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Abstract

Transmission between hosts is a critical part of the viral lifecycle. Recent studies of viral

transmission have used genome sequence data to evaluate the number of particles trans-

mitted between hosts, and the role of selection as it operates during the transmission pro-

cess. However, the interpretation of sequence data describing transmission events is a

challenging task. We here present a novel and comprehensive framework for using short-

read sequence data to understand viral transmission events, designed for influenza virus,

but adaptable to other viral species. Our approach solves multiple shortcomings of previous

methods for this purpose; for example, we consider transmission as an event involving

whole viruses, rather than sets of independent alleles. We demonstrate how selection dur-

ing transmission and noisy sequence data may each affect naive inferences of the popula-

tion bottleneck, accounting for these in our framework so as to achieve a correct inference.

We identify circumstances in which selection for increased viral transmission may or may

not be identified from data. Applying our method to experimental data in which transmission

occurs in the presence of strong selection, we show that our framework grants a more quan-

titative insight into transmission events than previous approaches, inferring the bottleneck in

a manner that accounts for selection, both for within-host virulence, and for inherent viral

transmissibility. Our work provides new opportunities for studying transmission processes in

influenza, and by extension, in other infectious diseases.

Author summary

In order to spread, pathogens must not only be able to grow within an infected host, but

also transmit to found new infections. Population genetics can exploit genome sequence

data to provide a great deal of insight into transmission processes. For example, the num-

ber of particles which found a new infection determine the extent to which genetic diver-

sity is passed from host to host. The identification of genetic variants which increase the

propensity of a pathogen to transmit from host to host is a valuable step in understanding

how an infection might spread. Here we set out a new population genetic framework for

understanding transmission events from genome sequence data collected before and after

transmission. Our approach corrects for the shortcomings of existing methods for this
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purpose, setting out a new baseline for the statistical analysis of transmission events. We

demonstrate the ability of our method to draw novel quantitative insights by application

to data from simulated and real transmission events.

Introduction

Understanding viral transmission is a key task for viral epidemiology. The extent to which a

virus is able to transmit between hosts determines whether it is likely to cause sporadic, local

outbreaks, or spread to cause a global pandemic [1, 2]. In a transmission event, the transmis-

sion bottleneck, which specifies the number of viral particles founding a new infection, influ-

ences the amount of genetic diversity that is retained upon transmission, with important

consequences for the evolutionary dynamics of the virus [3, 4].

Recent studies have used genome sequencing approaches to study transmission bottlenecks

in influenza populations. In small animal studies, the use of neutral genetic markers has shown

that the transmission bottleneck is dependent upon the route of transmission, whether by con-

tact or aerosol transmission [5, 6]. In natural human influenza populations, where modifica-

tion of the virus is not possible, population genetic methods have been used to analyse

bottleneck sizes. Analyses of transmission have employed different approaches, exploiting the

observation or non-observation of variant alleles [7] or using changes in allele frequencies to

characterise the bottleneck under a model of genetic drift [8–11]. A recent publication

improved this latter model, incorporating the uncertainty imposed upon allele frequencies by

the process of within-host growth [12]. Two studies of within-household influenza transmis-

sion have provided strikingly different outcomes in the number of viruses involved in trans-

mission, with estimates of 1-2 [13] and 100-200 [14] respectively, albeit that the veracity of the

data used to generate the latter result has recently been challenged [15].

Another focus of research has been the role of selection during a transmission event; this is

important in the context of the potential for new influenza strains to become transmissible

between mammalian hosts [16, 17]. Studies examining transmissibility have assessed the

potential for different strains of influenza to achieve droplet transmission between ferrets

under laboratory conditions [18–21]; ferrets provide a useful, if imperfect, model for transmis-

sion between humans [22, 23]. The application of bioinformatic techniques to data from these

experiments has identified ‘selective bottlenecks’ in the experimental evolution of these viruses

[24, 25], whereby some genetic variants appear to be more transmissible than others. In these

studies, selection has been considered in terms of the population diversity statistic π; changes

in πN/πS, the ratio between non-synonymous and synonymous diversity, have been used to

evaluate patterns of selection across different viral segments.

We here note the need for a greater clarity of thinking in the analysis of viral transmission

events. For example, analysis of genetic variants in viral populations shows that synonymous

and non-synonymous mutations both have fitness consequences for viruses [26, 27]; the use of

synonymous variants as a neutral reference set may not hold. More fundamentally, in an event

where the effective population size is small, the influences of selection and genetic drift may be

of similar magnitude [28]. However selection is assessed, this implies a need to separate sto-

chastic changes in a population from selection, especially where a transmission bottleneck may

include only a small number of viruses [5, 13, 29]. It is possible for the attribution of a change

in diversity to the action of selection, or the attribution of allele frequency change to genetic

drift to be flawed. Given the increasing availability of sequence data, more sophisticated tools

for the analysis of viral transmission are required.

Inferring parameters of transmission from viral sequence data
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Here we note three challenges in the analysis of data from viral transmission events. Firstly,

selection can produce changes in a population equivalent to those arising through a neutral

population bottleneck [30] (Fig 1A), making it necessary to distinguish between the two sce-

narios. A broad literature has considered the simultaneous inference of the magnitude of selec-

tion acting upon a variant along with an effective population size [31–36]. However, such

approaches rely on the observation of an allele frequency at more than two time points so as to

distinguish a deterministic model of selection (with an implied infinite effective population

size) from a combined model of selection with genetic drift; such approaches cannot be

directly applied to the analysis of viral transmission.

Secondly, inferences of transmission events need to account for the haplotype structure of

viral populations, whereby whole viruses, rather than sets of independent alleles, are transmit-

ted (Fig 1B). The low rate of homologous recombination in segments of the influenza virus

[37, 38] implies that viral evolution proceeds at the haplotype level [39]; competition occurs

between collections of linked alleles, or segments, rather than the individual alleles themselves.

Under such circumstances, fitter variants do not always increase in frequency within a popula-

tion [40–42]. Calculations of genetic drift, which are often derived from the evolution of inde-

pendent variants [43], need to be adjusted to account for this more complex dynamics.

Thirdly, noise in the measurement of a population may influence the inferred size of a

transmission bottleneck (Fig 1C). A broad range of studies have examined the effect of noise

in variant calling and genome sequence analysis [44–51]; more recently formulae have been

proposed to measure the precision with which allele frequencies can be defined given samples

from a population [52–54]. Where small changes in allele frequencies are used to assess a pop-

ulation bottleneck, it is important to separate the effects of noise in the measurement of popu-

lations from genuine changes in a population.

We here describe a novel method for the inference of population bottlenecks in influenza

which addresses the above issues. Our approach correctly evaluates changes in a population

even where the data describing that change are affected by noise. It explicitly accounts for the

haplotype structure of a population, utilising the data present within short sequence reads.

Further, where these factors can be discriminated, our method distinguishes between the influ-

ences on the population of selection and the transmission bottleneck. Studies of viral evolution

have highlighted the potential for payoffs between within-host viral growth and transmissibil-

ity [55]; given sufficient data we can evaluate how selection operates upon each of these

phenotypes. Our model extends previous population genetic work on bottleneck inference to

provide a more generalised model for the analysis of data spanning viral transmission events.

Whilst the work presented here is modelled upon influenza viruses, the methods may be read-

ily adapted to other viral species given minor modifications.

Results

In the recent literature, the term ‘bottleneck’ has been applied to describe a reduction in the

genetic diversity of a population (e.g. [56]), whether arising from selection or a numerical

reduction in the size of a population. Here, we define a ‘bottleneck’ more strictly as a neutral

process whereby a finite number of viral particles from one population found a subsequent

generation of the population, either within the same host, or across a transmission event from

host to recipient. Selection then constitutes a modification to this process whereby some

viruses, because of their genotype, have a higher or lower probability of making it through the

bottleneck to found the next generation.

We applied a population genetic method to make a joint inference of the bottleneck size

and the extent of selection acting during a transmission event. We consider a scenario in

Inferring parameters of transmission from viral sequence data
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Fig 1. Challenges arising in the inference of transmission bottlenecks from viral sequence data. Circles represent idealised viral particles characterised by

four distinct alleles. A. Reductions in population diversity cannot necessarily be attributed unambiguously to either a population bottleneck, or the action of

selection. In the illustrated case, either a tight bottleneck without selection or a large bottleneck with strong selection could explain the change in the

population during transmission. B. Straightforward statistics describing a population may generate misleading inferences of population bottleneck size. In the

illustrated case, the genetic structure of a population is changed by a population bottleneck during transmission, but the frequency of each allele within the

Inferring parameters of transmission from viral sequence data
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which a viral population is transmitted from one host to another, with samples being collected

before and after the transmission event (Fig 2A). In our model viruses are categorised as haplo-

types, according to the alleles they harbour at polymorphic sites in the genome. Such haplo-

types are not directly observable from short-read sequencing data. However, after identifying

polymorphisms in the data it is possible to use short-read data to identify a set of haplotypes

which collectively explain the observed sequence data across the course of a transmission

event [52, 57]. The viral population is then represented as a vector of frequencies of haplotypes

in this set; the population before transmission is represented by the vector qB (B denoting

‘Before transmission’). During transmission, a random sample of NT viruses are passed on to

the second host to give the founder population qF. Selection for transmissibility, whereby

genetic variants cause some viruses to be more transmissible than others, is described by the

function ST. The potentially small size of the founder population means that the population

evolves within the host under the influence of genetic drift to create the large post-transmis-

sion population qA (A denoting ‘After transmission’); this process is approximated in our

model by a Wright-Fisher sampling process (representing genetic drift) with effective popula-

tion size NG. Selection acting for within-host growth may further alter the genetic composition

of the population; this effect is described by the function SG. Our method thus allows for a dis-

crimination to be made between selection for increased within-host replication and selection

for increased viral transmissibility. Observations of the population are collected before and

after transmission via a noisy sequencing process to give the datasets xB and xA. The extent of

noise in the sampling and sequencing is characterised by the parameter C [52, 57]. Noise in

our study was considered in terms of the precision with which the frequency of a variant can

be specified by viral sequence data. Variant frequencies are measured in terms of the number

of reads which report a given allele; in the absence of noise the uncertainty in the frequency

would be that arising from a binomial distribution. Our noise parameter C describes the extent

to which this uncertainty is increased. Smaller values of C increase the variance, reaching that

of a non-informative uniform distribution at C = 0 whilst larger values represent lesser addi-

tional uncertainty, tending towards the binomial limit as C!1 (S1 Fig). Elsewhere we have

noted that the parameter C and the absolute read depth of a sample can be converted into an

‘effective depth’ of sequencing [54]. In the limit of very deep sequencing the variance of an

allele frequency tends towards that of a binomial distribution with sampling depth C + 1.

To summarise our approach, we note that both the transmission and within-host growth

events can be represented as sampling processes, which may each be biased by the effect of

selection. As such, given an estimate of the noise inherent to the sequencing process, and exter-

nally-derived estimates for NG and SG, we can calculate an approximate likelihood for the

parameters NT and ST given the observations xB and xA. Maximising this likelihood gives an

estimate for the size of the transmission bottleneck and the extent to which specific genetic

variants within the pre-transmission population confer increased transmissibility upon

viruses.

