

In order to identify the protein kinase or kinases responsible for

the observed phosphorylations of PSI, we used chromatographic

fractionation of Drosophila embryo nuclear extract and followed

PSI-phosphorylating activity using recombinant PSI and radioac-

tive gamma-32P-ATP as substrates (Figure 2A). To simplify the

purification and exclude the phosphorylation of other residues, we

used an N-terminal fragment of PSI that contained only the first

95 amino acids, including the two residues, Ser 42 and Ser 61, that

we identified as being phosphorylated by mass spectrometry

(Figure 1B).

After five purification steps, we analyzed the protein content of

the peak fraction of PSI kinase activity by SDS-PAGE and silver

staining (Figure 2B). We detected two prominent protein species

migrating at approximately 37 and 30 kDa that appeared to be at

stoichiometric levels with each other. We excised these bands, as

well as several other prominent bands, from the gel and performed

mass spectrometry. The 37 and 30 kDa bands were identified as

Figure 1. Biochemcial fractionation and analysis of the PSI kinase. A) Purified recombinant PSI and PSI purified from Kc cells was treated with
calf intestinal phosphatase (CIP) and then visualized by immunoblotting. B) MS2 spectra identifying phosphopeptides found in PSI. B and Y series ions
and neutral loss of phosphate are indicated. Inset: sequence of the phosphopeptide and SEQUEST statistics. MS3 spectra and corresponding spectra
of unmodified peptides are given in supplemental Figure 1.
doi:10.1371/journal.pone.0056401.g001
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the alpha and beta subunits, respectively, of casein kinase II.

Importantly, no other known protein kinases were identified in this

fraction. We calculated the enrichment in specific activity

contained in this fraction to be approximately 12,000-fold relative

to the starting nuclear extract.

Casein kinase II is a tetramer composed of two catalytic 40 kDa

alpha subunits and two regulatory 25 kDa beta subunits [21] and

has many known protein targets in Drosophila [22,23,24,25].

Analytical gel filtration chromatography of the peak activity

fraction of kinase activity showed an approximate size of 135 kDa

for the kinase, consistent with a tetramer composed of two 40 kDa

and two 25 kDa subunits (data not shown).

Casein kinase II has a preferred recognition motif of *SXX(D/

E) [26]. One of the identified phosphorylation sites, Ser 61, lies

within this motif (*SGPE). We therefore hypothesized that casein

kinase II was phosphorylating Ser 61. To confirm this, we made

serine-to-alanine mutants at each phosphorylation site (Ser42 and

Ser61), as well as a double mutant. We used both the peak activity

fraction from the casein kinase II purification as well as purified

recombinant human casein kinase II to phosphorylate these

mutant PSI substrates in vitro (Figure 2C). The mutation of Ser 61

Figure 2. Biochemical purification of Drosophila casein kinase II. A) Purification strategy for endogenous casein kinase II. B) Protein
composition of peak fraction of activity from the final heparin column visualized by SDS-PAGE and silver-staining. Species identified as casein kinase II
alpha and beta are labeled. Bands labeled with an asterisk correspond to contaminating keratin. C) In vitro kinase assay of PSI mutant proteins. Serine
to alanine PSI mutant proteins were phosphorylated in vitro using the peak fraction of activity from the final heparin column and using purified
recombinant human casein kinase II (NEB P6010S). Assays were visualized using autoradiography, and, to ensure equal protein loading, coomassie
staining.
doi:10.1371/journal.pone.0056401.g002
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to alanine completely abolished to ability of casein kinase II to

phosphorylate the substrate while the mutation of Ser 42 to

alanine had little, if any, effect. Taken together, these data indicate

that Ser 61 in PSI is a casein kinase II phosphorylation site.

PSI is Phosphorylated in Drosophila Cells by Tousled-like
Kinase

Although the majority of the activity in the initial fractionation

step resided in the 1 M KCl fraction and was likely due to casein

kinase II, we detected a smaller peak of activity in the 250 mM

fraction. We further fractionated this peak of activity over several

chromatographic columns (Figure 3A). After fractionation, we

again visualized the peak activity fraction by silver stain (Figure 3B)

and excised prominent bands from the gel and analyzed them by

mass spectrometry. We identified tousled-like kinase (tlk) as a

component of the prominent band migrating at 130 kDa. No

other known protein kinases were identified in this fraction. A

second, independent fractionation also identified tlk as the lone

kinase in the final peak activity fraction.

