
Submitted 27 April 2020
Accepted 8 September 2020
Published 4 November 2020

Corresponding authors
Sam Humphrey,
Sam.Humphrey@postgrad.manchester
.ac.uk
Crispin J. Miller,
crispin.miller@glasgow.ac.uk

Academic editor
Thomas Tullius

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.10063

Copyright
2020 Humphrey et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A model of k-mer surprisal to quantify
local sequence information content
surrounding splice regions
Sam Humphrey1,2, Alastair Kerr1,2, Magnus Rattray3, Caroline Dive1,2 and
Crispin J. Miller4,5

1CRUKManchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester,
United Kingdom

2CRUKManchester Institute, CRUK Lung Cancer Centre of Excellence, Manchester, United Kingdom
3Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
4Computational Biology Group, CRUK Beatson Institute, Glasgow, United Kingdom
5 Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom

ABSTRACT
Molecular sequences carry information. Analysis of sequence conservation between
homologous loci is a proven approach with which to explore the information content
of molecular sequences. This is often done using multiple sequence alignments to
support comparisons between homologous loci. These methods therefore rely on
sufficient underlying sequence similarity with which to construct a representative
alignment. Here we describe a method using a formal metric of information, surprisal,
to analyse biological sub-sequences without alignment constraints. We applied our
model to the genomes of five different species to reveal similar patterns across a
panel of eukaryotes. As the surprisal of a sub-sequence is inversely proportional to
its occurrence within the genome, the optimal size of the sub-sequences was selected
for each species under consideration. With the model optimized, we found a strong
correlation between surprisal and CG dinucleotide usage. The utility of our model
was tested by examining the sequences of genes known to undergo splicing. We
demonstrate that our model can identify biological features of interest such as known
donor and acceptor sites. Analysis across all annotated coding exon junctions in
Homo sapiens reveals the information content of coding exons to be greater than
the surrounding intron regions, a consequence of increased suppression of the CG
dinucleotide in intronic space. Sequences within coding regions proximal to exon
junctions exhibited novel patterns within DNA and coding mRNA that are not a
function of the encoded amino acid sequence. Our findings are consistent with the
presence of secondary information encoding features such as DNA and RNA binding
sites, multiplexed through the coding sequence and independent of the information
required to define the corresponding amino-acid sequence. We conclude that surprisal
provides a complementary methodology with which to locate regions of interest in the
genome, particularly in situations that lack an appropriatemultiple sequence alignment.
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RATIONALE
An accepted point mutation in a protein is a replacement of one amino acid by another,
accepted by natural selection (Dayhoff, Schwartz & Orcutt, 1978; Dayhoff, Barker & Hunt,
1983). Genomic regions conserved between species therefore constitute islands of
evolutionary stability within the more rapidly evolving nucleic acid sequence, and thus
represent loci where important features are encoded. These observations make it possible
to study evolutionary processes by generating multiple sequence alignments that seek to
characterise the genetic changes that occur over evolutionary timescales. Methods such
as the MEME and DREME suite of tools (Bailey & Elkan, 1995; Bailey, 2011), identify
significant encodings using statistically enriched motifs in sets of functionally related
molecular sequences. Here we have developed a complementary method to identify
important sequence encodings within molecular sequences. Our approach measures the
information provided by sub-sequences surrounding individual loci and we have shown
this method can identify important genomic features. This method is alignment free,
and hence can be applied broadly across all sequences, irrespective of overall sequence
similarity, and independent of the functional relationships that might be used to group
them. The approach can also evaluate different types of molecular sequences such as coding
sequences and amino acids. Further applications of this approach therefore include the
analysis of seemingly unconnected genomic loci such as those harbouring single nucleotide
variants (SNVs) or somatic mutations.