In our model we discriminate between changes in a population arising from selection and

those arising due to the population bottleneck. This is achieved by considering regions of the

genome between which recombination or reassortment has removed linkage disequilibrium

between alleles (Fig 2B; compare with Fig 1A). As transmission involves whole viruses, the bot-

tleneck NT is preserved between regions. Meanwhile, in the absence of epistasis, selection

population does not change; an inference of bottleneck size derived from single-locus statistics would incorrectly be very large. C. Noise arising from the

process of collecting and sequencing data is likely to produce differences between the observed populations, even in the event that the composition of the viral

population was entirely unchanged during transmission.

https://doi.org/10.1371/journal.pgen.1007718.g001
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Fig 2. A. Basic model of transmission. A set of haplotypes exists at frequencies qB from which a noisy observation xB is made. During a transmission event, a total of

NT viruses are transferred under the influence of selection ST, establishing an infection in the next host described by qF. Growth of the viral population within the host

then occurs to produce the population qA, influenced by genetic drift (characterised by the effective population size NG) and selection SG. Sampling of the final

population gives the second observation xA. B. Regions of the genome which are separated by recombination or reassortment are used to distinguish the effects of

selection and a population bottleneck. Prior to transmission, the first region contains seven different genotypes spanning four variant loci whilst the second region

harbours four genotypes covering three loci. As recombination between these two regions leaves them unlinked, selection acting on genotypes in one region has no

impact on the fate of genotypes in the other region. Thus, where genetic diversity is reduced in the first region, the preservation of diversity in the second region

attributes this change to the action of selection on the first, rather than a shared, and narrow, population bottleneck. C. Models of neutrality and selection are

compared, as illustrated in this simplified diagram. Black dots represent observations xB and xA while the red dot indicates the inferred expected position of qA. The

solid line joining these (b,c) indicates the inferred action of selection, with dotted lines showing components of this vector (c). The blue circle represents the optimised

variance in the position of qA; the length of its radius, shown as a dashed line, is inversely related to the bottleneck size. In the neutral case, the difference between

observations is explained by the bottleneck alone. More complex models of selection fit qA more closely to xA and with reduced variance, giving higher inferred values

of NT.

https://doi.org/10.1371/journal.pgen.1007718.g002
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acting upon one region of the virus does not influence the composition of the population in

other parts of the genome. As such, a calculation encompassing multiple parts of the genome

can estimate both NT and the influence of selection; in the figure the case of a loose population

bottleneck, with selection acting upon the first region is preferred. A model selection process

[58] is used to distinguish models of neutral transmission from evolution under selection

(Fig 2C). A full exposition of the model is given in the Methods section.

Here we used simulated data to evaluate the performance of our model under different cir-

cumstances. Having established the effect of sequencing noise on the inference of population

bottlenecks, we demonstrate the ability of our method to correctly infer population bottlenecks

from sequence data in the presence or absence of selection, and its ability to correctly identify

variants conferring a benefit for viral transmissibility. We then applied our model to evaluate

selection and population bottlenecks in a recently published transmission experiment [25],

involving two sets of viral transmissions. Here Moncla et al. identified a ‘loose’ bottleneck in

the first set of transmissions which became more stringent and selective in the second set. We

here infer bottlenecks of around 2-6 viruses for each set of transmission events and identify a

number of sites under selection for within-host adaptation. However, no evidence was found

for the presence of selection for enhanced transmissibility. As we go on to show, where few

viruses are transmitted, inferring selection for increased transmissibility is an inherently diffi-

cult task.

Application to simulated data

Sequencing noise limits the maximum inferrable bottleneck. Application of our model

to simulated data describing neutral population bottlenecks showed that a lack of sequencing

noise is critical for the correct inference of large population bottlenecks (Fig 3). Inferences of

bottleneck sizes showed a limit on the inferred bottleneck size governed by noise in sequenc-

ing; where there was little noise in the data (i.e. at values of C greatly in excess of the bottle-

neck), a correct inference of the true population bottleneck was generally made. However, as

noise increases, the inferred bottleneck reaches a plateau above which increases in the true bot-

tleneck no longer affect the inferred bottleneck size. This result can be understood in terms of

the extent to which the population bottleneck and noise contribute to the change in the viral

population; where large numbers of viruses are transmitted, most of this signal is likely to

result from noise. Here we note failures in the inferred bottleneck size even with very high C;

these occur due to the finite read depth in our simulations, which was of order 104. In these

calculations a neutral method, in which selection was assumed to have no effect on the popula-

tion, was used to make inferences from neutral simulations. A consistent value of C was used

for simulation and inference purposes.

In a real dataset the extent of noise may be unknown. Further investigation showed bottle-

neck estimation to be relatively robust to an incorrect estimate of the extent of noise in a data-

set, except where the extent of noise was substantially overestimated (S2 Fig). In general, an

underestimate of the extent of noise in a dataset led to an inferred bottleneck size that was mar-

ginally lower than the value obtained given the true amount of noise; for example where the

value C = 106 was used to infer a bottleneck from data with C = 50, a bottleneck of true size

NT = 50 was inferred as NT = 33. An overestimate of the extent of noise led to an overestimate

of the size of the bottleneck with severe overestimation resulting in dramatically incorrect

inferences. Therefore, while noise limits the potential of a method to identify large bottleneck

sizes, underestimating the extent of noise in the data is generally the safer approach.

Variance in inferred transmission bottlenecks. Results from individual simulations

showed that our method could discriminate between bottleneck sizes that differ by a factor of

Inferring parameters of transmission from viral sequence data
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three or above (Fig 4 and S4 Fig). Obtaining precision in an estimated bottleneck or effective

population size is inherently a difficult task, relying on the estimate of the extent of a stochastic

effect from limited data [33]. Across 200 simulations, the interquartile range in an inferred

bottleneck spanned close to 28% of the true bottleneck size, with inferred values spanning a

range of approximately 130% of the correct bottleneck size. A slight underestimate in the bot-

tleneck size for the case NT = 100 was consistent with the extent of noise in sequencing; here

and in all subsequent simulations a value of C = 200 was used, representing an extent of noise

that is readily achievable from short read sequence data [52, 54]. In our inferences, while gross

differences in bottleneck size can be identified, a high level of precision is difficult to obtain

from sequence data alone.

Inference of population bottleneck sizes under selection for transmissibility. Infer-

ences of bottleneck size showed a systematic underestimate of the bottleneck when selection

Fig 3. Influence of sequencing noise upon the ability to infer a population bottleneck size from genome sequence data. Median

inferred bottlenecks are shown, calculated on the basis of 200 replicate simulations for each point. In the left-hand plot, a value of 1

indicates a correct bottleneck inference; in the right-hand plot, the absolute inferred bottleneck size is shown. Simulations were

conducted under the assumption of selective neutrality, with no attempt to infer selection from the data.

https://doi.org/10.1371/journal.pgen.1007718.g003

Fig 4. Inferred bottleneck sizes (NT) for true bottlenecks NT = {5, 10, 25, 50, 100}. Results were generated by applying a neutral inference

model to neutral simulated data. Inferences are shown for 200 simulations at each bottleneck size.

https://doi.org/10.1371/journal.pgen.1007718.g004
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affected a transmission event, but a method neglecting selection was used in the inference pro-

cedure (Fig 5). Simulations were conducted in which an allele at the third of five polymorphic

loci in the HA segment of a simulated influenza virus increased the transmissibility of the

virus according to a selection coefficient σ; this model of selection was applied for all subse-

quent simulations. In our simulations a value of σ = 1 is equivalent to a change in the frequency

of a variant from 50% to 73% in a single transmission event. The relatively strong magnitudes

of selection considered reflect the short period of time (a single generation) over which selec-

tion for increased transmissibility can act and the relatively small number of viruses likely to

be involved in a transmission event.

Inferences of population bottleneck were conducted using a neutral inference method,

and with a model in which selection was not constrained to be zero. In the first case, ignoring

selection led to an underestimation of the true bottleneck size by an amount which increased

according to the magnitude of selection for transmissibility. Selection during transmission

produces a shift in the expected composition of the viral population; if this shift is interpreted

as occurring solely due to a finite bottleneck a tighter bottleneck, inducing a larger stochastic

change in the population, is inferred. This understanding explains the more pronounced

underestimates achieved at larger bottleneck sizes; larger bottlenecks produce smaller sto-

chastic changes in the population relative to the change induced by selection. When the full

version of our model was run, allowing for a consideration of selection effects, the median

bottleneck inferred from data under selection resembled that inferred from neutral data;

the small shortfalls in the inference from neutral data are here explained by the influence of

noise.

Calculations performed for data describing multiple replicate transmission events gave sim-

ilar inferred transmission bottlenecks to those obtained from single replicates. In each case sets

of three replicate transmission events were simulated, each event involving the transmission of

virus between a distinct pair of hosts. Simulating the use of a consistent inoculum, our trans-

mitted populations shared a common set of polymorphic loci in each segment. Median

Fig 5. Median inferred bottleneck size from data simulating transmission with a single locus under selection of magnitude σ 2 {0, 0.5,

0.75, 1.0, 2.0}. Inferences were made using either a neutral inference model, in which the effect of selection was assumed to be zero, or a

model incorporating selection, which allowed the presence of selection to be inferred. Median inferences are shown from 200 simulations for

each data point.

https://doi.org/10.1371/journal.pgen.1007718.g005
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inferred values are shown in S3 Fig. Full results describing the range of inferred bottleneck

sizes from both one- and three-replicate populations are shown in S4 to S7 Figs.

Identification of variants under selection. In contrast to measures of diversity, which

attempt to associate selection with a gene or segment of a virus, our method was able to cor-

rectly identify specific variants conferring increased transmissibility. Success was more often

achieved in cases for which selection was relatively strong and the transmission bottleneck was

relatively large (Fig 6). Our process for distinguishing selection from neutrality (Fig 2C) can

be tuned to identify a greater number of true variants under selection at the cost of making a

greater number of false positive calls; here a conservative approach to identifying selection was

applied. We evaluated populations in which a single locus was under selection, evaluating our

potential to identify the variant. Under this approach we retained a false positive rate (infer-

ence of selection at an unselected locus) of 8% or less across the systems tested. Where a single

variant was under a lower magnitude of selection (σ� 0.5), correctly identifying sites under

Fig 6. True and false positive rates of selection inference from 200 simulations of transmission events from single- and three-replicate

systems in which a single variant was under selective pressure for increased transmissibility of σ 2 {0, 0.5, 0.75.1.0}. True positives were

defined as inferences for which selection was inferred for the selected locus in a system; false positives were defined as inferences for which

selection was inferred at any neutral locus or for multiple neutral loci in the system.

https://doi.org/10.1371/journal.pgen.1007718.g006
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selection was very difficult, though as selection became stronger (σ� 1) loci under selection

could be identified with greater accuracy. Where selection existed the potential for it to be

identified was greater at larger bottleneck sizes. These results can again be understood with

respect to the dynamics of the system. The bottleneck has a stochastic effect on the population

of a magnitude inversely related to the number of viruses transmitted. Inferring the presence

of selection requires the identification of changes in the population going beyond what would

be expected under neutrality, biasing the population in the direction of the selected allele or

alleles. However, stochastic effects can by chance distort the population in one direction or

another by more than the expectation; this leads to false inferences of selection. Genuine

changes resulting from selection become easier to identify when the changes are themselves

larger (stronger selection) or where the magnitude of the stochastic effect is reduced (higher

NT). While data from multiple replicate simulations made little difference to the inferred bot-

tleneck size (see above), such data led to a more dramatic change in these results, with the false

positive rate falling to zero for bottlenecks with NT� 20. The power of replicate experiments

arises from the lower probability that stochastic effects will impose a consistent pattern of

change upon multiple populations. While a larger-than-expected stochastic change in the fre-

quency of a variant may occur in one system, leading to a false positive inference of selection,

it is unlikely that the same pattern would recur across multiple replicates. While the inference

of selection for transmissibility is not easy, the use of replicate experiments is of considerable

value in this task; while, under our conservative approach, not all variants truly under selection

were identified, those which were identified from replicate data were almost universally true

positive calls.

Estimating the magnitude of a selected variant. Given the correct identification of selec-

tion acting for a specific variant, the inferred magnitude of selection was marginally overesti-

mated, with an increased overestimate at smaller values of the transmission bottleneck NT (Fig

7). The mixture of deterministic and stochastic changes in the population explains this phe-

nomenon; the population after transmission is equal to its expected value plus some stochastic

change. In the event that the stochastic change is aligned with the direction of selection, the

presence of selection is more likely to be inferred, while the additional change in that direction

will give an overestimate of selection. Conversely, if the stochastic change is in a direction

opposed to the influence of selection, the presence of selection is less likely to be inferred.

