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Abstract: Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that is commonly found
in cereal crops. ZEA has an estrogen-like effect which affects the reproductive function of animals.
It also damages the liver and kidneys and reduces immune function which leads to cytotoxicity and
immunotoxicity. At present, the detoxification of mycotoxins is mainly accomplished using biological
methods. Microbial-based methods involve zearalenone conversion or adsorption, but not all
transformation products are nontoxic. In this paper, the non-pathogenic microorganisms which have
been found to detoxify ZEA in recent years are summarized. Then, two mechanisms by which ZEA
can be detoxified (adsorption and biotransformation) are discussed in more detail. The compounds
produced by the subsequent degradation of ZEA and the heterogeneous expression of ZEA-degrading
enzymes are also analyzed. The development trends in the use of probiotics as a ZEA detoxification
strategy are also evaluated. The overall purpose of this paper is to provide a reliable reference strategy
for the biological detoxification of ZEA.

Keywords: zearalenone (ZEA); reproductive toxicity; cytotoxicity; immunotoxicity; biological
detoxification; probiotics; ZEA biotransformation

1. Introduction

Zearalenone (ZEA) is a well-known F2 toxin that is produced by Fusarium fungi [1,2]. As it is one of
the most widespread mycotoxins in the world [3–5], it not only affects food safety, but also accumulates
in the food chain, causing serious harm to animals and even humans [6–9]. The detoxification of ZEA
usually involves the use of some physical, chemical, or biological method to eliminate (or weaken) its
toxicity [10–12]. However, the physical and chemical detoxification changes in the nutritional structure
of the feed during the detoxification process, and the detoxification agents used may also cause
secondary pollution to the environment. For example, adsorption using a mycotoxin adsorbent may
yield species that are not particularly stable, and so the mycotoxin may be susceptible to desorption [13].
In addition, adsorbents containing aluminosilicates could, in principle, release components that are
toxic (heavy metals or dioxins) [14].

In contrast, biological detoxification has high specificity, produces harmless products, and can
even lead to complete detoxification under suitable conditions [15,16]. For example, it has been found
that a strain of Bacillus velezensis, named A2, completely degraded ZEA (7.45 µg/mL) after three days
of incubation at 37 ◦C in Luria-Bertani medium [17]. Furthermore, the microbial fermentation process
employed can improve the nutritional structure of the feed and promote its transformation. The use of
probiotics also improves the immune status of the livestock and poultry and therefore promotes their
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healthy growth [18–22]. As a result, ZEA detoxification using probiotics is a new technique with broad
application prospects.

In this paper, the mechanisms by which ZEA causes damage to animals are revealed, and the
microorganisms that can be used to detoxify ZEA are listed. The known biological mechanisms
responsible for the detoxification of ZEA and the roles played by non-pathogenic microorganisms in
ZEA detoxification are discussed in detail. Thus, the overall purpose of this paper is to clarify the
mechanisms of ZEA biological detoxification, and then to provide a theoretical basis for the production
and practical applications of ZEA microbial detoxification technology.

2. Zearalenone (ZEA) and Its Toxicity to Animals

2.1. Metabolic Structure of ZEA in Animals

There are two main ways that ZEA is transformed in the body. One involves the reduction
to α-/β-zearalenol (α-/β-ZEL) under the catalytic action of 3α-/3β-hydroxysteroid dehydrogenase,
and then a further reduction to α-/β-zearalanol (α-/β-ZAL) [23,24]. The other involves converting ZEA
and its metabolites into glucuronic acid or sulfate metabolites under the action of uridine diphosphate
glucuronyl transferase or sulfonyltransferase [25–27].

2.2. Toxic Damage in Animals Due to ZEA

2.2.1. Reproductive Toxicity

ZEA and its metabolites can bind competitively to estrogen receptors (ERs) which subsequently
activate estrogen response elements, resulting in the dimerization of the receptors and a variety of
induced estrogenic effects [28,29]. In addition, the competitive binding products can also bind to
the DNA template through the regulation of uterine target gene transcription and protein synthesis.
This results in animal reproductive hormone disorders, thus affecting the animal’s reproductive
development system [30–32]. Studies have shown that exposure to ZEA in the early pregnancy stage
can affect the development of the placenta and embryo, and even lead to the deformity or death of the
embryo [33].