INTRODUCTION
Information theory
In 1948, Shannon linked the information content of a sequence of symbols, first described
byHartley, and entropy, a quantity used in thermodynamics (Shannon, 1948;Hartley, 1928;
Gibbs, 1902). Shannon’s discoveries initially focussed on transmission of messages over
noisy channels. These later became fundamental principles in information storage (MacKay,
2003). Shannon Entropy is a measure of the complexity of an ensemble X , of symbols x ,
where each symbol occurs with a probability p(x). The self-information associated with
each symbol is called surprisal (Tribus, 1961) and is defined by:

S(x)=−log2(p(x)) (1)

where S(x) is measured in bits. For the full ensemble of n symbols, the total information
of the ensemble is the sum over all surprisals I (X)=

∑n
i=1S(xi). The Shannon entropy is

defined as the average information per symbol or the expectation value of all surprisals:

H (X)= E(S(x))=−
n∑

i=1

p(xi)log2(p(xi)) (2)

where
∑n

i=1p(xi)= 1 andH (X) is also measured in bits. A few years after this formulation,
the structure of DNA and the first protein sequences were discovered (Sanger, 1952;Watson
& Crick, 1953). These discoveries and further advances in biology enabled the application
of information theory to biological sequences. The storage of biological information within
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ensembles of molecular sequences led to several investigations of the quantification of
biological information and its association with with biological functions (Gatlin, 1966).
The Central Dogma of molecular biology itself was first framed in terms of the ‘‘transfer
of sequential information’’ (Crick, 1970; Cobb, 2017), and information theory continues to
underpin our understanding of how the genome encodes genetic information (Pritišanac
et al., 2019).

A DNA sequence can be represented using an alphabet corresponding to the individual
nucleotidesA={A,C,G,T }. Since each amino acid is defined by a tri-nucleotide, or codon,
it is useful to consider nucleotide sequences using an alphabet of 64 symbols, one for every
possible tri-nucleotide. Of these, 61 codons encode amino acids, and the remaining three
correspond to stop codons. Similarly, protein sequences can be defined by an alphabet
of 20 symbols, one for each amino acid. This decline in the number of possible symbols
between coding DNA, RNA, and protein leads to a decline in the maximum amount of
information that can be encoded at each level. Information theory provides a theoretical
framework within which to quantify these differences (Yockey, 1974; Nemzer, 2017).

The reason why almost all organisms translate only 20 amino acids despite the ability
to encode 61 possible codons has not been fully determined (Koonin & Novozhilov,
2009). However, the redundancy in the genetic code allows for additional information
to be captured within a coding region beyond that required to define the amino acid
sequence itself (Yockey, 2000; Itzkovitz, Hodis & Segal, 2010). It has been suggested that
codon degeneracy and the structure of the codon table support functions in addition
to the encoding of amino acids (Dayhoff, Schwartz & Orcutt, 1978; Henikoff & Henikoff,
1992; Itzkovitz & Alon, 2007; Berleant et al., 2009; Maraia & Iben, 2014). These include the
description of splicing regulatory motifs (Lim & Burge, 2001; Zhang & Chasin, 2004;Wang
& Burge, 2008), DNA binding sites that co-exist within the coding sequence (Melnik
& Usatenko, 2014; Vinga, 2014; Shreif, Striegel & Periwal, 2015), and RNA secondary
structure (Itzkovitz, Hodis & Segal, 2010). This additional information can be viewed
as a separate signal containing non-coding information multiplexed through the protein
coding sequence.

While the genetic code naturally leads to a focus on triplet sequences, other
representations are possible, and different length sequences reveal different aspects
of the genome. For example, the information associated with individual nucleotides
can be used to identify the presence of motifs within an ensemble of short molecular
sequences (Schneider et al., 1986). It is important to consider that information content
shown in motif figures is usually represented as 2−H (X) as the aim is to identify
consistent nucleotides within the motif rather than diversity (Schneider & Stephens, 1990).
Dinucleotides can also be used to represent DNA sequences as they are important in the
specification of epigenetic modifications (CpG islands), binding sites, splice donors and
acceptors. Alphabets representing molecular sub-sequences of length k (k-mers) have
also been widely used in motif discovery (Castle et al., 2008; Bailey, 2011). Information
theoretic approaches have previously been used to investigate biological features such as
coding and non-coding regions, nucleosome positioning and DNA binding sites with a
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variety of methods and representations to quantify information (Koslicki, 2011; Vinga,
2014;Wu, Zhang & Mu, 2014).