Thus, selection was disproportionately inferred to exist when stochastic changes in the popula-

tion led to an overestimate of its magnitude. Inferences conducted on sets of replicate trans-

mission events produced more accurate and more precise estimates of selection. For example

given a bottleneck of NT = 100 and a true strength of selection of 0.75, the mean inferred selec-

tion from a single replicate was 1.00 with variance 0.040, while the mean inferred selection

from three replicates was 0.90 with variance 0.010. (S8 Fig).

The biology of within-host viral growth may affect the inference of a transmission bot-

tleneck. Comparing our approach with a previous inference method, we found that the biol-

ogy underlying within-host viral growth can significantly affect the inferred population

bottleneck. In so far as previous population genetic models have not accounted for the pres-

ence of selection or noise in sequencing data (beyond binomial variance) we applied methods

to data describing neutral transmission between a single pair of hosts with error-free sequenc-

ing of samples. The method of Poon et al. [14] is explicitly defined across multiple transmis-

sion events so cannot be used to evaluate single transmission events. For this reason

comparison was performed with the method described by Leonard et al. [12]; this recent and

well-cited approach, which infers a transmission bottleneck based on allele frequency change

in a manner that accounts for within-host viral growth, provides a useful benchmark for

comparison.

Inferring parameters of transmission from viral sequence data
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Comparison of the two methods showed our approach to have an increased flexibility to

obtain correct inferences of population bottleneck size across a range of biological models of

within-host growth. By default, our simulation model describes genetic drift during the

within-host growth of the viral population as a single generation of replication, according to a

Wright-Fisher population model with effective population size gNT, where g is nominally the

growth rate of the population; our inference framework was set to match the generative model

(Fig 8). At a growth factor of 1, both methods correctly inferred the size of the population bot-

tleneck. However, at our default growth factor of 22 (based upon experimental results in influ-

enza [60]), the method of Leonard et al., inferred a bottleneck size roughly double the correct

value while our model was close to being correct.

This result highlights the need to correctly account for within-host growth during the infer-

ence of a transmission bottleneck. If too much of the difference between the populations

observed before and after transmission is accounted for by within-host genetic drift, the

inferred bottleneck will be too high. By contrast, if not enough of this difference is accounted

for as drift, the inferred bottleneck will be too low. In the approach of Leonard et al., the

accounting made for genetic drift accounts for a variance equivalent to that incurred in a

Wright-Fisher step of size NT, that is, with g = 1 (personal correspondance, Daniel Weissman).

Their method thus obtains a correct inference under these circumstances but reports false

Fig 7. Probability distributions of inferred selection coefficients from 200 simulations of transmission events with selective pressures σ 2 {0.5, 0.75, 1.0, 2.0}.

Distributions were constructed for bottleneck values where the inference of selection resulted in a true positive rate for identifying selected variants of above 5%.

Smooth kernel distributions were computed using a Gaussian kernel function defined on (0, 10) and Silverman’s rule of thumb [59, p. 48] for the bandwidth size.

Distributions were scaled such that their integral across the kernel range equalled the true positive rate.

https://doi.org/10.1371/journal.pgen.1007718.g007
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results if the assumed within-host growth model is not correct. Further details of the derivation

of our within-host growth model are presented in the Methods section.

Application to an experimental dataset

We applied our approach to an influenza transmission dataset obtained by Watanabe et al.

[61] and subsequently analysed by Moncla et al. [25]. This dataset provides high-resolution,

whole-genome sequence data describing both the within-host evolution, and airborne trans-

mission, of a 1918-like influenza virus, that became transmissible upon introduction of three

key mutations, PB2 E627K, HA E190D and G225D. This three-mutant strain was denoted

‘HA190D225D’ and successfully transmitted in one of three ferret transmission pairs. Isolation

and subsequent growth in MDCK cells of viruses from the contact ferret of the successful

transmission led to the generation of the ‘Mut’ strain, which transmitted in two of three

instances. A previous analysis of these data using linked variants on the HA segment identified

an increase in the diversity of the viral population during within-host growth, and respectively

‘loose’ and ‘stringent’ bottlenecks in the transmission of the two strains. In the transmission of

the Mut strain, the fixation of sequence variants, potentially due to selection, was observed,

while the observation of two out of three, rather than one out of three, successful transmissions

suggested that the Mut virus may have evolved increased fitness for infection. Within and

between hosts, segment-wide and localised measures of synonymous and non-synonymous

sequence diversity π were used to assess the presence or absence of selection, leading to the

conclusion that selection affected the system during transmission of the ‘Mut’ strain.

In our study, data from serial samples from the within-host populations were used to

infer a fitness landscape describing the within-host growth of the virus for each of the two

Fig 8. Median inferred bottleneck size from data simulating neutral transmission with the viral population undergoing either a single- or 22-fold increase in

population size during within-host replication. Inferences were made using our approach (termed ML, for multi-locus method), which allows for specifying different

growth factors, and the method of Leonard et al. [12], (termed SL, for single-locus method). Each datapoint represents the median bottleneck, calculated over 200

replicate simulations.

https://doi.org/10.1371/journal.pgen.1007718.g008
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experimental populations. Using a previously published approach [52] we inferred the pres-

ence of non-neutral change in the population in seven out of eight segments in the combined

HA190D225D population, and in four out of eight segments in the combined Mut population.

The inference of positive selection acting for multiple non-consensus viral haplotypes in the

HA segment (Fig 9) explains the increase in sequence diversity previously observed in these

data. Further results are shown in S9 and S10 Figs.

Applying our inference framework to the data identified narrow transmission bottlenecks

in each case (Fig 10). In each of our calculations a set of statistical replicate inferences was

produced, corresponding to different potential reconstructions of the population qB from the

sequence data (see Methods). Within the HA190D225D population, our estimated bottlenecks

ranged from 3 to 6, with a median bottleneck size of 5, while for the Mut calculations, our bot-

tlenecks ranged from 2 to 127 and 2 to 61, with medians of 6 and 2 respectively. As such, no

clear evidence was found that the HA190D225D transmission involved a greater number of

particles than the Mut transmissions. Given the inclusion of the inferred within-host selection

SG, no evidence was found for the existence of variants making the virus more or less transmis-

sible, with selection being inferred in only a small number of the replicate calculations (S11

Fig). Increasing the frequency cutoff at which variants were included in the calculation led to

small decreases in the inferred bottleneck sizes (S12 Fig).

Discussion

We have here presented an approach for jointly inferring a population bottleneck size and

selection for differential transmissibility from viral sequence data describing a transmission

Fig 9. Inferred fitness landscape for within-host growth using data from the HA190D225D dataset. Viral haplotypes for which the inferred frequency rose above

1% in at least one animal are shown. Lines show haplotypes separated by a single mutation.

https://doi.org/10.1371/journal.pgen.1007718.g009
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event. While basic sampling approaches to bottleneck inference have been improved by an

accounting for drift during within-host viral growth [7, 12–14], our approach additionally

accounts for noise in genome sequence data, exploits partial haplotype data available from

short-read sequencing, and separates the influence of a finite bottleneck from that induced

by selection for increased transmissibility. In multiple studies, the transmission bottleneck

has been found to be narrow during natural viral spread between hosts [62]. While acknowl-

edging previous evidence for the existence of small transition bottlenecks in viral systems, we

here note that a failure to account for selection and noise in the transmission process can

decrease the bottleneck that is inferred from sequence data. Our approach is suitable for

the analysis of acute infectious diseases such as influenza on the basis of a small number of

observed transmission events; we note that where more substantial diversity is present in a

within-host viral population, or where data are available from a large number of hosts in

an outbreak, phylogenetic methods of evolutionary inference become of increasing value

[63–65].

Applied to the analysis of data from a recent evolutionary experiment, our approach pro-

vides a greater precision in the inference of evolutionary statistics, leading to an alternative

explanation for the data observed. Where data have previously been interpreted as implying

differential transmission bottlenecks between strains, our approach infers bottlenecks of simi-

lar sizes ranging from 2-6 viruses. Furthermore, where evidence has been interpreted to sug-

gest a differing extent of transmissibility between strains, our approach attributes changes in

the composition of the population to a mixture of stochastic effects and selection for increased

within-host adaptation. Our result does not prove the absence of differential transmissibility

among the viruses involved in this study; at the bottleneck size we inferred, selection is very

hard to identify even where it does influence transmission. Rather, our claim is that under a

parsimonious analysis of the data, apparent evidence for increased viral transmissibility can be

explained by other evolutionary factors.

Fig 10. Histograms of bottleneck inferences for HA190D225D and Mut transmission pairs from 200 analysis seeds. A replicate inference

method was employed for the Mut transmission pairs such that a common fitness landscape was imposed. The Mut transmission pairs may

take different bottleneck values and have been plotted as an overlapping histogram. Bottleneck inferences larger than NT = 35 have been

omitted for clarity.

https://doi.org/10.1371/journal.pgen.1007718.g010
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Our study shows that the identification of variants conferring increased viral transmissibil-

ity is difficult when the number of transmitted viral particles is small. While improvements to

our method may be achievable, this difficulty is fundamentally rooted in the nature of a trans-

mission event; where a low number of virions are transmitted, the influence of stochastic pro-

cesses becomes large, with variants fixing during transmission in a manner that cannot be

distinguished from a selective sweep. The potential to infer the presence of selection increases

at larger population size and given a greater number of replicate transmission events. However

the amount of data required to make a statistically robust identification of a variant increasing

viral transmissibility may be large. We note that, unlike more general inferences of selection

from changes in viral diversity, our approach evaluates selection in terms of specific variants

conveying an advantage or disadvantage for transmission. Where broad measures of diversity

are calculated across segments of a genome, the background of genetic diversity across a large

number of positions may be hard to separate from changes at individual positions under the

action of selection.

In the light of our study, we propose that the term used in some analyses of viral transmis-

sion, of a ‘selective bottleneck’ is ambiguous, failing on the one hand to distinguish changes in

a population arising from selection and those occurring through stochastic change in the pop-

ulation, and on the other to distinguish between selection for more rapid within-host replica-

tion or for inherent viral transmissibility. While selection may act differently for these latter

two phenotypes [55], their respective influences are intrinsically hard to separate when an

infection is sparsely sampled. In our analysis the completeness of the collected data, covering

both within-host adaptation and between-host transmission, was necessary to evaluate the

cause of evolutionary change.

Our study provides some insight into the potential for inferring transmissibility using small

animal experiments. One approach to exploring transmissibility (in influenza virus) has been

the comparison, for different viruses, of the proportion of distinct animal pairs between which

transmission occurs [66]. The statistical significance achievable in these studies is limited by

the number of animal pairs that can be examined [67–69]. Furthermore, the comparison

between one genotype and another may be confounded by viral heterogeneity, whereby each

population contains a cloud of genetic diversity [24, 70]. As we have shown, data from repli-

cate transmission events leads to an improved ability to infer selection, in particular by reduc-

ing the false positive rate of inference and by increasing the accuracy in inferred selection

coefficients. We note, however, that the number of viral particles transmitted in each event is

key in determining whether increased transmissibility can be identified; where a transmission

bottleneck is narrow it is inherently difficult to identify selection against a background of the

large changes in the population induced by stochastic effects. Where transmission bottlenecks

are small, a large number of replicates might be needed to make statistically well-supported

inferences of increased transmissibility. Applications of our method to simulated data could be

used to gain an insight into what might be obtained from a particular experimental setup.

In some situations, neutral markers or molecular barcodes may be added to a viral popula-

tion [5, 30]; without providing an estimate of selection, sequencing these markers before and

after transmission can give a precise estimate of the population bottleneck. While our method

does not require the presence of such markers, its adaptation to include marker data would

likely be straightforward, including in a calculation a further probabilistic term constraining

the bottleneck size. Inference of selection for transmissibility could then be conducted under

this constraint; the combination of whole-genome sequence data with such information could

prove powerful for the study of viral transmission.

While we have here considered the transmission of influenza virus, very few steps of our

approach would need to be altered for the method to be applied to another viral population.