2.2.2. Cytotoxicity

ZEA can bind to the ERs in cytoplasm and result in lipid peroxidation (lipid peroxide can cause
serious damage to cell membranes, lipoproteins, and other organelles and cell components containing
lipid structures) which then produces a series of cytotoxic effects [34,35]. Early studies show that
ZEA-induced apoptosis is related to mitochondrial apoptosis or the endoplasmic reticulum stress
pathway, which is characterized by the mass production of reactive oxygen species and aggravation of
lipid peroxidation [36,37]. In recent years, it has been confirmed that the apoptosis of kidney cells in
mice due to the presence of ZEA in their diet are caused by the activation of the endoplasmic reticulum
stress pathway [17].

2.2.3. Immunotoxicity

ZEA can also bind to ERs on the surface of the cells of the immune system and thus regulate a variety
of metabolic pathways of the immune response. It has been confirmed that ZEA not only activates
immune response-related genes, but also interferes with the immune system of the spleen, changes the
phenotypes of spleen lymphocytes, and even causes lymphocyte atrophy [38,39]. In addition, ZEA can
induce immunosuppression by reducing immunoglobulins in serum and cytokines in lymphoid
organs [40].
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3. Non-Pathogenic Microorganisms with Detoxification EFFECTS toward Zearalenone

Biological detoxification is the most widely used detoxification method at present, which has
become the main trend of mycotoxin detoxification research in recent years. At present, a variety of
non-pathogenic microorganisms have been reported that can be used for the detoxification of ZEA,
as shown in Table 1.

Table 1. Non-pathogenic microorganisms that can be used for the detoxification of Zearalenone (ZEA).

Microorganism Authors/Refs.

Bacillus spp.

B. subtilis Cho [41], Tinyiro [42]
B. licheniformis Fu [43], Hsu [44]
B. amyloliquefaciens Lee [45]
B. velezensis Wang [17,46]
B. cereus Wang [47]

Lactobacillus spp.

L. rhamnosus El-Nezami [48]
L. plantarum Vega [49]
L. reuteri Yang [50]
L. mucosae Long [51]
L. paracasei Abbès [52]

Saccharomyces spp. S. cerevisiae Armando [53], Krifaton [54]

4. Biological Detoxification of ZEA

The biological detoxification method mainly involves the adsorption of the mycotoxin onto
the walls of the microbial cells or degradation of the mycotoxin caused by microbial secretases.
ZEA decontamination using non-pathogenic microorganisms is the main trend of research at present
and promises to be a new way of achieving mycotoxin detoxification in practical situations in the future.

4.1. Adsorption of ZEA by the Cell Walls of Specific Strains

Special structures in the cell walls of certain probiotics allow them to adsorb the ZEA toxin.
This reduces the exposure of the animal to ZEA which thus achieves the detoxification required.
For example, cell walls contain carbohydrates (peptidoglycan, mannose, glucan), proteins, and lipids,
which may present a variety of different adsorption centers (and so there may be various adsorption
mechanisms involved, e.g., hydrogen bonding, ionic interactions, or hydrophobic interactions).
The development of probiotics as mycotoxin-adsorbing agents and their potential use in production
practice were thus prospected.

The results of this investigation show that yeasts are relatively stable mycotoxin-adsorbing agents,
and that the main body responsible for this adsorption is the functional carbohydrates (glucomannan
polymers) in their cell walls. In addition, adding 0.2% yeast cell wall extract to feed effectively prevented
reproductive toxicity induced by 0.4 mg/L ZEA in piglets [55,56]. The ability of Saccharomyces cerevisiae
to bind the mycotoxin to its cell walls has been evaluated. The cell diameter/cell wall thickness relation
showed a correlation between the cell wall surface area and ZEA removal ability [53]. This proves that
physical adsorption is the main mechanism responsible for the removal of the ZEA in this instance.
Yiannikouris et al. investigated the correlation between the amount of β-D-glucan in the cell walls of
S. cerevisiae and mycotoxin binding ability and found that the β-D-glucan plays a major role in ZEA
adsorption [57]. Further experiments were performed to compare the ability of the yeast cell wall
(YCW) extract and hydrated calcium aluminosilicate to adsorb ZEA. It was found that the YCW extract
adsorbed ZEA more effectively in the gastrointestinal tracts of monogastric animals. Moreover, it was
able to adsorb 40% of the total ZEA content in the intestines [58].