Splicing
Splicing is an essential mechanism in human cells performed by the spliceosome, a large
ribonucleoprotein complex comprised of five small ribonucleoproteins at its core plus
many other protein cofactors (Matera & Wang, 2014). The process of splicing involves
precise removal of intron sequences from the transcribed RNA sequence. Each gene can
express multiple mRNAs with different patterns of intron removal, such that exons in one
mRNA may be part of an intron for another. Approximately 95% of genes are spliced in
humans through this exquisitely regulated process, which is responsible for much of the
diversity in the proteome (Lee & Rio, 2015; Sahebi et al., 2016). For a mechanistic review
see Shi (2017). Exon splicing is determined by the binding of three key molecules: U1,
splicing factor 1 (SF1) and the U2 auxiliary factor (U2AF) to the 5′ splice site, the branch
point and 3′ splice site within the intron, respectively. The decision to include an exon
within a transcript is generally made at the time of binding of these three molecules and
is mediated by the use of Splicing Regulatory Elements (SREs) (Sickmier et al., 2006;
Diederichs et al., 2016; Saha et al., 2020). Some of these SREs are embedded within exons
and can be viewed as loci where additional information is multiplexed along with the
information required for amino acid sequence determination. Analysis of recurrent k-mers
near splice junctions have already been shown to predict novel splice sites and sequences
involved in splicing (Lim & Burge, 2001; Zhang & Chasin, 2004; Fairbrother et al., 2004;
Schwartz, Hall & Ast, 2009; Raponi et al., 2011; Ke et al., 2011; Erkelenz et al., 2014).

Here we have created a method whereby different biological sequences can be
interrogated without requiring a direct multiple sequence alignment, or the need for
sufficient sequence conservation with which to build that alignment. Using splice sites as
a set of known biological features, we show that our model can quantify the information
content of sequences at these regions irrespective of species.

METHODS
Annotation
Genomic annotation for 5 different species Homo sapiens, Mus musculus, Drosophila
melanogaster, Danio rerio, Schizosaccharomyces pombe was downloaded from Ensembl v99
(ftp://ftp.ensembl.org/pub/) (Cunningham et al., 2019). Genomic DNA, coding mRNA,
and peptide files, were mapped against genomic annotation provided by the gene transfer
format (.gtf) file. Only protein coding transcripts with GENCODE basic annotation were
included in this analysis, which is defined as the set of 5′ and 3′ complete transcripts.
Exon-intron boundaries and exon-exon junctions were independently generated using the
gene transfer format annotation and sequences were aligned at splice sites.

Only k-mers with nucleotide symbols consisting fully of Ant = {A,C,G,T } or
Aaa= {A,C,D,E,F ,G,H ,I ,K ,L,M ,N ,P,Q,R,S,T ,V ,W ,Y } for amino acids were used
in this analysis. Since the majority of eukaryote genes have multiple transcripts per gene,
withmany exons shared between them, when evaluating coding sequences and amino acids,
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the k-mers from those shared exons would be duplicated if all transcripts were considered
individually. We therefore impose a multiple transcript correction such that the genomic
locations; chromosome, strand, start and end positions, for all k-mers must be unique.
The repeated k-mers used by different transcripts at the same genomic locus are discarded.
This method is also sensitive to k-mers spanning exon-exon junctions, since it maps the
positions to genomic locations. The coding mRNA distribution contains all k-mers from
within coding sequences only; introns, UTRs, and non-coding transcripts were excluded.
Amino acid k-mers were reduced in length by a factor of 3, ( kaa= knt

3 ), and their value
was allocated to all three nucleotides in their corresponding codon when comparing with
DNA and coding mRNA sequences.