Inferring parameters of transmission from viral sequence data
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As detailed in the Methods section, it is only in accounting for genetic drift in the within-host

growth of the virus that we make approximations relying on biological knowledge of the influ-

enza virus; an alternative accounting for within-host expansion could be used. A second key

assumption in the inference of selection is the existence of regions of the virus separated from

each other by recombination or reassortment. This assumption would be preserved in some

other viruses, as noted in observations of within-host HIV evolution [71], if not for all influ-

enza populations [72]. Where a viral genome did not exhibit recombination, and only a single

transmission event was observed, the neutral version of our method could be applied; in this

context our accounting for haplotype structure and sequencing noise in transmission repre-

sents an advance over methods which ignore these factors.

Viral transmission is a critical component of disease and a key factor in viral evolution. In

outlining a novel framework for the interpretation of data from viral transmission events we

hope to bring a greater clarity to the population genetic theory of how these events operate and

a greater power in the interpretation of experimental data, so as to engender a greater under-

standing of this important topic of research.

Methods

Notation and qualitative overview

We describe the viral population as a set of haplotypes, with associated frequencies, that

changes in time during a transmission event. Given a number of (possibly non-consecutive)

loci of interest in the viral genome, the set of haplotypes h = {hi} describes a set of sequences

having specific nucleotides at these loci. Within a viral population of finite size, the number of

viruses with each haplotype hi is described by the vector n = {ni}. Frequencies of each haplotype

within the population are denoted by the vector q = {qi}, while observations of the population

collected via sequencing are denoted by the vector x = {xi}, where xi is the number of sampled

viruses with haplotype hi.

The transmission event is now described according to the framework outlined in Fig 2. A

population of viruses qB undergoes transmission with some bottleneck NT, creating a founder

population with haplotype frequencies qF in the recipient. Selection influencing this transmis-

sion process is described by the function ST(q), which changes the frequency of haplotypes

according to the relative propensity of each haplotype to transmit. For example, selection may

favour the transmission of viruses containing a specific genetic variant, increasing the expected

proportion of viruses with this variant in the founder population. Within the host, the viral

population grows rapidly in number to create the population qA. During this growth process,

genetic drift affects the population in a manner according to the effective population size NG.

Observations of the system are made via genome sequencing of samples collected before and

after transmission, and are denoted xB and xA respectively; the total numbers of sequence

reads in each are denoted NB and NA. Given the observations xB and xA, we wish to estimate

the size of the population bottleneck NT and the extent of selection for transmissibility ST.

During the process of growth between qF and qA, the population may be influenced by

selection for within-host growth; this acts independently of selection for transmissibility [73],

and is described by the function SG(q), which changes the frequencies of haplotypes according

to their relative within-host growth rates. Selection for within-host growth is challenging to

separate from selection for transmissibility; we here estimate this parameter independently

from the transmission event itself.

Where we consider multiple replicate transmission events, we assume that each transmis-

sion has its own transmission bottleneck NT; different numbers of viruses may infect different
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hosts. However, we assume that selection operates consistently between hosts; a variant which

makes a virus grow more efficiently in one host does the same in another.

Likelihood framework

As the observations xB and xA are conditionally independent given qB, the joint probability of

the system may be written as a product of individual probabilities

PðxB; xAjqB; yÞ ¼ PðxBjqBÞPðxAjqB; yÞ ð1Þ

where θ represents the remaining variables in the system upon which only xA depends.

As an approximation to this likelihood, we split the inference into two calculations, first cal-

culating a maximum likelihood for qB given xB, then inferring the transmission event from xA

given qB. Noting the potential uncertainty in the inference of qB, we introduce a variance com-

ponent so that qB may be regarded as a random variable rather than a fixed quantity. The pro-

cess of breaking up the inference process greatly reduces the computational time required for

our approach, without considerable cost to the accuracy of the results. Splitting the likelihood

in this manner, and marginalising over unknown quantities, the likelihood can be written

generically as

LðNT; STjxB; xA;NG; SGÞ ¼

Z

PðxBjqBÞ PðqBÞ dqB

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
xB component

�

Z

PðxAjqAÞ

Z

PðqAjNG; SG; qFÞ

Z

PðqFjNT; ST; qBÞ PðqBÞ dqB

� �

dqF

� �

dqA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
xA component

ð2Þ

The first component of this likelihood, corresponding to the initial observation of the sys-

tem, xB, represents a straightforward sampling of the system, drawing from a collection of viral

haplotypes. Such a process can be modelled using a multinomial distribution. However, as is

well known [54], next-generation sequence data are error-prone, such that less information is

contained within the sample than would be contained in a multinomial sample of equivalent

depth. A Dirichlet multinomial distribution may be used to capture this reduction of informa-

tion [52, 57], such that

PðxBjqBÞ ¼
GðNB þ 1Þ
Q

iðxB
i þ 1Þ

Gð
P

Cqb
i Þ

Gð
P

xB
i þ CqB

i Þ

Y

i

Gðxb
i þ CqB

i Þ

GðCqB
i Þ

ð3Þ

where C, which alters the variance of the distribution, characterises the extent of noise in the

data. The parameter C can be estimated given independent observations of identical parame-

ters, such as haplotype or single allele frequencies; in the application to experimental data,

time-resolved variant frequencies derived from the sequence data were used for this purpose

[52].

Considering the second component of the likelihood, the expression P(xA|qA) may be

calculated in the same manner as in Eq 3 dependent upon the haplotype frequencies qA. The

remaining parts of this component can also be described as sampling events. A sample of the

population in the donor animal transmits to the recipient, generating a founder population.

The founder population multiplies within the host, with offspring being sampled from the

founder population qF to generate the final population qA. The xA component thus represents

a compound of multiple sampling events. We will go on to describe the calculation of both
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components of the likelihood function. However, we first need to consider how selection is

incorporated into our model.

Excursus: Modelling selection. Within our model, the functions describing selection are

potentially complex, each having a number of parameters equal to the number of haplotypes

in the system. In common with previous approaches to studying within-host influenza evolu-

tion [74] we adopt a hierarchical model of selection whereby the fitness of a haplotype is calcu-

lated from a set of one- or multi-locus components, describing the advantage or disadvantage

of a specific nucleotide, or nucleotides, at a single locus or set of loci. A model selection process

is then used to identify the most parsimonious explanation of the data.

Formally, we denote the jth component of the haplotype hi as hij, with hij 2 {A, C, G, T}. In a

fitness model, a parameter is defined as the pair of values (sk, gk), where sk is a real number,

denoting the difference in fitnesses of individuals with and without the allele [75], and gk is a

vector of components gkj 2 {A, C, G, T, −} denoting the haplotypes to which this selection

applies. We now define

gk � hi ¼
Y

j

gkj � hij ð4Þ

where

gkj � hij ¼

1; if gkj ¼ hij

1; if gkj ¼ �

0; if gkj 6¼ � ; gkj 6¼ hij

8
>>><

>>>:

ð5Þ

The fitness of a haplotype hi is then given as

wi ¼ exp
X

k

skðgk � hiÞ

 !

ð6Þ

where the sum is calculated over all fitness parameters k. To give an example, a single-locus fit-

ness parameter would have a single element of gk that was either A, C, G, or T. Supposing this

element to be at position j, it would convey the fitness advantage sk to all haplotypes with the

given nucleotide at position j in the genome.

Selection in a transmission event. Selection is incorporated into the transmission event

from donor to recipient by representing this event as a biased sampling process. As we are not

considering data here, noise is not an issue. We therefore model the population qF as arising

via a multinomial sampling process of depth NT from a set of genotypes with frequencies

ST(qB), where ST represents the role of selection in the transmission event. We write

PðqFjqB;NT; STÞ ¼
NT!
Q

inF
i !

Y

i

ðSTðqBÞÞ
nF
i

i ð7Þ

where

ðSTðqBÞÞi ¼
wT

i q
B
iX

i0
wT

i0qB
i0

ð8Þ

defines a distorted population based on the haplotype fitnesses wT ¼ fwT
i g, representing the

relative propensity of each haplotype hi for transmission. We note here that qF
i ¼

nF
i

NT , where

the vector nF describes the number of copies of each haplotype in the founder population.
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Selection during within-host growth. From the founding of an infection in the recipient,

the viral population grows to the point at which data are collected for sequencing, under the

influence of both genetic drift and selection. Selection for within-host growth is modelled by

the function SG, identical in form to ST. We note that neglect of this term could distort the

inferred value of ST; given only data collected before and after transmission the two terms can-

not be separated. However, where samples have been collected at distinct times from one or

multiple hosts, it is possible to make an independent estimate of SG [52], such that the two

forms of selection can be discriminated. We here incorporate within-host selection into our

derivation; the absence of such selection is then represented as a special case of our model.

Concerning genetic drift, we note that the number of viruses in a host grows rapidly, with

experiments suggesting that a single infected cell can produce between 103 and 104 viruses

[76]. However not every such virus is viable, and one estimate has put the number of naive

cells infected by an infected influenza cell at 22 [60]. By default we here approximate the

within-host growth of the virus as a single multinomial draw, compressing growth to a single

round of sampling, with the variance effective population size NG = gNT. By default we set the

growth factor g to be equal to 22. This approach is distinct from the branching process used in

another estimate of bottleneck size [72]; our assumption that viruses infect different cells in

the host, with competition between viruses occurring after the release of viruses from cells,

leads to a Wright-Fisher-type population model, in which the rapid growth of the viral popula-

tion leads to a smaller amount of genetic drift than inferred in that model. We note that our

method can be extended to incorporate multiple rounds of within-host viral growth; a first

approximation would be to reduce g to match the effective variance in frequencies induced by

repeated rounds of growth. A fuller solution has been implemented in our code; full details are

provided in S1 Text.

Approximation of the likelihood function. We now turn to calculating the likelihood

function of Eq 2. On account of the discrete nature of the multinomial distribution, the

integrals present in this equation may be written as sums over all possible outcomes of the

multinomial sampling processes represented by the different potential values of qF and qA.

However, in realistic cases, where there might be multiple haplotypes present, the number of

possible outcomes grows combinatorially with NT, making this calculation intractable. Instead

we consider a continuous approximation in which the random variables of the model (Fig 2A)

are represented by multivariate normal distributions, each defined by a mean and covariance

matrix. By ignoring higher order moments, we may then calculate the individual components

of the system (Eq 2) by appealing to a moments based approach for the evaluation of integrals

arising from marginalisation over unknown variables. This step follows multiple previous

approaches to time-resolved data, in which moments-based approximations have been used to

simplify the propagation of evolutionary models [36, 77–79].

The haplotype frequency vector qB is unknown and must be determined from the available

data. We denote the mean of the distribution of qB as μB and its covariance matrix by SB.

Given a sampling depth NB and a dispersion parameter C, we describe xB as a distribution with

mean and variance derived from the Dirichlet multinomial [80]:

E½xBjqB� ¼ NBqB ð9Þ

and

var xBjqB½ � ¼
NB þ C
1þ C

� �

NB DiagðqBÞ � qBðqBÞ
y

� �
� bNBMðqBÞ ð10Þ

where b ¼ NBþC
1þC

� �
, M(q) = Diag(q) − qq† and † indicates the transpose function.
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The founder population qF is sampled from qB. Its mean is given by the expression

E½qFjqB� ¼ STðqBÞ ð11Þ

and its variance by

var½qFjqB� ¼
1

NT
DiagðSTðqBÞÞ � STðqBÞSTðqBÞ

y
� �

�
1

NT
MðSTðqBÞÞ ð12Þ

arising from a multinomial sample of depth NT and the selectively shifted frequencies ST(qB).

Similarly, the within-host growth process may be represented by a distribution with mean

E[qA|qF] = qF and variance var½qAjqF� ¼ 1
NGMðqF). As for the pre-transmission case, a Dirich-

let multinomial likelihood with sampling depth NA, selectively shifted frequencies SG(qA)

and dispersion parameter C may be used to model the sequencing of the population post-

transmission. The resulting distribution can be approximated as a multivariate normal with

mean

E½xAjqA� ¼ NASGðqAÞ ð13Þ

and variance

var½xAjqA� ¼
NA þ C
1þ C

� �

NAMðSGðqAÞÞ � aNAMðSGðqAÞÞ ð14Þ

where a ¼ NAþC
1þC

� �
is defined for notational convenience.