In recent years, S. cerevisiae has been continuously developed as a nutritional additive and has
been added to feed in production practice to act as a detoxification agent inhibiting ZEA toxicity.
Investigations have shown that the colonization of S. cerevisiae in the gastrointestinal tract not only
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improves the productivity and health of the animals, but also minimizes the bioavailability of ZEA in
the tract [59,60]. Therefore, in terms of mycotoxin-adsorbing agents, the cell wall extracts and living
cells of S. cerevisiae have become the focus of mycotoxin detoxification research. They are also proving
to be a good tool for the sustainable development of modern animal husbandry.

The ability of some Lactobacillus strains to adsorb ZEA has also been demonstrated. For example,
the ZEA (2.0 µg/mL) were incubated with either L. rhamnosus strain, a considerable proportion (38% to
46%) of ZEA toxin was recovered from the bacterial pellet [61]. Although used as a food additive,
L. rhamnosus was able to effectively remove mycotoxins from the feed and promote the immune barrier
of the host [62]. From using heat and acid treatment of the cell walls, it was further found that the
thickness of the cell walls was positively correlated with the adsorption capacity towards ZEA [51].
Meanwhile, L. plantarum has also been confirmed to have great potential as a ZEA absorbent [49].

Some Bacillus spp. strains also have the ability to adsorb ZEA [42,44,45]. However, in terms of
mycotoxin detoxification, the adsorption capacity of almost all of the Bacillus spp. strains is far less
important than their degradation effects caused by secretase. Subsequently, most studies have paid
more attention to researching and developing their use in degradation enzyme technology.

4.2. ZEA Biotransformation

The term biotransformation refers to the way in which microorganisms are able to change the
molecular structure of ZEA in the process of metabolism. The possible pathways available for ZEA
bioconversion relate mainly to the reduction of the ketonic carbonyl group, modification of the phenolic
hydroxyl group, hydrolysis of the lactone ring, and cracking of the dihydroxybenzene ring.

4.2.1. Occurrence of Secondary Metabolites of ZEA

The C6’-ketonic carbonyl group in ZEA is readily reduced. Thus, it is very easy to add hydrogen
atoms to generate zearalenol (α-/β-ZEL). Further reduction leads to the disappearance of the C1’=C2’

double bond, generating the corresponding zearalanol (α-/β-ZAL), as shown in Figure 1.
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culture of Candida tropicalis, Zygosaccharomyces rouxii, and 7 Saccharomyces strains have also been



Microorganisms 2019, 7, 208 5 of 14

reported to accomplish the same conversion [64]. Furthermore, ZEA can be reduced to α-ZEL (and
β-ZEL to a lesser extent) under the action of rumen microorganisms [65]. As the toxicity of α-ZEL
toward estrogen is higher than ZEA, its formation can be more damaging to the reproductive system
of the livestock [23].

4.2.2. Modification of the Phenolic Hydroxyl Groups in ZEA

The phenolic hydroxyl groups (C2/C4-OH) in ZEA can also be readily oxidized by a variety of
oxidants. It has been reported that Rhizopus spp. catalyzed the glycosylation of ZEA at the C4-OH
group to form a new metabolic structure called zearalenone-4-beta-D-glucopyranoside [66]. Fusarium
spp. (F. roseum, F. equiseti, and F. sambucinum) and Rhizopus arrhizus catalyze the sulfation of ZEA at the
C4-OH group to form sulfate metabolites of ZEA, i.e. zearalenone-4-sulfate [67,68]. When ZEA was
biotransformed using Aspergillus and Rhizopus species, however, it was found that ZEA-4-sulfate was
only formed when A. oryzae was used and ZEA-4-glucosides and ZEA-2-glucosides were formed by
R. oryzae and R. oligosporus, respectively [69]. It is worth noting that α-ZEL-sulfate also occurred in the
modified ZEA products during transformation with R. oryzae [70].

