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Photoluminescence materials have been widely applied in biological imaging

and sensing, anti-counterfeiting, light-emitting diodes, logic gates et al. The

fabrication of luminescent materials with adjustable emission color by self-

assembly of π-conjugated molecules has attracted particular attention. In this

study, we designed and synthesized a thiophene-based α-cyanostyrene-
derivative (TPPA), then investigate its self-assembly morphology and

fluorescence emission under different organic solvents, different proportions

of H2O/THF (DMSO) mixture and different pH conditions by UV, FL and SEM

images. It was found that TPPA formed nanoparticles by self-assembly in

organic solvent (THF or DMSO), accompanied by strong fluorescence

emission. However, with the increase of water ratio, the fluorescence

intensity decreased accompany with red shift, and the self-assembly

morphology changed from nanoparticles to fibers. More interestingly, when

pillar[5]arene (P5) was added to form host-guest complex with TPPA, white light

emission could be successfully constructed when the ratio of TPPA to P5 was 1:

20 and THF to water was 19:1.
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Introduction

In recent years, highly efficient photoluminescent materials with tunable multicolor

luminescence properties have been widely applied in biological imaging and sensing

(Yang et al., 2013; Guo et al., 2020a; Zhao et al., 2021; Wang et al., 2022a), anti-

counterfeiting (Yu et al., 2020; Yang et al., 2021), light-emitting diodes (Fung et al., 2016),

molecular switches and logic gates (Erbas-Cakmak et al., 2018). At present, the main

strategy for the construction of luminescent materials is physical mixing or covalently
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linking complementary chromophores to achieve appropriate

color mixing balance (Park et al., 2009; Peng et al., 2021). Among

all kinds of luminescent materials, white luminescent materials

are particularly valued because they are key components in

various display and lighting applications (Aizawa et al., 2014;

Sun et al., 2018). Compared with physical mixing and covalent

bonding, the luminescent materials based on self-assembly have

the advantages of modularization, simple synthesis and

adjustable properties, so they have a broad application

prospect (Wang et al., 2019; Li L. et al., 2020; Zhang Y. et al.,

2020; Cai et al., 2020; Liu M. et al., 2021). By applying a variety of

external stimuli, such as solvent polarity, light exposure,

mechanical/thermal stimulation and humidity, the emitted

colors can be effectively regulated, which also provides an

environmentally friendly method for organic modules to

prepare luminescent materials in aqueous media (Zhu et al.,

2013; Wei et al., 2016; Cheng et al., 2017; Fang et al., 2017). Since

the modulation of π-conjugated dyes in terms of their optical

properties depends largely on the way the molecules are

arranged, the effective manipulation of their emission can be

achieved by adjusting the morphology of the photoluminescent

proto-components, which is also critical in preparing valuable

materials (Ostroverkhova 2016; Kundu et al., 2021; Lu et al.,

2021). Thiophene-based α-cyanostilbene derivatives are a typical
class of π-conjugated molecules (Yun et al., 2012; Martínez-

Abadía et al., 2018). In addition to their interesting electrical

properties, these compounds also have significant optical

properties, so they are considered to be a very suitable and

general choice for the development of functional materials

(Bhaumik and Banerjee., 2020; Wang X.-H. et al., 2021; Li

et al., 2021).

Pillar[n]arenes (Ogoshi et al., 2008; Xiao et al., 2018; Duan

et al., 2020; Wang et al., 2020; Wang et al., 2022b) are the fifth

generation of macrocyclic hosts following crown ethers (An et al.,

2021), cyclodextrins (Zhou et al., 2021), calixarenes (An et al.,

2019; Guo et al., 2020b) and cucurbiturils (Yan et al., 2021). They

are oligo-cyclic compounds obtained by methylene bridged

p-methoxylbenzene (Zhang et al., 2019; Lou and Yang, 2021).

Various functional groups can be easily modified to pillar[n]

arenes by reacting with phenolic hydroxyl groups along the

upper and lower edges of the pillar[n]arene-frameworks

(Zhang R. et al., 2020; Guo et al., 2021; Schmidt and Esser,

2021). In addition, the adjustable cavity size of pillar[n]arenes

also endow them with rich host-guest properties (Wang M. et al.,

2021; Cai et al., 2021; Wang Y. et al., 2022), such as alkyl chain

guests trend to complex with pillar[5]arene, while pyridinium

guests trend to complex with pillar[6]arene (Guo et al., 2020c;

Shen et al., 2020; Liu D. et al., 2021). In recent years, pillar[n]

arenes have developed rapidly from synthesis (Ma et al., 2019),

host-guest interaction (Li B. et al., 2020; Huang et al., 2020) to

functional derivation (Wu et al., 2018), and have been

successfully applied to gas separation, ion detection, drug

release, tumor therapy, optical materials et al. (Cen et al.,

2020; Liu X. et al., 2021; Xiao et al., 2022). In particular, the

pillar[n]arene-based photoluminescent materials are of

particular interest because of their multiple stimulus

responsiveness and controllable optical properties (Sun et al.,

2021). For example, Yang and co-workers fabricated a non-

metallic white light-emitting fluorescent material based on

pillar[5]arene-tripoxamide system, and found that

supramolecular assembly plays a key role in the process of

white light-emitting (Yang et al., 2020).