Probability of k-mer occurrences
The k-mers starting at every position in the DNA (both strands), all coding mRNAs, and
all amino acid sequences were extracted, counted and recorded in frequency tables. These
frequency tables were then used to identify the probability of the k-mer, x , occurring in
the overall sequence

p(x)=
counts(x)∑
x counts(x)

(3)

where
∑

xcounts(x) is equivalent to the total number of k-mers in the sequence, which
corresponds to the sequence length minus k and any discarded sequences. Using this
measure of k-mer probability, the surprisal for each k-mer can be calculated by Eq. (1)
while the Shannon entropy for the total sequence can be found using Eq. (2).

Choice of k-mer length
This estimate of k-mer probabilities (Eq.(3)) works well for small k, however for larger
k this entropy calculation is limited due to the finite sample size of biological sequences
(Herzel, Ebeling & Schmitt, 1994; Herzel & Große, 1995). Since the total number of possible
k-mers in nucleotide space is 4knt and is 20kaa in amino acid space, the H. sapiens DNA
sequence is too small to contain every possible k-mer for knt ≥ 17 in DNA sequences and
kaa ≥ 6 for amino-acids. The k-mer distributions associated with these spaces are also
skewed, such that some k-mers do not occur even for much smaller k. Here we refer to
k-mers with zero occurrences as ‘nullomers’ (Hampikian & Andersen, 2007). The presence
of these nullomers at short k, combined with the skew in the distribution, lowers the
observed entropy H obs of the sequence. This information loss can be quantified in terms
of the sequence redundancy:

R= 1−
H obs

Hmax (4)

where the largest possible entropy of the system, Hmax
nt =−log2(4

−knt )= 2knt bits for
nucleotide sequences andHmax

aa =−log2(20
−kaa) bits for amino acid sequences. SinceHmax

is dependent only on k whilst H obs is limited by the length of the sequence, R increases
as the total number of possible k-mers becomes greater than sequence size. This effect is
also dependent on the uniformity of the k-mer distribution since H is maximised when all
k-mers are equally likely.
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Figure 1 Visualising the sample size effect. The effect of increasing k-mer resolution for DNA (A, D),
coding mRNA (B, E) and amino acid (C, F) sequences, where amino acids are considered at sizes k

3 . For
each value of k, 2 ≤ k ≤ 15, the redundancy (Eq. (4)) of the region was calculated (A, B, C) along with
the percentage of all possible k-mers observed at least once in the genome (D, E, F). D, E and F have been
truncated at the point where the total possible number of k-mers, 4knt or 20kaa exceeds the size of the re-
gion for that genome (

∑
xcounts(x) for all k-mers, x).