In studies on ZEA modification pathways, Arabidopsis UDP-glucosyltransferases has been
widely used to produce zearalenone-4-O-glucosides [71,72]. Synthesizing ZEA-glucosides using
recombinant barley glucosyltransferase (HvUGT14077) showed that the ZEA was converted effectively
to ZEA-4-glucosides and ZEA-2-glucosides. However, ZEA-2,4-di-glucosides, α-/β-ZEL-2-glucosides,
α-/β-ZEL-4-glucosides, and α-/β-ZEL-2,4-di-glucosides were also synthesized at the same time [73].
However, these modifications of ZEA cannot be considered to be an effective way of detoxifying
ZEA in vivo. This is because studies have shown that ZEA-4-sulfate, ZEA-4-O-β-glucosides,
and ZEA-2-O-β-glucosides can be completely hydrolyzed in the gastrointestinal tract of pigs which
can re-release ZEA and other unknown metabolites [24,25]. Table 2 displays the molecular structures
of ZEA and its phenol hydroxy (C2/C4-OH) derivatized products.

Table 2. The structure of ZEA and its phenol hydroxy (C2/C4-OH) derivatives.

Action Site Diagram

Molecule
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ZEA-2,4-di-glucosides glucose glucose O 

ZEA-4-sulfate H sulfate O 

α-ZEL-2-glucosides glucose H 

 

β-ZEL-2-glucosides glucose H 

 

α-ZEL-2,4-di-glucosides glucose glucose 

 

β-ZEL-2,4-di-glucosides glucose glucose
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4.2.3. Formation of Non-Toxic Degradation Products from ZEA

ZEA and its derivatives exhibit estrogenic activity because their chemical structures are similar to
natural estrogen. From the point of view of molecular structure, therefore, the existing lactone structure
of ZEA can be changed so that it no longer has estrogenic effects. This can be achieved by hydrolyzing
the lactone ring, breaking the C6’-ketonic carbonyl group, or cracking the dihydroxybenzene ring.
These changes are also often referred to as degradation pathways of ZEA.

The ester group in the lactone ring of ZEA is easily hydrolyzed by esterase or acid-base hydrolysis
and then ring-opening. For example, it has been reported that Gliocladium roseum is able to hydrolyze
the lactone bond of ZEA to produce a kind of 1-(3,5-dihydroxyphenyl)-10′-hydroxy-1-undecen-6-one
which has no estrogenic toxicity [74]. Takahashi-Ando found that the protein encoded by the
zearalenone lactonohydrolase gene ZHD101 can degrade ZEA [75]. Further studies indicated that the
lactonohydrolase breaks the lactone bond in the ZEA structure. The ring structure thus opened up
into a straight chain structure which was subsequently decarboxylated (Figure 2, reaction pathway A).
The decarboxylated product could not bind to the ERs, so the toxicity of ZEA was reduced or even
completely eliminated [76,77]. It has also been proved that ZHD101 is the only α/β-hydrolase which
could be used to detoxify ZEA and its derivatives [78,79].

Similar ZEA degradation pathways may also exist when Bacillus spp. are used. For example,
ZEA can be degraded using culture extracts from B. subtilis 168 and B. natto CICC 24640. The rate of ZEA
degradation using B. subtilis 168 and B. natto CICC 24640 culture extract after 24 h of aerobic incubation
at 30 ◦C was found to be 81% and 100%, respectively [42]. The process was accompanied by the
release of CO2, thus indicating that decarboxylation had occurred. An analysis of the ZEA degradation
products produced by B. pumilus showed that 1-(3,5-dihydroxyphenyl)-6′-hydroxy-l′-undecen-l0′-one
had been produced [80]. This led to the speculation that the reaction involved the catalytic hydrolysis
of the ZEA lactone ring by lipase.

