
Submitted 13 January 2022
Accepted 4 March 2022
Published 18 March 2022

Corresponding author
Akira Abe, a-abe@ibrc.or.jp

Academic editor
Joseph Gillespie

Additional Information and
Declarations can be found on
page 4

DOI 10.7717/peerj.13170

Copyright
2022 Sugihara et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

High-performance pipeline for MutMap
and QTL-seq
Yu Sugihara1,2, Lester Young3, Hiroki Yaegashi1, Satoshi Natsume1,
Daniel J. Shea1, Hiroki Takagi4, Helen Booker3,5, Hideki Innan6,
Ryohei Terauchi1,2 and Akira Abe1

1Department of Genomics and Breeding, Iwate Biotechnology Research Center, Kitakami, Japan
2Graduate School of Agriculture, Kyoto University, Kyoto, Japan
3Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
4 Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Japan
5Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
6Graduate University for Advanced Studies, Hayama, Japan

ABSTRACT
Summary. Bulked segregant analysis implemented in MutMap and QTL-seq is a
powerful and efficient method to identify loci contributing to important phenotypic
traits. However, the previous pipelines were not user-friendly to install and run. Here,
we describe new pipelines for MutMap and QTL-seq. These updated pipelines are
approximately 5–8 times faster than the previous pipeline, are easier for novice users
to use, and can be easily installed through bioconda with all dependencies.
Availability. The new pipelines of MutMap and QTL-seq are written in Python
and can be installed via bioconda. The source code and manuals are available on-
line (MutMap: https://github.com/YuSugihara/MutMap, QTL-seq: https://github.com/
YuSugihara/QTL-seq).
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INTRODUCTION
Bulked segregant analysis (Michelmore, Paran & Kesseli, 1991; Giovannoni et al., 1991; Li &
Xu, 2021), as implemented inMutMap (Abe et al., 2012) and QTL-seq (Takagi et al., 2013),
is a powerful and efficient method to identify loci contributing to important phenotypic
traits. MutMap requires whole-genome resequencing of a single individual from the
original cultivar and the pooled sequences of F2 progeny from a cross between the original
cultivar and mutant. MutMap uses the sequence of the original cultivar to polarize the site
frequencies of neighboring markers and identifies loci with an unexpected site frequency,
simulating the genotype of F2 progeny.

QTL-seq was adapted from MutMap to identify single or multiple loci contributing to
important phenotypic traits. It utilizes sequences pooled from two segregating progeny
populations with extreme opposite traits (e.g., resistant vs. susceptible to a pathogen) and
single whole-genome resequencing of either of the parental cultivars. The original QTL-seq
algorithm assumes that loci controlling phenotypic traits fix in opposite directions in
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two bulked populations through self-fertilizing. Therefore, QTL-seq is usually applied
to homozygous genomes of the self-fertilizing plant but not to heterozygous genomes
obligated to outcross.

Despite their usefulness, these programs are not user-friendly to install or run and
require multiple user inputs. Another problem is that the programs requires Coval (Kosugi
et al., 2013) for variant calling, which relies on the older versions of SAMtools (before
0.1.8). Updated software including PyBSASeq (Zhang & Panthee, 2020) and QTL-seqr
(Mansfeld & Grumet, 2018) have been developed (Li & Xu, 2021).

In this study, we describe newly developed pipelines for MutMap and QTL-seq with
updated features.

IMPLEMENTATION
The new pipelines support read trimming by Trimmomatic (Bolger, Lohse & Usadel, 2014),
replacing fastx-toolkit in the previous pipeline. Trimmed reads are aligned by BWA-MEM
(Li & Durbin, 2009), replacing BWA-SAMPE, BWA-ALN and Coval. Improperly paired
reads and PCR duplicates are filtered by SAMtools (Li et al., 2009). Subsequently, a VCF file
is generated by the ‘‘mpileup’’ command implemented in BCFtools (Li, 2011). The user can
start the analysis from any point in the process, e.g., from raw FASTQs, trimmed FASTQs,
BAM files, or a VCF file. MutPlot and QTL-plot, which are standalone programs, were
developed for postprocessing of VCF files. Low-quality variants in a VCF file are filtered
out based on mapping quality and strand bias and the actual and expected SNP-indices
calculated based on the AD (allele depth) value of each sample pool (Abe et al., 2012). In
QTL-seq, a 1SNP-index is calculated by subtracting the SNP-index of one bulk from the
other (Takagi et al., 2013). As an option, multiple testing correction (Huang et al., 2020)
was also adopted to the simulation. Both pipelines ignore the SNPs which are missing in
the parental sample. Candidate causal mutations in the VCF file are shown graphically after
optionally executing SnpEff (Cingolani et al., 2012), which assesses the impact of located
mutations on putatively expressed genes. The procedures are connected by a Python script.