We then tested the ability of the tlk-containing fraction to

phosphorylate the serine-to-alanine mutant PSI substrates at Ser42

and Ser61 (Figure 3C). Although the tlk-containing fraction did

efficiently phosphorylate the wildtype substrate, it also phosphor-

ylated the two mutants. However, there are one threonine and

fifteen serine residues in the PSI truncation substrate that may

serve as alternate phosphorylation sites for the mutant substrate.

No phosphorylation site could be found in the truncated PSI

substrate by mass spectrometry, suggesting that the observed

activity resulted in very low levels of modification and/or

modification distributed over multiple sites.

PSI Mutants Show Differential Protein Interaction Profiles
PSI contains four RNA-binding KH domains [11], but the

identified phosphorylation sites lie N-terminally to them. The

phosphorylation sites are, however, near a very glycine-rich

region. Glycine-rich regions are known to be mediators of protein-

protein interactions, particularly in RNA binding proteins [27].

We therefore hypothesized that the phosphorylation state of PSI

may influence its ability to interact with other proteins.

To test this idea, we performed GST pulldowns in Drosophila Kc

cell nuclear extract using GST-tagged wildtype and mutant N-

terminal PSI truncations as bait (Figure 4A). As before, these

truncations again consisted of the first 95 amino acids of PSI. We

also performed the pulldowns using bait proteins that had been

pre-phosphorylated by treatment with casein kinase II and ATP.

We then analyzed the PSI-interacting proteins by mass spectrom-

etry.

Interestingly, a 75 kDa protein interacted strongly with the

wildtype and S61A PSI N-terminal truncations, but not with the

S42A or S42A/S61A PSI truncations (Figure 4A). This protein

also seemed to shift in mobility when casein kinase II had been

added to the extract. Mass spectrometry analysis revealed several

peptides of the 75 kDa Recombination Repair Protein 1 (Rrp1) in

the wildtype and S61A pulldowns, but none in the S42A and

S42A/S61A pulldowns. Interestingly, Rrp1 also contains two

copies of the casein kinase II phosphorylation motif, indicating

that its change in mobility when casein kinase II is added to the

pulldown may be the result of its own phosphorylation by CKII.

The ability of Rrp1 to interact with PSI, then, may depend on the

phosphorylation state of Ser 42.

To perform of a more comprehensive analysis of the proteins

that interact with PSI, we expressed epitope-tagged full-length PSI

in S2 cells. We then immunoprecipitated the exogenous PSI using

the polyoma (also known as Glu-Glu) epitope, eluted from this

immunoprecipitation using free polyoma (EYMPME) peptide, and

treated with RNase A. We then immunoprecipitated the eluate

using a polyclonal anti-PSI antibody [28] (Figure 4B, 4C). After

eluting PSI from the antibody resin with acidified glycine, we

analyzed the PSI-interacting proteins using mass spectrometry

(Figure 4D, Supplemental Table 1).

We identified several splicing factors among the interacting

proteins, including snRNP70K, which had been previously shown

to directly interact with the A/B domain of PSI [8]. These PSI-

interacting proteins also included hrp48, a factor known to play a

role in the P element splicing silencer [6,29],the hnRNAP protein

hrp59, the splicing factor PUF68, the RNA helicase Rm62 and SR

protein Srp54. Rrp1, identified as an interacting partner with

truncated PSI, was present but with fewer peptides than proteins

listed in Figure 4D. Interestingly, we also identified several

cytoskeletal proteins, including actin and the alpha and beta

subunits of tubulin. These proteins appear not to be non-specific

contaminants, as they did not co-purify with non-specific rabbit

IgG antibody done in parallel. Taken together, these proteins

appear to associate with PSI via protein-protein interactions in an

RNase-insensitive manner and thus might be functioning along

with PSI in the processing of specific nuclear pre-mRNAs.