Full-size DOI: 10.7717/peerj.10063/fig-1

Figure 1 shows the redundancy and the proportion of unique k-mers observed for
2≤ k ≤ 15 for the 5 different species: H. sapiens, M. musculus, D. rerio, D. melanogaster
and S. pombe. As expected, all species show an increase in redundancy at larger k and a
corresponding decrease in the number of k-mers represented at least once in the sequence.
In DNA space (Figs. 1A and 1D), this effect becomes prominent at knt > 12. We therefore
conclude that 12-mers are an appropriate size to model DNA sequences for all species
except S. pombe, where they are too large relative to the size of the significantly smaller
genome. We have therefore removed S. pombe from further analysis. Following similar
reasoning, for comparisons between DNA, coding mRNA and amino acid sequences, we
selected knt = 9 and kaa = 3 to reflect the reduced amount of coding mRNA sequence
relative to the DNA.
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RESULTS
Surprisal patterns across splice sites
Metazoan exon-intron junctions have known conserved features within introns.
Downstream of the 3′ end of the vast majority of exons is the GT donor, and upstream of
the 5′ end of the exon is a corresponding AG acceptor site. A pyrimidine rich region occurs
approximately 4–20 nt upstream of the acceptor site and a conserved but location variable
branch point occurs approximately 15–55 nt upstream of the acceptor site (Corvelo et al.,
2010). These motifs make exon-intron junctions ideal candidates for testing our model.
Figure 2 shows the mean of DNA 12-mer surprisal across all protein coding exon-intron
junctions for each species. A consistent surprisal pattern is observed, with substantial
changes in the mean surprisal at the position of the polypyrimidine tract and splice site
motifs. This result is expected since the surprisal, and hence information, is inversely
proportional to k-mer occurrence, and therefore surprisal decreases in the presence of
common sequences motifs. Conversely, Fig. 2 also reveals that for all species, exons contain
significantly greater information than introns near splice boundaries. Although apparently
intuitive, it is surprising since exon sequences are constrained to contain only those
sequence patterns capable of representing a functional protein, while intron sequences
are under no such constraint. For example, k-mers featuring an in-frame stop codon
are not permissible within a coding sequence. A naïve view of coding space, therefore,
is one in which exon sequences are constructed from a subset of possible k-mers while
intron sequences can be constructed from the entire repertoire of k-mers. This predicts
that exons would be constructed from more common sequences, and that their surprisal
would therefore be lower than that of the corresponding intronic space. By contrast, these
data suggest a greater sequence constraint on intronic regions near splice junctions than
similar proximal exon regions. This in turn implies that there are additional constraints
for intronic sequences, such as those arising from the need to encode intronic SREs. It
is tempting to speculate that these patterns result from a selection pressure that excludes
certain valid coding sequences from intronic space. Importantly these patterns are robust
against different values of k, demonstrating the generality of the model (Fig. S1). Here we
show data for k= 12, since these have a lower coefficient of variation than those of smaller
k (Fig. S2).

Surprisal across exon junctions
Since the distinct patterns in Fig. 2 arise from differences between coding and non-coding
sequence spaces, we aimed to identify additional information encoded in the DNA and
coding sequences beyond that which is required simply to define the encoded protein
sequence. Protein coding exon-exon junctions were aligned at 9-mer resolution (amino
acid 3-mers), with k= 9 chosen to account for the smaller sample size of coding sequences
(Fig. 3). The mean surprisal for H. sapiens surrounding exon-exon junctions is 18.0 bits
in DNA and 17.4 bits for coding mRNA, which as expected, is slightly lower due to the
loss of in-frame stop codon sequences. Amino acid sequences show a significant reduction
of approximately 1/3 information when compared to DNA sequences (12.6 bits). This is
in keeping with previous work that considers the entropy of codons (Yockey, 1974). All
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Figure 2 DNA Surprisal across exon-intron junctions identifies known features and reveals increased
information within exons. For each of the 4 species, 12-mers were extracted at each position relative to
the exon-intron junction for all protein coding exons. The mean surprisal of the 12-mers is plotted across
the exon 5′ (A) and 3′ (B) splice site boundaries. Data were generated for all GENCODE basic, protein
coding transcripts, using exon annotation downloaded from Ensembl (Cunningham et al., 2019). In both
plots, the exon-intron junction occurs between positions−1 and 0, indicated by the grey line at position
−0.5. Exon junctions falling within 100 nt of the transcript start or end site were removed.

Full-size DOI: 10.7717/peerj.10063/fig-2

other species considered here are consistent with H. sapiens, and show similar patterns in
DNA surprisal across exon-exon junctions, with a constant difference dependent on the
species. All species show a sharp decrease in surprisal at position −10 and sharp increase
at position−1, 1nt upstream of the exon junction, consistent with Fig. 2. These 9-mers are
created by the juxtaposition of the last nucleotide of the 5′ exon with the first 8 nucleotides
of the 3′ exon. An interesting observation is that the most frequent dinucleotide across
the junction for both exon-exon and exon-intron boundaries is GG, suggesting that the
joining of the G in position −1 with the following 8-mer is driving this peak. For coding
mRNA most species show a tight and consistent pattern similar to that of DNA surprisal,
howeverD. melanogaster is a clear outlier, with a different pattern and a significantly higher
information content. This is likely to be in part a consequence of the increased proportion
of coding sequence in D. melanogaster (22.1% versus < 3% for the other species in Fig. 3).