Having established the above distributions, we are now equipped to carry out the relevant

marginalisations (Eq 2) using the law of total expectation and the law of total variance. Starting

with the pre-transmission compound distribution, the marginalisation over qB yields a mean

of

E½xB� ¼ E½E½xBjqB�� ¼ E½NBqB� ¼ NBμB ð15Þ

and a variance of

varðxBÞ ¼ E½var½xBjqB�� þ var½E½xBjqB��

¼ E½bNBðDiagðqBÞ � qBðqBÞ
y
Þ� þ var½NBqB�

¼ bNBðDiagðE½qB�Þ � E½qB�E½qB�
y
Þ þ NBðNB � bÞ var½qB�

¼ bNBMðμBÞ þ NBðNB � bÞSB

ð16Þ

These expressions characterise the xB component of the likelihood from Eq 2 in terms of

a normal distribution. We identify values of μB and SB maximising this likelihood. The

matrix SB has dimensionality k2 where k is the number of haplotypes in the system, a num-

ber which may potentially be large. Accurately determining so many parameters from the

available data is unrealistic. In preference to obtaining an ill-defined covariance matrix we

make the approximation that the off-diagonal elements of SB are zero, i.e. we disregard

between-haplotype correlations in specifying the uncertainty in μB. We note that ignoring

the variance component altogether results in an underestimation of the population bottle-

neck (S13 Fig).
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Moving on to the post-transmission process, the marginalisation over qB results in a mean

of

E½qF� ¼ E½E½qFjqB�� ¼ E½STðqBÞ� � STðE½qB�Þ ¼ STðμBÞ ð17Þ

where in the penultimate step we used the first-order second-moment approximation to a vec-

tor function acting on a random variable. The law of total variance yields

varðqFÞ ¼ E½var½qFjqB�� þ var½E½qFjqB��

¼ E
1

NT
MðSTðqBÞÞ

� �

þ var½STðqBÞ�

¼
1

NT
MðE½STðqBÞ�Þ þ 1 �

1

NT

� �

var½STðqBÞ�

�
1

NT
MðSTðE½qB�ÞÞ þ 1 �

1

NT

� �

DSTjE½qB�

� �
var½qB� DSTjE½qB �

� �y

¼
1

NT
MðSTðμBÞÞ þ 1 �

1

NT

� �

DSTjμB

� �
SB DSTjμB

� �y

ð18Þ

Note that ðDSÞji ¼
@Si
@qj

is the Jacobian matrix arising from the first-order second-moment

approximation.

Marginalisation over qF yields a mean of

E½qA� ¼ E½E½qAjqF�� ¼ E½qF� ¼ STðmBÞ ð19Þ

varðqAÞ ¼ E½var½qAjqF�� þ var½E½qAjqF��

¼ E
1

NG
ðDiagðqFÞ � qFðqFÞ

y
Þ

� �

þ var½qF�

¼
1

NG
ðDiagðE½qF�Þ � E½qF�E½qF�

y
Þ þ 1 �

1

NG

� �

var½qF�

¼
1

NG
MðSTðμBÞÞ

þ 1 �
1

NG

� �
1

NT
MðSTðμBÞÞ þ 1 �

1

NT

� �

DSTjμB

� �
SB DSTjμB

� �y
� �

¼
NT þ NG � 1

NTNG
M STðμBÞð Þ

þ
NTNG � NT � NT þ 1

NTNG
DSTjμB

� �
SB DSTjμB

� �y

� gMðSTðμBÞÞ þ d DSTjμB

� �
SB DSTjμB

� �y

ð20Þ

where in the last step we defined g ¼ NT þ NG � 1
NTNG

� �
and d ¼ NTNG � NT � NGþ1

NTNG .

Treating the integral over qA in a similar manner, we obtain by the law of total expectation

E½xA� ¼ E½E½xAjqA�� ¼ E½NASGðqAÞ� � NASGðE½qA�Þ ¼ NASGðSTðμBÞÞ ð21Þ
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Analogously, the law of total variance yields

varðxAÞ ¼ E½var½xAjqA�� þ var½E½xAjqA��

¼ E½aNAMðSGðqAÞÞ� þ var½NASGðqAÞ�

¼ aNA
�
DiagðE½SGðqAÞ� � E½SGðqAÞ�E½SGðqAÞ�

y
�

þ NAðNA � aÞvar½SGðqAÞ�

� aNA
�
DiagðSGðE½qA�Þ � SGðE½qA�ÞðSGðE½qA�ÞÞ

y
�

þ NAðNA � aÞ
�
DSGjE½qA�

�
var½qA�

�
DSGjE½qA�

�y

¼ aNAMðSGðSTðμBÞÞÞ þ NAðNA � aÞ
�
DSGjST ðμBÞ

�
�

gMðSTðμBÞÞ þ d
�
DSTjμB

�
SB
�
DSTjμB

�y
� ��

DSGjST ðμBÞ

�y

ð22Þ

The above expressions represent mean and covariance matrices of multivariate normal dis-

tributions resulting from the evaluation of marginalisations in Eq 2. As such, the components

of Eq 2 may be represented in a tractable form as the probability density functions of two mul-

tivariate normal distributions; The xB component has mean and covariance matrix as specified

in Eqs 15 and 16, whilst the xA component has mean and covariance matrix as given in Eqs 21

and 22. Taken as a whole, this defines a likelihood for the transmission event given the data.

As such, given an independent estimate of SG, and our estimated values for μB and SB, the

maximum likelihood values of NT and ST may be inferred.

Reversion to a discrete likelihood function

Given a mean and covariance matrix for the likelihood function, we can approximate the like-

lihood by the probability density function of a multivariate normal distribution. However,

where the variance of this distribution is very small in one dimension, as can occur under an

inference of very strong selection, the density function evaluated at a point can become arbi-

trarily large. For this reason a Gaussian cubature approach was used to calculate the integral of

the final likelihood over the unit cube described by each observation x, once optimisation had

been completed. Approximate numerical integrals were calculated using the software package

cubature [81].

Extension to partial haplotype data

In the calculations above we made the implicit assumption that the observations xB and xA

consist of sets of complete viral haplotypes hi. However, short-read sequencing technologies

generally result in sets of individual reads which only cover a subset of the genetic loci of

interest; we refer to these reads as partial haplotypes. In this framework the data represents

direct observations of partial haplotypes in the set hP
¼ fhP

1
; . . . ; hP

Lg, where each of the

sets hP
l is a vector of haplotypes spanning a common subset of the loci spanned by the full

haplotypes in h. Population-wide observations of these partial haplotypes are then defined

by xP ¼ fxP
1
; . . . ; xPLg with xPl ¼ fx

P
lig where xPli is the number of reads with haplotype hP

li . As

a result, the total number of observations must now be defined on the basis of each set of
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partial haplotypes, e.g. NB;P
l ¼

P
ix

P
li is the total number observations of partial haplotypes in

the set l. As each set of partial haplotype observations is independent of the others, we may

reconstruct Eq 2 in the following terms:

log LðNT; STjxB; xA;NG; SGÞ ¼
X

l

log LðNT; STjxB;P
l ; xA;P

l ;NG; SGÞ ð23Þ

Within this construction, bottleneck sizes and selection are conserved between partial hap-

lotype sets, being evaluated at the full haplotype level. Each set of partial haplotype observa-

tions xPl is considered as a sample drawn from a set of partial haplotypes with frequencies qPl ,

these frequencies being defined via a linear transformation of the full haplotype frequencies

with matrix Tl. For example, given the full haplotypes {AG, AT, CG, CT} and a set of partial

haplotypes {A-, C-}, we have

qPl ¼ Tlq ð24Þ

or more explicitly,

qPl1
qPl2

� �

¼
1 1 0 0

0 0 1 1

� �
q1

q2

q3

q4

0

B
B
B
@

1

C
C
C
A

ð25Þ

Thus, as described above, the calculation of transmission and within-host growth under

selection can be performed at the level of full haplotypes, switching into partial haplotype

space only to evaluate the likelihoods of the observations. Re-deriving the results of Eqs 15 and

16 for short-read sequence data, we find that the compound distribution for the xB component

has mean

E½xB;P
l � ¼ NB;P

l Tl μ
B ð26Þ

and variance

varðxB;P
l Þ ¼ bN

B;P
l MðTlμ

BÞ þ NB;P
l

�
NB;P

l � b
�
TlS

BTyl ð27Þ

Similarly, for the xA component of the likelihood, we get a mean of

E½xA;P
l � ¼ NA;P

l TlSGðSTðμBÞÞ ð28Þ

and variance

varðxA;P
l Þ ¼ aN

A;P
l MðTlSGðSTðμBÞÞÞ þ NA;P

l

�
NA;P

l � a
�
�

Tl

�
DSGjST ðμBÞ

�
gMðSTðμBÞÞ þ d

�
DSTjμB

�
SB
�
DSTjμB

�y
� ��

DSGjST ðμBÞ

�y
Tyl

ð29Þ

Data from multiple genes

The mathematical framework outlined above utilises the haplotype information inherent to

the data, and accounts for the effect of noise in the sequencing process (Fig 1B and 1C). How-

ever, in order to discriminate between changes in viral diversity arising from bottlenecking

and selection (Fig 1A) it is necessary to consider data from different regions of the genome at

which genetic diversity is nominally statistially independent. At high doses of influenza virus
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reassortment occurs rapidly, as has been observed both in vitro and in small animal infections

[82, 83]. In our analysis, distinct viral segments were therefore considered to be independent

of one another in this manner, albeit sharing a common transmission bottleneck NT, each

transmitted virus being assumed to contain one of each viral segment. As such the likelihood

in Eq 23 becomes

logLðNT; STjxB; xA;NG; SGÞ ¼
X

m

X

l

logLðNT; ST
mjx

B;PH
ml ; xA;PH

ml ;NG; SG
mÞ ð30Þ

where the subscript m denotes information particular to a specific genomic region.

Data from multiple replicates

Replicate data are highly valuable for evolutionary inference [84, 85]. Within our calculation

they provide an additional level of abstraction to the inference process. Under this framework

we assumed that replicates share a common fitness landscape, ST, whilst exhibiting individual

bottleneck values. As a result, the likelihood from Eq 30 becomes

logLðNT; STjxB; xA;NG; SGÞ ¼
X

r

X

m

X

l

logLðNT
r ; S

T
mjx

B;PH
rml ; x

A;PH
rml ;N

G
r ; S

G
mÞ ð31Þ

where the subscript r denotes information particular to a specific replicate.

Implementation of Leonard et al. method

For comparison of bottleneck estimates with existing methods we implemented the exact ver-

sion of the beta-binomial inference scheme of Leonard et al. [12]. The likelihood function for

site i was defined as

LðNTÞi ¼
XNT

j¼0

Pbeta-bin

�
xA;SL

i;minorjN
A;SL
i ; j;NT � j

�
Pbin

�
jjNT; qB;SL

i;minor

�
ð32Þ

where NT is the bottleneck size, Pbeta-bin is the beta-binomial probability mass function, xA;SL
i;minor

is the number of recipient observations for the minor allele at site i, NA;SL
i is the total number

of recipient observations for site i, i.e. NA;SL
i ¼ xA;SL

i;minor þ xA;SL
i;major, Pbin is the binomial probability

mass function, and qB;SL
i;minor is the donor frequency for the minor allele at site i. We note that the

beta-binomial is undefined for j = 0 and j = NT and define j = 10−10 and j = NT−10−10 respec-

tively in these cases. The original authors did not discuss this further. We did not make use of

the cumulative version of the likelihood function as we avoided the problem of variant calling

by fixing the number of required polymorphic loci when simulating data. The total likelihood

for each bottleneck value was computed as

LðNTÞ ¼
Xnsites

i¼0

LðNTÞi ð33Þ

where nsites is the number of variant loci. Bottleneck inference was defined as the bottleneck

associated with the largest likelihood value.