Discussion

In this study, we have identified two kinases that phosphorylate

the splicing factor PSI. Although we could definitively show that

the phosphorylation site for casein kinase II was Ser 61, we were

unable to definitively show that Ser 42 was phosphorylated by tlk.

As very little is known about its preferred motif [30], it is difficult

to assess whether tlk can phosphorylate Ser 42. Ser 42 is

additionally in close proximity to several other serines, and thus

its mutation may only shift phosphorylation to one or more of

these nearby sites. However, given that we twice identified tlk as

the only kinase present in a fraction that efficiently phosphorylated

the PSI substrate, it is likely that tlk can phosphorylate PSI.

These phosphorylation events do not occur in or near the RNA-

binding KH domains of PSI and are thus unlikely to modulate

RNA-binding activity. They may, however, affect the protein

interaction partners of PSI. Using GST pulldowns, we showed that

Rrp1 requires the presence of Ser 42 to be able to interact

efficiently with PSI. Rrp1 is an exonuclease that is involved in

DNA damage repair [31]. Connections between splicing and

DNA repair have been previously recognized [32]. Interestingly,

human tlk has also been implicated in DNA damage and repair

[33,34,35]. Furthermore, Ser 42 is conserved between PSI and the

human ortholog of PSI, KSRP. Human KSRP is also phosphor-

ylated upon DNA damage [36], further strengthening a possible

link between the phosphorylation state of PSI and DNA damage

events.

The interaction of PSI with several cytoskeletal proteins was

unexpected. PSI is essentially exclusively nuclear [12], and the

immunoprecipitations and purifications performed here began

with nuclear extracts. Both actin and tubulin, however, are known

to exist in the nucleus [37,38]. Furthermore, certain transcrip-

tional complexes are known to contain actin, and actin has been

shown to interact with several hnRNP proteins [39]. The potential

importance and role of the interaction of PSI with these

cytoskeletal proteins will require further investigation as will a full

understanding of the consequences of these two phosphorylation

events in PSI.

Splicing Factor Phosphorylation
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Materials and Methods

Purification of Polyoma-tagged Full-length PSI from Kc
Cells

Drosophila Kc cells were a gift from the lab of Joan Steitz (Yale

University) and were first produced from 12 hour-old embryos by

Echalier and Ohanessian in 1969 [40]. Nuclear extract from Kc

cells was incubated with 50 mL of anti-polyoma resin for 1 hr at

4uC. The resin was then washed three times with 1 mL IPB2

buffer (20 mM Tris pH 8.0, 2 mM EDTA, 400 mM NaCl, 0.2%

NP-40, 1 mM dithiothreitol). The resin was then resuspended in

500 mL of IPB2 and treated with 0.5 mL of RNase A (Promega).

The resin was then washed twice with 1 mL IPB2, and protein was

eluted off the resin using elution buffer at 65uC (8 M urea/

100 mM Tris pH 8.5). The samples were then prepared for mass

spectrometry as described below.

Purification of N-terminal PSI Truncation
A cDNA fragment containing amino acids 2–95 of PSI was

cloned into pRSETA between the NdeI and KpnI restriction sites.

Additionally, the cDNA contained a His6 tag on the N-terminal

end and a polyoma (EYMPME) tag on the C-terminal end. The

PSI truncation was expressed in BL21(DE3) pLYS E cells and

purified using nickel affinity chromatography.

In vitro Kinase Assays
In vitro kinase assays contained the following: 5 mL fraction to

be assayed, 1 mg PSI fragment, 0.5 mL c-32P-ATP (7000 Ci/

mmol), 25 mM Hepes-KOH, pH 7.5, 0.5 mM EDTA, 5%

Figure 3. Purification of a second PSI kinase activity. A) Purification strategy for tousled-like (tlk) kinase. B) Protein composition of peak
fraction activity from the final Mono S column visualized by silver staining. The species identified as tlk is labeled. C) In vitro kinase assay of PSI
mutants. Serine to alanine PSI mutants were phosphorylated in vitro using the peak fraction of activity from the final Mono S column. Assays were
visualized using autoradiography, and, to ensure equal protein loading, silver staining.
doi:10.1371/journal.pone.0056401.g003
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glycerol, 5 mM MgCl2, 100 mM KCl, 0.5 mM DTT, 0.4 mM