The sharp decrease in surprisal is at position −9 for coding mRNA surprisal. When
computed at other values of k (Fig. S3), these minima shift with k, indicating that the
nucleotides driving this pattern are at the end of the k-mer, and suggesting that this
pattern arises from the lesser conserved exonic 3 ′ AG terminal motif. There is little
variation surrounding splice junctions for amino acid sequences which is expected since
the information content encoded at these positions is expected to be a feature of splicing
information, which is ahead of the translation process. This is consistent for other values
of k (Fig. S3) and similarly to Fig. S2, the coefficient of variation is reduced for larger k
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Figure 3 Surprisal across exon–exon junctions reveals non-coding information within coding se-
quences. For each of the 4 species, all 9-mers and amino acid 3-mers were extracted at each position rel-
ative to the exon-exon boundaries for all protein coding exons. The mean 9-mer DNA (A), 9-mer cod-
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the grey line at position−0.5, and the y axes are a constant size, however the range is shifted dependent
on the sequence type. In order to plot amino acid data on the same scale, the data for each exon junction
were transformed into nucleotide space by repeating each amino surprisal value three times in succession.
These data are in the positions by which they occur with respect to the exon junction in their respective
phases. Source sequence data is as in Fig. 2, except that junctions within 100 nt of the translation start or
end site were removed.

Full-size DOI: 10.7717/peerj.10063/fig-3

(Fig. S4). Together these data strongly suggest that codon redundancy allows additional
signals to exist within the DNA without significant impact on the amino acid sequence
encoded through the same space.

Effect of CG dinucleotides
The spectra of k-mers in the DNA sequences of several species were previously described
by Chor et al. (2009). Figure 4 shows the H. sapiens 12-mer DNA spectrum, which reveals
three peaks in k-mer abundance corresponding to 12-mers occurring 4, 27, and 298 times
in the genome. The spectrum can be viewed as three overlapping distributions, which are
largely explained by the number of CG dinucleotides that occur within each 12-mer. This
behaviour is not observed for any other dinucleotides (Fig. S5).

This CG dependency was also reported by Chor et al. (2009) for knt = 8, who suggested
that it is a property of tetrapod genomes as a consequence of a global repression of CG
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Full-size DOI: 10.7717/peerj.10063/fig-4

dinucleotides, as shown in Fig. 4C for H. sapiens. This effect is further exacerbated by
the concentration of CG dinucleotides at CpG islands, represented by a small number of
CG-rich, common k-mers. The repression of CG dinucleotides is an established feature of
genome evolution and results from the high mutation rate of CG dinucleotides caused by
the deamination of methylated cytosines (reviewed by Walsh & Xu (2006)). A secondary
consequence of the disproportionate rarity of CG dinucleotides is that k-mers that contain
them tend to have high surprisal (Fig. 4D).

The frequency of CG dinucleotides in proximity to exon-intron junctions was
investigated for H. sapiens DNA sequences (Fig. 5). Similar to Fig. 2, the ‘valley’ observed
in mean surprisal centred at −16 is due to the effect of the polypyrimidine tract, shown
explicitly in Fig. 5C. The CG dinucleotide frequency is 2-fold enriched within exons,
providing a partial explanation for the increased information content in exons compared
with introns. These results are in keeping with previous reports describing high CG
differential between exon and intron regions (Amit et al., 2012). However, even within
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exonic regions, the CG dinucleotide occurs at a much lower frequency than all other
dinucleotides. No other dinucleotides show such a disproportionate difference between
intron and exonic spaces (Fig. S6). However, CG dinucleotide usage is not sufficient to
explain all patterns, as shown by the lack of correspondence between CG dinucleotide
usage and surprisal across the polypyrimidine tract.