Application to data

Our method was applied to both simulated sequence data, and data from an evolutionary

experiment conducted in ferrets [25].
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Generation of simulated data. Simulated data were generated in order to nominally

reflect data from an influenza transmission event. As such, a single transmission event was

modelled as the transmission of viruses each with eight independent segments, the lengths of

each segment being equal to the eight segments of the A/H1N1 influenza virus, with five ran-

domly located polymorphic loci in each segment creating a total of 25 potential full haplotypes.

One fourth of these haplotypes were randomly chosen under the constraint that each of the

five loci had to be polymorphic. Subsequently, full haplotype frequencies were generated at

random, with the constraint of a minimum haplotype frequency of 5%.

Transmission was modelled as a multinomial draw of depth equal to the bottleneck

size. Selection for transmission was incorporated as a shift in haplotype frequencies as

described in Eq 8. Where included in the simulation, selection was assumed to act upon a

single variant in one of the viral segments. Within-host growth was modelled as a single

round of replication defined as a multinomial draw conferring a 22-fold increase in popula-

tion size. Within-host selection was incorporated in a manner similar to that of selection for

transmission.

Partial haplotype observations were generated on the basis of short-read data simulated

for each gene. Short-reads were modelled as randomly placed gapped reads with mean read

and gap lengths derived from an example influenza dataset [24] (mean read length = 119.68,

SD read length = 136.88, mean gap length = 61.96, SD gap length = 104.48, total read

depth = 102825); these estimates are conservative relative to what can be achieved with the

best contemporary sequencing technologies. Read depths were calculated for all possible sets

of partial haplotypes by assigning individual reads to sets according to the loci they cover.

Finally, partial haplotype observations were modelled as Dirichlet-multinomial draws employ-

ing a dispersion parameter C to account for noise.

Replicate experiments were generated by considering replicate observations of transmission

events with consistent viral populations; that is, for which the variant alleles were consistent

between replicate transmission events.

Experimental sequence data. Data were analysed from an evolutionary experiment in the

transmission of a 1918-like influenza virus between ferrets [25]. The specific data examined

here describes two sets of viral transmissions. In the first, denoted HA190D220D, a viral popu-

lation was given to three ferrets, transmission to a recipient host being observed in one of

three cases, giving time-resolved sequence data from four ferrets. In the second, denoted Mut,

a viral population arising from the first experiment was given to three ferrets, transmission to

two recipient hosts being observed, giving data from five ferrets.

Processing of sequence data. Genome sequence data was processed using the SAMFIRE

software package, according to default settings [57], calling variant alleles that existed at a fre-

quency of at least 1% at some point during the observed infections. For the calculation of a

within-host fitness landscape, the effective depth of sequencing was estimated in a conservative

manner, filtering out variants which changed in frequency by more than 5% per day before

using the frequencies of remaining variants from different time-points within the same host to

estimate the parameter C. For the within-host model, following the approach of previous cal-

culations [52, 72], potentially non-neutral variants were identified as those for which a model

of frequency change under selection outperformed a neutral model by more than 10 units

according to the Bayesian Information Criterion (BIC) [58]. Variants reaching a frequency of

at least 5% in at least one sample were then identified before calling multi-locus variant obser-

vations from the data; data from all time-points for which within-host data were collected

were used in this inference. The 5% cutoff was chosen to reduce computational costs for this

part of the calculation while still reconstructing the core aspects of the within-host fitness

landscape.
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For the inference of transmission, data from all polymorphic sites was utilised, with no fil-

tering of sites. As in the original analysis of the data [25], variants were identified from data

collected from the final observation before transmission and the first point of observation after

transmission; these data were used to construct multi-locus observations across variants which

reached a frequency of at least 2% in at least one sample. In this inference a revised approach

to estimating the effective depth of sequencing was taken, noting our result that estimates

which overestimate noise may lead to errors in the inferred bottleneck size. Here, in common

with previous calculations, we initially identified a conservative value of C from within-host

data using the default settings in SAMFIRE. Next, variant frequencies were evaluated, identify-

ing potentially non-neutral changes in frequency using a single-locus analysis [52]. Finally, a

more conservative estimate of C was calculated, using the set of trajectories which were identi-

fied as being consistent with a neutral model of frequency change.

Subsequent processing was identical for simulated and experimental datasets. Multi-locus

variants, detailing partial haplotypes, were identified using SAMFIRE. These were removed

from consideration if A) the partial haplotype did not have at least 10 observations either

before or after transmission, B) the partial haplotype exhibited a frequency of< 1% before

transmission, C) the partial haplotype had no observations before transmission (variant

assumed to have arisen de novo), D) the partial haplotype was the only partial haplotype in its

set and had no observations post-transmission. Additionally, to avoid potential dataset errors

from drastically influencing the inference outcome, partial haplotypes were removed if found

to have a single post-transmission observation despite the presence of a large (� 50) overall

sampling depth. Finally, removal of partial haplotype observations may result in individual

loci becoming monomorphic (all partial haplotypes covering these loci exhibit the same

alleles). In this case, relevant partial haplotype sets were removed with the reads being redis-

tributed unto variant sets with fewer loci.

SAMFIRE was used to construct a set of haplotypes spanning each viral segment using the

multi-locus variant calls from all time points. Here, potential haplotypes are identified by a

process of exclusion. Given n biallelic variants in a segment, there are 2n potential haplotypes,

or combinations of those variants across all loci. SAMFIRE uses observed partial haplotype

reads to constrain this set. For example, if across four loci only three of a potential sixteen com-

binations of alleles are observed, this removes a large proportion of the potential haplotype set.

The haplotypes identified in this manner comprise the space of haplotypes spanned by the vec-

tors qB and qA. No inference of haplotype frequencies is conducted at this point, such inference

is conducted in a subsequent step, using the likelihood framework described above.

Inference of parameters

Hierarchical selection model. In our model, the set of potential fitness parameters is

large. To simplify the calculation, parameters modelling three- or higher-locus epistatic effects

were neglected, while parameters modelling two-locus epistasis were only considered for addi-

tion to a model which already contained single-locus fitness parameters for each of the two

loci. In both the inferences of within-host selection and of transmissibility, a null assumption

of neutrality was used as the starting point for an inference model, exploring successively more

complex models of selection until an optimal model, defined according to a model selection

process, was identified.

Inference of within-host selection. For the experimental dataset an inference of within-

host selection was conducted according to a method previously described in earlier publica-

tions [52, 72]. Under the assumption of rapid reassortment in the system [82] different

segments of the virus were treated independently. Our inference of selection aimed to
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characterise fitness so as to estimate SG for an inference of transmission; the HA190D225D

and Mut datasets were considered independently, with data from all animals in each set being

combined to infer within-host selection.

Replicate calculations of transmission parameters. Both our within-host and transmis-

sion calculations are performed in a model space of potential haplotypes. For example, in the

first step of the transmission model, we calculate an estimate for the population qB given the

data xB. In many cases, particularly where there are greater numbers of potential haplotypes

and short reads span smaller numbers of loci, it is possible that the data xB will not uniquely

specify the initial vector qB. Here we are concerned about inferring parameters of transmis-

sion, rather than the explicit haplotype reconstruction. Therefore, to check the robustness of

our inference, statistical replicate calculations were run, using different reconstructions of qB

in each case; median inferred parameters across replicates are presented above. To improve

the speed of the inference, haplotypes in qB with inferred frequencies of less than 10−10 were

removed from the calculation; subsequent to this, haplotypes were removed in increasing size

of inferred frequency until no more than 100 haplotypes remained in qB at non-zero frequen-

cies. Results from all statistical replicates are reported in the analysis of the real data.

We note that our inference of qB depends upon the initial identification of a plausible set of

underlying viral haplotypes using SAMFIRE. A broad set of haplotypes is required for the

comparison of different hypotheses about selection in the system. However, where the initial

set of haplotypes is very large, as might occur where very short reads describe a great number

of polymorphic loci, our approach becomes computationally challenging.

Model selection. Model selection was performed using the Bayesian Information Crite-

rion:

BIC ¼ � 2 logLþ K logn ð34Þ

where L is the maximum likelihood obtained for a model, K is the number of parameters in

the fitness model, and n is the number of data points. A range of potential fitness models were

explored, the optimal model being identified as that for which the addition of any single fitness

parameter failed to bring a significant improvement in BIC.

Adaptive BIC. Noting previous discussion of the complexity of using BIC in biological

modelling [86], we here adopted a machine-learning approach to the interpretation of BIC

statistics. Classically, a difference of 10 units of BIC has been held to represent strong evi-

dence in favour of the additional parameter [58]. Consistent with previous approaches this

heuristic was used in the inference of within-host selection; in this case the final model

parameters make only small refinements to the inferred fitness landscape [52]. In the infer-

ence of transmission, errors in model selection have more severe consequences for the

inferred bottleneck size and selection model. Using a fixed difference of 10 BIC units for

model selection resulted in an overestimation of the extent of selection with a high false posi-

tive rate (S14 Fig). As such, we generated and analysed simulated data to identify the optimal

interpretation of BIC differences. Given a real dataset for analysis, simulated data was gener-

ated describing systems with equivalent numbers of gene segments and polymorphic loci to

the real dataset, being observed with an equal number of reads spanning each set of loci, and

with reads containing an amount of information specified by the parameter C inferred for

the real dataset.

Next, inferences were conducted on data describing neutral transmission events with bot-

tlenecks in the range [5, 100]. As shown in Fig 3, the ability to infer a correct neutral bottle-

neck is impaired by noise for transmission events involving a large number of viruses; linear

regression was used to obtain a simple function describing the ratio between the median
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inferred and true bottleneck sizes under neutrality (S15A Fig); this parameterises our expec-

tation of the ‘correct’ inferred bottleneck size for any given real bottleneck, once noise is

accounted for.

Secondly, using this baseline to set our expectations, a parameterisation was carried out to

find a BIC penalty function that gave the largest accuracy in bottleneck inference. To this end,

three datasets were considered; a neutral dataset and two datasets with single selection coeffi-

cients of s = {1, 2} respectively. BIC penalty values in the range [10, 200] were examined, with

smaller BIC penalty values leading to inferences with a larger number of selection coefficients

and vice versa. For each BIC penalty value, the difference between the bottleneck inference

of the optimal model (under BIC) and the baseline expectation was summed for the three data-

sets to give a statistic describing the accuracy of the inferred bottlenecks, this statistic being

expressed as a function of the real transmission bottleneck NT and the BIC penalty (S15B Fig).

Finally, linear and decay exponential models were fitted to this data via regression, selecting

the BIC penalty model which minimised the error in the inferred bottlenecks from the simula-

tion data. We note that our penalty is a function of the inferred population bottleneck, higher

penalties being inferred for tight bottlenecks and lower penalties being inferred for looser

bottlenecks.

Thirdly, the inferred data were reinterpreted to derive a BIC penalty optimal for the infer-

ence of selection. We note that, even with a BIC penalty function optimised for bottleneck

inference, there may still remain cases where, through the stochastic process of transmission,

the genetic composition of the population changes in a manner consistent with the action of

selection, granting a false positive inference. A second BIC penalty was learned as above, this

time maximising the accuracy of the inference or non-inference of selection parameters,

defined as

# true positivesþ # true negatives
# true positivesþ # false positivesþ # true negativesþ # false negatives

ð35Þ

This conservative BIC penalty function typically led to an underestimate for the inferred

bottleneck; the two BIC penalty functions were used in concert to estimate NT and ST in sepa-

rate calculations. The BIC penalty functions are specific to individual datasets and, as a result,

recalculation of BIC penalty functions is required when considering new data. Inference of

BIC penalty functions is only necessary when attempting to jointly determine bottleneck and

selection; for inference of transmission bottlenecks only, our method is remarkably simple and

fast.