PMSF, 10 mM NaF, 5 mM beta-glycerol-phosphate, 25 mM ATP

in a final volume of 50 mL. The reactions were incubated at room

temperature for 30 min. Ten mL of protein sample buffer were

added, and 15 microliters of the sample was then analyzed by

SDS-PAGE. The gel was silver-stained, dried, and exposed to X-

ray film for two hours to determine the chromatography fractions

that contained PSI-phosphorylating activity.

GST Pulldowns
cDNA fragments for each PSI mutant were cloned into pGEX-

2TK and expressed as GST fusions in Rosetta(DE3) pLYS S E. coli

cells. Lysate containing the overexpressed PSI fusion proteins was

incubated with glutathione-sepharose beads for 3 hr at 4uC. The

beads were then washed 3 times with Buffer A (50 mM Tris-HCl,

pH 8.0, 1 M NaCl, 0.5 mM DTT, 0.4 mM PMSF, 10% glycerol)

and 2 times with 1X Casein Kinase II buffer (NEB P6010S). ATP

was then added to all samples to 5 mM, and 1 uL purified human

casein kinase II (NEB P6010S) was added to those samples that

were to be phosphorylated. The samples were then incubated

overnight at 30uC.

100 mL Kc nuclear extract was then added, and the beads were

incubated at 4uC for 3 hrs. The beads were then washed three

times with buffer B (20 mM Tris-HCl, pH 8.0, 200 mM NaCl,

0.02% NP-40, 0.5 mM DTT, 0.4 mM PMSF), and bound

proteins were eluted by incubating with 50 mL elution buffer

Figure 4. Protein-protein interactions of PSI. A) GST pulldown assay using PSI mutant proteins. GST-PSI fusion proteins carrying the serine to
alanine PSI mutations were phosphorylated using purified human casein kinase II and incubated with Kc nuclear extract. The resulting glutathione
resin eluates were analyzed by silver staining and mass spectrometry. B) Silver stain of PSI and interacting proteins following anti-polyoma and anti-
PSI immunoprecipitations. The asterisk indicates antibody heavy chain. C) Immunoblot analysis of (B) using anti-PSI antibody. D) Mass spectrometry
analysis of (B). Proteins identified as interacting with PSI and the number of peptides observed for each protein are listed.
doi:10.1371/journal.pone.0056401.g004
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(50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 10% glycerol, 20 mM

glutathione, 0.5 mM DTT, 0.4 mM PMSF) at room temperature

for 45 min. Bound proteins were analyzed by SDS-PAGE, silver-

staining, and mass spectrometry.

PSI Immunoprecipitation
RNP extract [41,42] from Drosophila S2 cells stably expressing

polyoma (also known as Glu-Glu) tagged PSI under the control of

the metallothionein promoter was made after inducing expression

of the transgene with 200 mM CuSO4 for 36 hours. Briefly, cells

were swelled in hypotonic buffer and nuclei were isolated using a

dounce homogenizer. The nuclei were then sonicated, and the

resulting lysate was passed over a 30% sucrose cushion to separate

the light nucleoplasm from the dense chromatin-associated

fraction.

The nucleoplasm was then collected and incubated at 4uC for

2 hrs with protein-A sepharose beads that had been pre-incubated

with anti-polyoma antibody. The beads were then washed 3 times

with wash buffer (20 mM Hepes-KOH pH 7.5, 200 mM KCl,

2 mM MgCl2, 0.5 mM DTT, 0.05% NP-40, 0.4 mM PMSF).

Proteins were then eluted from the resin by two incubations with

200 mL elution buffer (wash buffer supplemented with 100 mg/mL

polyoma peptide (EYMPME)).