DISCUSSION
Here we describe a novel method for interrogating the genome using the self-information
content of molecular sequences. The likelihood of occurrence of a k-mer is inversely
correlated with surprisal, and hence information content. Genome-wide biological
features are represented by sequences with lower surprisal because they occur more
frequently and therefore tend to be encoded with common sequences. Conversely, loci
with specific functions are encoded with rarer, higher surprisal sequences which contain
more information. Our results also show that the CG dinucleotide is amajor factor in k-mer
surprisal. However, as shown in Fig. 5, while the CG dinucleotide is a major contributor
to overall surprisal patterns, it is not the only factor at play.
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The role of CG dinucleotides in CpG islands, DNA methylation (Deaton & Bird, 2011)
and the hyper-mutability of methylated cytosines (Misawa & Kikuno, 2009) are all well
understood, however the variation within the coding and non-coding regions around
splice boundaries is less well characterised. While the increase in CG dinucleotide usage
within coding regions, as observed in Fig. 5, may be due to the necessity to encode amino
acids, a remarkable feature of the codon table is that all amino acids, and all amino acid
sequences, can be represented without the use of the CG dinucleotide. Thus, all codons
containing a C in position 2 have complete redundancy in the 3rd base. Further, while a
CG in positions 1 and 2 (i.e., CGN) all encode arginine, arginine can also be encoded by
AGY (where N corresponds to any nucleotide, and Y to a pyrimidine). Finally, all amino
acids are redundant in the 3rd base between pyrimidines. It is therefore surprising that
exon sequences are enriched for CG dinucleotides relative to the surrounding introns,
particularly given the tendency for deamination driven C to T transitions. It is tempting
to speculate that CG dinucleotide retention within exons is in part driven by the need to
encode additional regulatory sequences within the same coding locus. This is in keeping
with Fig. 6 which shows no substantial correspondence between CG usage and coding
phase.

Our method has been applied genome-wide to regions involved in the established
biological process of splicing. It successfully quantifies information patterns of known
splicing motifs including splice sites and the polypyrimidine tract. The method can also be
used to compare information content between different types of molecular sequence, such
as coding mRNAs and amino acid sequences. Importantly, surprisal patterns observed at
exon-exon boundaries for nucleotide sequences are not driven by the associated amino acid
information (Fig. 3) suggesting that the position of exon boundaries can be accommodated
by codon redundancy. This observationmakes sense since translation occurs as a subsequent
biological step after splicing.
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The use of k-mers for sequence analysis is common and simple since implementations
are available that are amenable to large scale computation. Here we use k-mers as the basis
with which to compute surprisal patterns across loci. The method makes it possible to
compare loci irrespective of the sequence type or similarity, as shown with the analysis
of splice boundaries (Fig. 3). Having demonstrated the utility of our model, we will next
apply it to the impact of SNVs in genetic diseases.

CONCLUSIONS
The information content of biological sequences has been modelled for many decades,
but methods that rely on multiple sequence alignments are challenging when sequence
divergence is large. Here, we describe a model in which a measure of the self-information
content of molecular sub-sequences, k-mer surprisal, is used to quantify information
content associated with biological features. Using splice sites as an exemplar, our model
reveals clear patterns in surprisal around exon junctions that is observed consistently across
a panel of evolutionarily diverse eukaryotes. Many of these patterns can be attributed to
known biology, including binding motifs and patterns of dinucleotide usage. This surprisal
model is complementary to existing approaches, and can be used to investigate sequence
information content without the need for multiple sequence alignments.

CODE AVAILABILITY
The model was developed using MapReduce (http://mapreduce.sandia.gov) formulation
in C++ (Plimpton & Devine, 2011). Analysis and figure plotting was performed in R using
R-packages (R Core Team, 2019; Dowle & Srinivasan, 2019; Wickham, 2017; Kassambara,
2020; Neuwirth, 2014; Wagih, 2017; Bengtsson, 2020; Lawrence, Gentleman & Carey, 2009;
Wickham, 2011; Charif & Lobry, 2007; Wickham, 2019). All code used in this work can be
found at GitLab (https://gitlab.com/cruk-mi/genomic-kmer-surprisal-model).
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