With the development of transgenic technology, studies have found that when the isolated
lactonohydrolase gene ZHD101 was recombined with yeast cells, the recombinant gene was successfully
expressed in the yeast and the expressed enzyme degraded ZEA very well [81]. ZHD101 has also
been introduced into L. reuteri Pg4. The result, L. reuteri pNZ-zhd101, was able to successfully express
the ZHD101 gene and thus acquired the ability to degrade ZEA [50]. In fact, this is the first report of
the successful expression of a ZEA-degrading enzyme by an intestinal probiotic. The application of
transgenic technology to ZEA degradation has great potential in the field of ZEA detoxification. It also
promises to have further production and practical applications.

In biochemistry, carbonyl groups can be readily oxidized to form lipids under the action of
Baeyer-Villiger monooxygenase. This involves the conversion of ketones to esters or cyclic ketones
to lactones via the introduction of an oxygen atom into the ortho-position of the carbonyl group [82].
Similar reactions have been shown to occur in the biodegradation of ZEA. For example, studies showed
that Apiotrichum mycotoxinivorans opens the C6’-ketone carbonyl group of ZEA to form carboxy and
hydroxyl groups. The reaction starts with the formation of a new lactone by the addition of an
oxygen atom to the C6’-ketone carbonyl group. This subsequently undergoes hydrolysis to produce
ZOM-1 under the action of hydrolase (Figure 2, reaction pathway B). It has been confirmed that
ZOM-1 has no estrogenic effect in vivo and does not interact with ER protein in vitro. Based on this,
the identification of the key genes or degradation enzymes involved in the detoxification of ZEA by
Apiotrichum mycotoxinivorans can also provide new insights into the detoxification pathways available
for ZEA [83].

ZEA is a mycotoxin with a dihydroxybenzoic acid lactone structure. Therefore, the cracking of the
dihydroxybenzene ring can also be expected to constitute an effective method of detoxification. It has
been reported that the fermentation of Aspergillus niger strain FS10 significantly decreases the ZEA
content (29 µg/mL) in corn pulp. A subsequent analysis based on HPLC-MS and UV-vis spectroscopy
showed that the ZEA was transformed into two metabolites: ZEA-A (m/z = 414) and ZEA-B (m/z = 325).
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ZEA-B does not absorb UV, indicating that the ring structure in ZEA may have been destroyed in this
metabolite [84].

Coincidentally, other studies have also shown that Acinetobacter spp. SM04 degraded ZEA into
ZEA-1 (m/z = 489) and ZEA-2 (m/z = 405), both of which have UV absorption spectra that are different to
that of ZEA. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays also showed that
the degradation products had no estrogenic activity with respect to MCF-7 cells. Hence, it was inferred
that the benzene ring in ZEA had been oxidized and broken to form compounds containing carboxy
groups [85]. The peroxiredoxin (Prx) isolated from Acinetobacter spp. SM04 has also been successfully
expressed in Escherichia coli and Pichia pastoris, and the Prx enzyme was thus found to degrade ZEA
into two products [86,87]. Thus, further developing such dihydroxybenzene ring opening reaction
pathways can also be expected to become a new direction to enhance the biological detoxification
of ZEA.

To sum up, the important future breakthroughs in the field of ZEA biodegradation are most likely
to result from: (i) Finding and screening better ZEA-degrading strains; (ii) studying the characteristics
of the ZEA-degrading enzymes produced by these ZEA-degrading strains; and (iii) cloning and
expressing these degrading enzyme genes.
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4.2.4. Unknown ZEA Detoxification Pathways

A large number of microorganisms capable of degrading ZEA have been reported to date.
However, in the case of ZEA detoxification using non-pathogenic microorganisms, the detoxification
mechanism has only been identified for a few ZEA-degrading bacteria, that is, most ZEA-degrading
bacteria act via detoxification mechanisms that have not been clarified.