Elutions were then incubated for 1 hr at 4uC with protein-A

Dynabeads (Invitrogen 100-01D) that had been pre-incubated

with polyclonal anti-PSI antibody. As a control, the elutions were

also incubated with protein-A Dynabeads that had been pre-

incubated with rabbit IgG.The beads were then washed three

times with wash buffer. Bound proteins were eluted off the beads

in two elutions by incubating with 100 mL elution buffer (100 mM

glycine, pH 2.5, 100 mM NaCl). The eluates from both the anti-

PSI and rabbit IgG beads were analyzed by silver staining, western

blotting, and mass spectrometry. Proteins identified as interacting

with PSI by having at least 5 detected peptides are listed in

Figure 4D.

Sample Preparation and Mass Spectrometry for
Phosphopeptide Analysis

Immunopurified PSI was adjusted to 40% methanol, 100 mM

ammonium bicarbonate pH8.5, 5 mM TCEP, 1.5% Protease-

MAX (Promega) and subjected to carboxyamidomethylation of

cysteines. Two samples were created and analyzed separately and

then the results were combined. The first sample was digested with

trypsin and chymotrypsin. The second sample was divided, and

one portion was digested with a combination of trypsin and

chymotrypsin. The other portion was digested with thermolysin.

The two fractions were then recombined for analysis. All

digestions were incubated overnight at 37uC and stopped by the

addition of 5% formic acid. A 3 phase nano LC column was

packed in a 100 mm inner diameter glass capillary with an emitter

tip. The column consisted of 10 cm of Polaris C18 5 mm packing

material (Varian), followed by 4 cm of Partisphere 5 SCX

(Whatman), followed by another 2 cm of Polaris C18. The

column was loaded by use of a pressure bomb and washed

extensively with buffer A (see below). The column was then

directly coupled to an electrospray ionization source mounted on a

Thermo-Fisher LTQ XL linear ion trap mass spectrometer. Data

collection was programmed so that neutral loss of phosphate

would tigger the collection of an MS3 spectrum of the neutral loss

peak. An Agilent 1200 HPLC equipped with a split line so as to

deliver a flow rate of 30 nl/min was used for chromatography.

Peptides were eluted using a 4-step MudPIT procedure [43].

Buffer A was 5% acetonitrile/0.02% heptaflurobutyric acid

(HBFA); buffer B was 80% acetonitrile/0.02% HBFA. Buffer C

was 250 mM ammonium acetate/5% acetonitrile/0.02% HBFA;

buffer D was same as buffer C, but with 500 mM ammonium

acetate. The programs SEQUEST and DTASELECT were used

to identify peptides and proteins from the Drosophila database

[44,45]. Phosphopeptides were confirmed by manual inspection of

the spectra.

Sample Preparation and Mass Spectrometry for Protein
Interaction Analysis

The protein solution was adjusted to 8 M urea, subjected to

carboxyamidomethylation of cysteines, and digested with trypsin.

The sample was then desalted using a C18 spec tip (Varian). A 2

phase nano LC column was packed and loaded as described

above. The column consisted of 10 cm of Polaris C18 5 mm

packing material (Varian), followed by 4 cm of Partisphere 5 SCX

(Whatman). Chromatography, mass spectrometry and data

analysis were as described above, except that no MS3 spectra

were collected.

Mass Spectrometry of Gel Bands
Excised gel bands were treated to cause carboxyamidomethyla-

tion of cysteines, digested with trypsin and the resulting peptides

extracted. Samples were loaded on a 100 micromolar ID, 10 cm

column of Polaris C18 and analyzed by LC-MS/MS with a linear

gradient consisting of buffer A and buffer B as above.

Supporting Information

Figure S1 Identification of phosphorylation sites by
mass spectrometry. A and B) MS3 spectra of phosphopep-

tides. B and Y series ions and loss of water are indicated. Inset:

sequence of the phosphopeptide and SEQUEST statistics. C and

D) MS2 spectra of corresponding unmodified peptides.

(EPS)

Table S1 Protein-protein interactions of PSI. Proteins

identified with at least two peptides as copurifying in pulldowns of

full length PSI. SEQUEST Xcorr is listed for each peptide.

(XLS)
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