As noted elsewhere, where a genomic variant fixes between two observations, this change

in frequency can be explained by the fitting of an arbitrarily large selection coefficient; no

upper bound on selection can be established [87]. Within our framework, if this is not

accounted for, extremely strong selection may be falsely inferred to explain the loss of variants

during a transmission bottleneck. To guard against this, models of transmission in which the

inferred magnitude of selection was outside of the range (-10, 10) were excluded from consid-

eration. In the within-host analysis methods, haplotype fitness are not constrained; here, to

avoid errors of machine precision, the magnitudes of extreme fitness inferences were reduced

to be within the range (-10, 10). For the same reason, elements of the mean and covariance

matrix of qB were constrained to be greater in magnitude than 10−11. While selection coeffi-

cients outside of this range have been identified [88], these steps greatly reduce the number of

false inferences of strong selection.
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Online repository and instructions for use

Code and scripts related to this project can be found online at https://bitbucket.org/casperlu/

transmission_project/. Detailed descriptions of code options and user guides are available in

the repository README files. Scripts and instructions relevant for generating the figures in

this paper may be found online as well.

The overall workflow is as follows: Time series viral sequence data are prepared in SAM for-

mat. SAMFIRE is used for filtering and splitting of data unto relevant time points, e.g. those

surrounding transmission. Single- and multi-locus trajectories are computed using SAMFIRE.

A list of potential haplotypes (see [52] for details) are constructed. A noise parameter C and

potential within-host selection is inferred using SAMFIRE. The transmission code is used for

generating simulated data based on the experimental data. Transmission bottleneck and selec-

tion is inferred for the simulated data and BIC penalty curves are determined. A final inference

of bottleneck and transmissibility is carried out on the real data taking into account the BIC

penalty curves. This process will be greatly simplified in the case where only a neutral estimate

of the transmission bottleneck is required. Quick-start and step-by-step guides can be found in

the online transmission repository.

Supporting information

S1 Fig. Effect of the noise parameter C on a one-dimensional distribution. Allele frequency

distribution for a sample of read depth N = 1000 collected from a population with true allele

frequency one third, with a noise-free sampling method (C =1) and with C values of 10, 100,

and 1000.

(PDF)

S2 Fig. Effect of incorrect estimation of the noise parameter C. Bottleneck inference under a

neutral model applied to neutral data with simulation dispersion parameters of C = {50, 106}.

Inference was performed using a range of dispersion parameters, C = {50, 100, 200, 500, 1000,

106}. Each datapoint represents a median over 200 simulation seeds.

(PDF)

S3 Fig. Median inferred bottleneck size from data simulating neutral transmission and

transmission with a single locus under selection, from three replicate systems. Inferences

were made using either a neutral model, in which the effect of selection was assumed to be

zero, or a selection model, which allowed scenarios involving selection to be identified. Median

inferences are shown from 200 simulations, each involving three replicate transmission events,

for each datapoint.

(PDF)

S4 Fig. Inferred bottleneck sizes NT for a range of true bottleneck sizes, applying a neutral

inference model to simulated transmission data with selection. Results were generated by

applying a neutral inference model to selected simulated data. Results are shown for 200 simu-

lations at each bottleneck size.

(PDF)

S5 Fig. Inferred bottleneck sizes NT for a range of true bottleneck sizes, applying an infer-

ence model accounting for selection to simulated transmission data with selection. Results

were generated by applying an inference model accounting for selection to selected simulated

data. Results are shown for 200 simulations at each bottleneck size.

(PDF)
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S6 Fig. Inferred bottleneck sizes NT for a range of true bottleneck sizes, applying a neutral

inference model to simulated transmission data with selection. Data were collected from

three replicate transmission events. Results were generated by applying a neutral inference

model to selected simulated data. Results are shown for 200 simulations at each bottleneck

size, each simulation describing three replicate transmission events.

(PDF)

S7 Fig. Inferred bottleneck sizes NT for a range of true bottleneck sizes, applying an infer-

ence model accounting for selection to simulated transmission data with selection. Data

were collected from three replicate transmission events. Results were generated by applying

a neutral inference model to selected simulated data. Results are shown for 200 simulations at

each bottleneck size, each simulation describing three replicate transmission events.

(PDF)

S8 Fig. Probability distributions of inferred selection coefficients from 200 simulations

each of three transmission events. Distributions were constructed for bottleneck values

where the inference of selection resulted in a true positive rate for identifying selected variants

of above 5%. Smooth kernel distributions were computed as for Fig 7.

(PDF)

S9 Fig. Inferred within-host fitness landscape for segments in the HA190D220D viral pop-

ulations. Haplotypes for which the inferred frequency rose to a frequency of at least 1% in at

least one animal are shown. Haplotypes which are separated by a single mutation are joined by

lines.

(PDF)

S10 Fig. Inferred within-host fitness landscape for segments in the Mut viral populations.

Haplotypes for which the inferred frequency rose to a frequency of at least 1% in at least one

animal are shown. Haplotypes which are separated by a single mutation are joined by lines.

(PDF)

S11 Fig. Histograms of selection inferences for the Mut transmission pairs from 200 seeds

using an allele frequency cut-off of 2%. A replicate inference method was employed such that

a common fitness landscape was imposed. Selection inferences that resulted in at least 10%

non-zero inferences are here reported by the nucleotide position of the variant site.

(PDF)

S12 Fig. Histograms of bottleneck inferences for HA190D225D and Mut transmission

pairs from 200 random seeds using allele frequency cut-offs of 3% and 4%. A replicate

inference method was employed for the Mut transmission pairs such that a common fitness

landscape was imposed. The Mut transmission pairs may take different bottleneck values and

have been plotted as an overlapping histogram. Bottleneck inferences larger than NT = 35 have

been omitted for clarity.

(PDF)

S13 Fig. Median inferred bottleneck size from simulated neutral transmission data under

a modified inference method. Inferences were made using either the standard neutral model,

in which the covariance matrix qB is diagonal, or using a simplified model ignoring the vari-

ance in qB. Each datapoint represents a median over 200 simulation seeds.

(PDF)

S14 Fig. True and false positive rates of selection inference given a standard interpretation

of BIC. A fixed BIC difference of 10 units were employed in the model selection process,
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requiring a model with a single additional parameter to generate an improvement of at least 10

units to BIC to be accepted. While such a difference is accepted as showing strong evidence in

favour of the more complex model, in our case it generated a high rate of false positive infer-

ences of selection.

(PDF)

S15 Fig. Determining BIC penalty function for bottleneck inference under simulated data.

A) The ratio of the median inferred bottleneck to the true bottleneck is plotted against the true

bottleneck size. As shown in Fig 3, as the bottleneck increases, our ability to infer it correctly

decreases due to noise. In order to account for this phenomenon, a straight line is fitted to the

data aiming to capture the general trend. B) Heat map of the bottleneck-specific statistic plot-

ted against BIC penalty and bottleneck size. The plot was generated for three datasets with

selection coefficients s = {0, 1, 2} and a simple statistic based on bottleneck differences was

employed. More specifically, the median bottleneck was computed across 200 seeds and the

bottleneck-statistic was defined as the absolute value of the difference between the median

inferred bottleneck and the true bottleneck multiplied by the baseline determined in A). By

considering bottlenecks in the range [5, 100] and BIC penalty values in the range [10, 200], a

heat map was produced and linear and decay exponential regression were conducted seeking

to minimise the sum of the statistic across the values of NT that were considered.

(PDF)

S1 Text. Derivation of compound distributions for a multi-step within-host growth pro-

cess. We consider both the neutral case and that where selection applies within-host.

(PDF)

S2 Text. Mathematical notes on a useful identity.

(PDF)

S1 Table. Inferred fitness coefficients for the within-host evolution of the virus within each

experiment. Parameters were inferred across all index and contact ferrets within each experi-

ment and are reported to a single decimal place. Only polymorphisms at which within-host

selection was identified are listed. The parameter χ denotes an epistatic interaction between

variant alleles. We note that our method infers the approximate shape of a fitness landscape

based upon a reconstruction of whole viral segments; individual selection coefficients may be

subject to variance between similar fitness landscapes.

(PDF)

S1 Data. Values corresponding to figures. Numerical values corresponding to figures in the

main text are shown.

(XLSX)

Acknowledgments

We thank Louise Moncla, Thomas Friedrich, and Daniel Weissman for discussions.

Author Contributions

Conceptualization: Christopher J. R. Illingworth.

Formal analysis: Casper K. Lumby, Nuno R. Nene, Christopher J. R. Illingworth.

Funding acquisition: Christopher J. R. Illingworth.

Investigation: Casper K. Lumby.

Inferring parameters of transmission from viral sequence data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007718 October 16, 2018 32 / 37

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007718.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007718.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007718.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007718.s018
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007718.s019
https://doi.org/10.1371/journal.pgen.1007718


Methodology: Casper K. Lumby, Christopher J. R. Illingworth.

Project administration: Christopher J. R. Illingworth.

Software: Casper K. Lumby.

Supervision: Christopher J. R. Illingworth.

Validation: Casper K. Lumby.

Visualization: Casper K. Lumby, Christopher J. R. Illingworth.

Writing – original draft: Casper K. Lumby, Christopher J. R. Illingworth.

Writing – review & editing: Casper K. Lumby, Nuno R. Nene, Christopher J. R. Illingworth.

References
1. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, et al. Pan-

demic Potential of a Strain of Influenza A (H1N1): Early Findings. Science. 2009; 324(5934):1557–

1561. https://doi.org/10.1126/science.1176062 PMID: 19433588

2. Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory syndrome corona-

virus: estimation of pandemic risk. The Lancet. 2013; 382(9893):694–699. https://doi.org/10.1016/

S0140-6736(13)61492-0

3. Bergstrom CT, McElhany P, Real LA. Transmission bottlenecks as determinants of virulence in rapidly

evolving pathogens. Proceedings of the National Academy of Sciences of the United States of America.

1999; 96(9):5095–5100. https://doi.org/10.1073/pnas.96.9.5095 PMID: 10220424

4. Gutiérrez S, Michalakis Y, Blanc S. Virus population bottlenecks during within-host progression and

host-to-host transmission. Current Opinion in Virology. 2012; 2(5):546–555. https://doi.org/10.1016/j.

coviro.2012.08.001 PMID: 22921636

5. Varble A, Albrecht RA, Backes S, Crumiller M, Bouvier NM, Sachs D, et al. Influenza A Virus Transmis-

sion Bottlenecks Are Defined by Infection Route and Recipient Host. Cell Host and Microbe. 2014; 16

(5):691–700. https://doi.org/10.1016/j.chom.2014.09.020 PMID: 25456074

6. Frise R, Bradley K, van Doremalen N, Galiano M, Elderfield RA, Stilwell P, et al. Contact transmission

of influenza virus between ferrets imposes a looser bottleneck than respiratory droplet transmission

allowing propagation of antiviral resistance. Scientific Reports. 2016; 6(1):29793. https://doi.org/10.

1038/srep29793 PMID: 27430528

7. Sacristan S, Malpica JM, Fraile A, Garcia-Arenal F. Estimation of Population Bottlenecks during Sys-

temic Movement of Tobacco Mosaic Virus in Tobacco Plants. Journal of Virology. 2003; 77(18):9906–

9911. https://doi.org/10.1128/JVI.77.18.9906-9911.2003 PMID: 12941900

8. Krimbas CB, Tsakas S. The Genetics of Dacus Oleae. V. Changes of esterase polymorphism in a natu-

ral population following insecticide control—selection or drift? Evolution. 1971; 25(3):454–460. https://

doi.org/10.1111/j.1558-5646.1971.tb01904.x PMID: 28565021

9. Monsion B, Froissart R, Michalakis Y, Blanc S. Large bottleneck size in Cauliflower Mosaic Virus popu-

lations during host plant colonization. PLoS Pathogens. 2008; 4(10):e1000174. https://doi.org/10.1371/

journal.ppat.1000174 PMID: 18846207

10. Charlesworth B. Fundamental concepts in genetics: Effective population size and patterns of molecular

evolution and variation. Nature Reviews Genetics. 2009; 10(3):195–205.

11. Khiabanian H, Emmett KJ, Lee A, Rabadan R. High-resolution Genomic Surveillance of 2014 Ebola-

virus Using Shared Subclonal Variants. PLoS currents. 2015; 7:1–17.