METHODS
To compare the performance of the new and old pipelines, we ran MutMap and QTL-seq
on an AMD EPYC 7501 processor (Base 2.0 GHz) with 48 GB RAM and 12 threads
(located at ROIS National Institute of Genetics in Japan). MutMap was run for two
datasets, dataset 1 and dataset 2, used in the previous research (Abe et al., 2012). The
original rice cultivar of both datasets was Hitomebore. The mutant bulks for dataset 1 and
dataset 2 were Hit1917-pl and Hit1917-sd, respectively. These datasets can be downloaded
as DRR004451 (Hitomebore), DRR001785 (Hit1917-pl), and DRR001787 (Hit1917-sd).
MutMap v2.3.2 was run with the option ‘‘-n 20’’ as both mutant bulks contain 20 lines. The
other parameters of MutMap v2.3.2 were set as default. For both datasets, ‘‘IRGSP-1.0’’
was used as the reference genome.

QTL-seq was run for the two datasets, dataset 3 and dataset 4, used in the previous
study (Takagi et al., 2013). Dataset 3 was obtained from recombinant inbred lines (RILs)
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Figure 1 Pipeline workflow and performance of MutMap and QTL-seq. (A) The pipeline workflow of
MutMap. (B) The pipeline workflow of QTL-seq. (C) Speed comparison between the new (v2.3.2) and old
(v1.4.5) pipelines of MutMap. (D) Speed comparison between the new (v2.2.2) and old (v1.4.5) pipelines
of QTL-seq. The values are mean± SD (n= 3).

Full-size DOI: 10.7717/peerj.13170/fig-1

derived from a cross between Hitomebore and Nortai. Dataset 4 was obtained from F2
progeny derived from a cross between Hitomebore and WRC57. We used a rice cultivar
Hitomebore as a parental sequence for both datasets. These datasets can be downloaded as
DRR004451 (Hitomebore), DRR003237 and DRR003238 (RILs derived from F1 between
Hitomebore and Nortai), and DRR003341 and DRR003342 (F2 progeny derived from F1
between Hitomebore and WRC57). For dataset 3, we ran QTL-seq v2.2.2 with the options
‘‘-n1 20 -n2 20 -F 6’’ because both bulks contain 20 F6 RILs. For dataset 4, we ran QTL-seq
v2.2.2 with the option ‘‘-n1 50 -n2 50 -F 2’’ as both bulks contain 50 F2 progeny. The
remaining parameters of QTL-seq v2.2.2 were set to their default values. For both datasets,
‘‘IRGSP-1.0’’ was used as the reference genome.

RESULTS AND CONCLUSIONS
The new MutMap and QTL-seq pipelines are approximately 5–8 times faster than the
previous pipelines. The significantly reduced processing time of the updated pipelines
was accomplished by utilizing more applications with parallel processing (Trimmomatic,
SAMtools, and BCFtools) for different steps including SNP calling and by omitting the
previously implemented creation of a consensus FASTA file (Fig. 1). The ability of the
updated pipeline to use a wider range of input file formats reduced the time required
for file-management and data handling and makes the software easier to use. Further
time-savings were accomplished with the new pipeline by removing user interactions that
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were required in the previous version. Although the number of SNPs plotted was slightly
different, the results of the old version and the new version were similar or had slightly
better confidence index values (Fig. S1).

The simulation-based statistical test was adopted as the default because it allows
addressing substantial heterogeneity in read depth among SNPs without any assumptions
of statistical distributions of SNP-indices. We also implemented multiple testing correction
following the parameters in the previous research (Huang et al., 2020). However, the
method described inHuang et al. (2020) requires biological information such as number of
chromosomes, genome size, and total centimorgan, which are not available in the majority
of organisms, hence severely restricting the applicability. As stated by Li & Xu (2021), the
role of bulked segregant analysis is to map the target QTLs as a primary test, regardless of
the statistical threshold criteria.

Currently, these new pipelines can be installed through bioconda with all dependencies.
The new pipelines of MutMap and QTL-seq have improved performance and are more
user-friendly to install and run, making them very useful for the purpose of genetics
studies.
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