The identification of a non-pathogenic Rhodococcus pyridinivorans K408 strain proved to be a new
type of ZEA-degrading strain. In this particular case, after Luria-Bertani broth contaminated with ZEA
(500 mg/L) was treated with R. pyridinivorans K408 strain for five days, the degradation efficiency with
respect to ZEA was found to be 87.2%. Although the degradation products created during the ZEA
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biotransformation process are not clear, the strain does not produce any metabolites with estrogenic
effects [88]. A new strain of S. cerevisiae has also been found that is able to degrade rather than adsorb
ZEA. In this case, S. cerevisiae was cultured in nutrient yeast dextrose broth containing ZEA for 48
h, after which, the ZEA (5 mg/mL) was found to be completely degraded by the S. cerevisiae [89].
When Bacillus strains are used for the biological detoxification of ZEA, the active degradation enzymes
secreted by most strains clearly play a leading role in the degradation process. However, the active
degradation enzymes and degradation mechanisms involved are not clear. For example, Bacillus subtilis
and B. amyloliquefaciens had been found to effectively degrade ZEA and its derivatives under optimum
reaction conditions. Furthermore, it has been preliminarily determined that the extracellular enzymes
secreted by bacteria played a dominant role in the detoxification of ZEA [41,42,45].

B. velezensis A2 was able to completely degrade ZEA (7.45 µg/mL) after three days of incubation
in Luria-Bertani medium. Although the degradation mechanism is unclear, it was found that using
B. velezensis A2 as a food additive was effectively able to purify feed contaminated with ZEA and
protect mice from the toxic effects of ZEA [37,46].

In summary, further studies focusing on the structure, toxicity, and degradation mechanisms of
ZEA metabolites can be expected to further enhance the development of new and improved microbial
ZEA-detoxification strategies.

5. Development Trends in Probiotic ZEA Decontamination

Probiotics have broad application prospects as mycotoxin detoxification agents. Indeed, their
application in the field of mycotoxin decontamination is changing with each passing day. To date,
the expression of ZEA-degrading enzyme genes in probiotic host cells has been the main focus of
their use in ZEA toxin decontamination (ultimately aimed at ensuring the safety of food intended
for consumption by animals and humans). However, when food/feed is assessed to determine its
safety, it is not uncommon to find more than one type of mycotoxin in a given sample. Thus, it is
becoming progressively more important to aim for the simultaneous degradation of a variety of
mycotoxins [90–92].

It was reported in a study involving the adsorption of ZEA by Lactococcus lactis and a Bifidobacterium
sp., that the absorption process was not homogeneous, that is, the ZEA was adsorbed in two stages:
An initial adsorption stage that was rapid; and a subsequent adsorption stage that was much slower [93].
It has also been shown that a microbial community composed of a variety of mycotoxin-degrading
bacteria was capable of simultaneously degrading aflatoxin B1 and ZEA [94]. Moreover, there appeared
to be a synergistic effect between the degrading strains that promoted the efficient detoxification of
the mycotoxins.

In recent years, the combined use of compound probiotics (Bacillus spp., Lactobacillus spp.,
and yeast) and mycotoxin-degrading enzymes has also proved to have a simultaneous detoxification
effect on AFB1 and ZEA [95,96]. It has also been confirmed that compound probiotics not only increased
the rate of degradation of ZEA, but also made the intestinal epithelial barrier more resistant to being
damaged by mycotoxins and other pathogenic microorganisms [97]. In short, the combined use of
compound probiotics and mycotoxin-degrading enzymes constitutes yet another new strategy for
mycotoxin decontamination.

6. Epilogue

As the biological detoxification of zearalenone is studied in greater depth, more and more
novel probiotic strains (Bacillus spp., Lactobacillus spp., and yeast) and degradation enzymes (lactone
hydrolase, peroxidase) are likely to be discovered. Subsequently, the mechanism(s) by which these
probiotics detoxify ZEA will gradually become well known and their use as feed/food additives can be
mastered and perfected.
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Currently, however, biological detoxification technology is at a stage where it is still imperfect
but it is continuing to mature. Thus, the production of enzyme and microbial preparations (and other
biological additives) is rapidly moving towards the stage where it can be industrialized.
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