12. Sobel Leonard A, Weissman DB, Greenbaum B, Ghedin E, Koelle K. Transmission Bottleneck Size

Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.

Journal of Virology. 2017; 91(14):e00171–17–19. https://doi.org/10.1128/JVI.00171-17 PMID:

28468874

13. McCrone JT, Woods RJ, Martin ET, Malosh RE, Monto AS, Lauring AS. Stochastic processes constrain

the within and between host evolution of influenza virus. eLife. 2018; 7:e35962. https://doi.org/10.7554/

eLife.35962 PMID: 29683424

14. Poon LLM, Song T, Rosenfeld R, Lin X, Rogers MB, Zhou B, et al. Quantifying influenza virus diversity

and transmission in humans. Nature Genetics. 2016; 48(2):195–200. https://doi.org/10.1038/ng.3479

PMID: 26727660

Inferring parameters of transmission from viral sequence data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007718 October 16, 2018 33 / 37

https://doi.org/10.1126/science.1176062
http://www.ncbi.nlm.nih.gov/pubmed/19433588
https://doi.org/10.1016/S0140-6736(13)61492-0
https://doi.org/10.1016/S0140-6736(13)61492-0
https://doi.org/10.1073/pnas.96.9.5095
http://www.ncbi.nlm.nih.gov/pubmed/10220424
https://doi.org/10.1016/j.coviro.2012.08.001
https://doi.org/10.1016/j.coviro.2012.08.001
http://www.ncbi.nlm.nih.gov/pubmed/22921636
https://doi.org/10.1016/j.chom.2014.09.020
http://www.ncbi.nlm.nih.gov/pubmed/25456074
https://doi.org/10.1038/srep29793
https://doi.org/10.1038/srep29793
http://www.ncbi.nlm.nih.gov/pubmed/27430528
https://doi.org/10.1128/JVI.77.18.9906-9911.2003
http://www.ncbi.nlm.nih.gov/pubmed/12941900
https://doi.org/10.1111/j.1558-5646.1971.tb01904.x
https://doi.org/10.1111/j.1558-5646.1971.tb01904.x
http://www.ncbi.nlm.nih.gov/pubmed/28565021
https://doi.org/10.1371/journal.ppat.1000174
https://doi.org/10.1371/journal.ppat.1000174
http://www.ncbi.nlm.nih.gov/pubmed/18846207
https://doi.org/10.1128/JVI.00171-17
http://www.ncbi.nlm.nih.gov/pubmed/28468874
https://doi.org/10.7554/eLife.35962
https://doi.org/10.7554/eLife.35962
http://www.ncbi.nlm.nih.gov/pubmed/29683424
https://doi.org/10.1038/ng.3479
http://www.ncbi.nlm.nih.gov/pubmed/26727660
https://doi.org/10.1371/journal.pgen.1007718


15. Xue KS, Bloom JD. Reconciling disparate estimates of viral genetic diversity during human influenza

infections. bioRxiv. 2018;

16. Kuiken T, Holmes EC, McCauley J, Rimmelzwaan GF, Williams CS, Grenfell BT. Host species barriers

to influenza virus infections. Science. 2006; 312(5772):394–397. https://doi.org/10.1126/science.

1122818 PMID: 16627737

17. Lipsitch M, Barclay W, Raman R, Russell CJ, Belser JA, Cobey S, et al. Viral factors in influenza pan-

demic risk assessment. eLife. 2016; 5:316ra192. https://doi.org/10.7554/eLife.18491

18. Herfst S, Schrauwen EJA, Linster M, Chutinimitkul S, de Wit E, Munster VJ, et al. Airborne Transmis-

sion of Influenza A/H5N1 Virus Between Ferrets. Science. 2012; 336(6088):1534–1541. https://doi.org/

10.1126/science.1213362 PMID: 22723413

19. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, et al. Experimental adaptation of an influ-

enza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets.

Nature. 2012; 486(7403):420–428. https://doi.org/10.1038/nature10831 PMID: 22722205

20. Sutton TC, Finch C, Shao H, Angel M, Chen H, Capua I, et al. Airborne transmission of highly patho-

genic H7N1 influenza virus in ferrets. Journal of Virology. 2014; 88(12):6623–6635. https://doi.org/10.

1128/JVI.02765-13 PMID: 24696487

21. Yang H, Chen Y, Qiao C, He X, Zhou H, Sun Y, et al. Prevalence, genetics, and transmissibility in ferrets

of Eurasian avian-like H1N1 swine influenza viruses. Proceedings of the National Academy of Sci-

ences. 2016; 113(2):392–397. https://doi.org/10.1073/pnas.1522643113

22. Palese P, Wang TT. H5N1 influenza viruses: facts, not fear. Proceedings of the National Academy of

Sciences. 2012; 109(7):2211–2213. https://doi.org/10.1073/pnas.1121297109

23. Buhnerkempe MG, Gostic K, Park M, Ahsan P, Belser JA, Lloyd-Smith JO. Mapping influenza transmis-

sion in the ferret model to transmission in humans. eLife. 2015; 4:e29971. https://doi.org/10.7554/eLife.

07969

24. Wilker PR, Dinis JM, Starrett G, Imai M, Hatta M, Nelson CW, et al. Selection on haemagglutinin

imposes a bottleneck during mammalian transmission of reassortant H5N1 influenza viruses. Nature

Communications. 2013; 4:1–11. https://doi.org/10.1038/ncomms3636

25. Moncla LH, Zhong G, Nelson CW, Dinis JM, Mutschler J, Hughes AL, et al. Selective Bottlenecks

Shape Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian Influenza

Virus. Cell Host and Microbe. 2016; 19(2):169–180. https://doi.org/10.1016/j.chom.2016.01.011 PMID:

26867176

26. Acevedo A, Brodsky L, Andino R. Mutational and fitness landscapes of an RNA virus revealed through

population sequencing. Nature. 2014; 505(7485):686–690. https://doi.org/10.1038/nature12861 PMID:

24284629

27. Visher E, Whitefield SE, McCrone JT, Fitzsimmons W, Lauring AS. The Mutational Robustness of Influ-

enza A Virus. PLoS Pathogens. 2016; 12(8):e1005856–25. https://doi.org/10.1371/journal.ppat.

1005856 PMID: 27571422

28. Rouzine IM, Rodrigo A, Coffin JM. Transition between stochastic evolution and deterministic evolution in

the presence of selection: general theory and application to virology. Microbiology and Molecular Biology

Reviews. 2001; 65(1):151–185. https://doi.org/10.1128/MMBR.65.1.151-185.2001 PMID: 11238990

29. Zwart MP, Daròs JA, Elena SF. One Is Enough: In Vivo Effective Population Size Is Dose-Dependent

for a Plant RNA Virus. PLoS Pathogens. 2011; 7(7):e1002122–12. https://doi.org/10.1371/journal.ppat.

1002122 PMID: 21750676

30. Abel S, Abel zur Wiesch P, Davis BM, Waldor MK. Analysis of Bottlenecks in Experimental Models of

Infection. PLoS Pathogens. 2015; 11(6):e1004823–7. https://doi.org/10.1371/journal.ppat.1004823

PMID: 26066486

31. O’Hara RB. Comparing the effects of genetic drift and fluctuating selection on genotype frequency

changes in the scarlet tiger moth. Proceedings of the Royal Society B: Biological Sciences. 2005; 272

(1559):211–217. https://doi.org/10.1098/rspb.2004.2929 PMID: 15695213

32. Bollback JP, York TL, Nielsen R. Estimation of 2Nes From Temporal Allele Frequency Data. Genetics.

2008; 179(1):497–502. https://doi.org/10.1534/genetics.107.085019 PMID: 18493066

33. Malaspinas AS, Malaspinas O, Evans SN, Slatkin M. Estimating allele age and selection coefficient

from time-serial data. Genetics. 2012; 192(2):599–607. https://doi.org/10.1534/genetics.112.140939

PMID: 22851647

34. Feder AF, Kryazhimskiy S, Plotkin JB. Identifying signatures of selection in genetic time series. Genet-

ics. 2014; 196(2):509–522. https://doi.org/10.1534/genetics.113.158220 PMID: 24318534

35. Foll M, Poh YP, Renzette N, Ferrer-Admetlla A, Bank C, Shim H, et al. Influenza Virus Drug Resistance:

A Time-Sampled Population Genetics Perspective. PLoS Genetics. 2014; 10(2):e1004185. https://doi.

org/10.1371/journal.pgen.1004185 PMID: 24586206

Inferring parameters of transmission from viral sequence data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007718 October 16, 2018 34 / 37

https://doi.org/10.1126/science.1122818
https://doi.org/10.1126/science.1122818
http://www.ncbi.nlm.nih.gov/pubmed/16627737
https://doi.org/10.7554/eLife.18491
https://doi.org/10.1126/science.1213362
https://doi.org/10.1126/science.1213362
http://www.ncbi.nlm.nih.gov/pubmed/22723413
https://doi.org/10.1038/nature10831
http://www.ncbi.nlm.nih.gov/pubmed/22722205
https://doi.org/10.1128/JVI.02765-13
https://doi.org/10.1128/JVI.02765-13
http://www.ncbi.nlm.nih.gov/pubmed/24696487
https://doi.org/10.1073/pnas.1522643113
https://doi.org/10.1073/pnas.1121297109
https://doi.org/10.7554/eLife.07969
https://doi.org/10.7554/eLife.07969
https://doi.org/10.1038/ncomms3636
https://doi.org/10.1016/j.chom.2016.01.011
http://www.ncbi.nlm.nih.gov/pubmed/26867176
https://doi.org/10.1038/nature12861
http://www.ncbi.nlm.nih.gov/pubmed/24284629
https://doi.org/10.1371/journal.ppat.1005856
https://doi.org/10.1371/journal.ppat.1005856
http://www.ncbi.nlm.nih.gov/pubmed/27571422
https://doi.org/10.1128/MMBR.65.1.151-185.2001
http://www.ncbi.nlm.nih.gov/pubmed/11238990
https://doi.org/10.1371/journal.ppat.1002122
https://doi.org/10.1371/journal.ppat.1002122
http://www.ncbi.nlm.nih.gov/pubmed/21750676
https://doi.org/10.1371/journal.ppat.1004823
http://www.ncbi.nlm.nih.gov/pubmed/26066486
https://doi.org/10.1098/rspb.2004.2929
http://www.ncbi.nlm.nih.gov/pubmed/15695213
https://doi.org/10.1534/genetics.107.085019
http://www.ncbi.nlm.nih.gov/pubmed/18493066
https://doi.org/10.1534/genetics.112.140939
http://www.ncbi.nlm.nih.gov/pubmed/22851647
https://doi.org/10.1534/genetics.113.158220
http://www.ncbi.nlm.nih.gov/pubmed/24318534
https://doi.org/10.1371/journal.pgen.1004185
https://doi.org/10.1371/journal.pgen.1004185
http://www.ncbi.nlm.nih.gov/pubmed/24586206
https://doi.org/10.1371/journal.pgen.1007718


36. Terhorst J, Schlötterer C, Song YS. Multi-locus Analysis of Genomic Time Series Data from Experimen-

tal Evolution. PLoS Genetics. 2015; 11(4):e1005069–29. https://doi.org/10.1371/journal.pgen.1005069

PMID: 25849855

37. Chare ER, Gould EA, Holmes EC. Phylogenetic analysis reveals a low rate of homologous recombina-

tion in negative-sense RNA viruses. The Journal of general virology. 2003; 84(Pt 10):2691–2703.

https://doi.org/10.1099/vir.0.19277-0 PMID: 13679603

38. Boni MF, Zhou Y, Taubenberger JK, Holmes EC. Homologous recombination is very rare or absent in

human influenza A virus. Journal of Virology. 2008; 82(10):4807–4811. https://doi.org/10.1128/JVI.

02683-07 PMID: 18353939

39. Neher RA, Shraiman BI. Competition between recombination and epistasis can cause a transition from

allele to genotype selection. Proceedings of the National Academy of Sciences. 2009; 106(16):6866–

6871. https://doi.org/10.1073/pnas.0812560106
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