In this study, we constructed a new white light emission

material based on the co-assembly of pillar[5]arene and

thiophene-based α-cyanostyrene-derivative (TPPA). TPPA was

observed to form nanoparticles when self-assembled in organic

solvent (THF or DMSO), accompanied with bright fluorescence

SCHEME 1
Chemical Structures of thiophene-based α-cyanostyrene-
derivative (TPPA), and pillar[5]arene (P5) and Cartoon
Representation of TPPA self-assembly in various solvents and
further construction of pillar`[5]arene-based host-guest
white-light emission system.

SCHEME 2
Synthetic route to (2Z,2′Z)-3,3′-(thiophene-2,5-diylbis (4,1-
phenylene))-bis(2-(pyridin-4-yl)acrylonitrile) (TPPA).
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emission. However, with the increase of water ratio, the

fluorescence intensity decreased sharply accompany with red

shift, and the morphology of the assemblies changed from

nanoparticles to nanofibers (Scheme 1). Importantly, when

pillar[5]arene (P5) was added to form host-guest complex

with TPPA, white light emission could be successfully

constructed in THF/H2O mixture (Scheme 1).

Experiment section

Synthesis of thiophene-based α-
cyanostyrene-derivative (TPPA)

TBA (0.34 mmol), 4-pyridylacetonitrile (0.68 mmol) and

piperidine (1.36 mmol) were dissolved in CH3CH2OH and

stirred inside a Schlenk tube. The reaction mixture was heated

to 85°C overnight under continuous stirring. Then, the obtained

orange precipitate was washed several times with ethanol and

hexane through centrifugation. An orange-colored solid was

obtained with a 48% yield (Scheme 2).

TPPA: orange-colored solid, yield 48%. 1H NMR

(Supplementary Figure S1) (400 MHz, Chloroform-d) δ
8.73–8.70 (m, 4H), 8.01 (d, J = 8.2 Hz, 4H), 7.78 (d, J =

8.1 Hz, 4H), 7.73 (s, 2H), 7.60 (d, 4H), 7.49 (s, 2H). 13C NMR

(Supplementary Figure S2) (101 MHz, CDCl3) δ 150.54, 144.19,

143.66, 141.95, 136.97, 130.66, 126.00, 119.98, 117.06, 108.65. MS

(ESI) (Supplementary Figure S3) Calcd. for C32H20N4SNa ([M +

Na]+): 515.1, found: 515.1.

Synthesis of pillar[5]arene (P5)

Pillar[5]arene was prepared according previous report, in a

typical process (Scheme 3), 1,4-diethoxybenzene (1.66 g,

1.0 mmol) and paraformaldehyde (0.30 g) were added to 60 ml

ClCH2CH2Cl under vigorous stirring at room temperature. 1 ml

BF3(Et2O) was added to the mixture and then reacted for 1 h.

50 ml H2O was added to stop the reaction, and pillar[5]arene was

obtained by column chromatography (volume ratio:

dichloromethane: petroleum ether = 1 : 1). White solid, 80%;

1HNMR (Supplementary Figure S4) (400 MHz, CDCl3) δ 6.72 (s,
10H, ArH), 3.83 (20H, OCH2-), 3.76 (s, 10H, ph-CH2-ph), 1.26

(t, J = 6.00 Hz, 30H, CH3).

Materials and methods

The TBA was prepared according to previous report. 4-

pyridylacetonitrile, 1,4-diethoxybenzene and the reagents

(ethanol, piperidine, ClCH2CH2Cl and so on) were

commercially available (99%) and used as received. Further

purification and drying of the solvents by standard methods

were employed and distilled prior to use when necessary.
1H NMR and 13C NMR spectra were recorded on a Bruker

AVIII-400 MHz spectrometer. All NMR used tetramethylsilane

(TMS) as the internal standard. Bruker Micro-TOF spectrometer

was used to investigate the High-resolution Mass (ESI) of the

compounds. Fluorescence spectra were recorded on a Hitachi F-

7000FluorescenceSpectrophotometer. Confocal images were

acquired using an Olympus FLUOVIEWFV1000confocallaser

scanning unit mounted on an IX81 fixed stage upright

microscope. Scanning electron microscopy (SEM)

investigations were carried out on a JEOL6390LVinstrument.

Results and disscussion

Impact of solvents

The obtained TPPA can be dissolved inmost organic solvents

and the corresponding solutions are stable as no precipitations

were observed overnight. As shown in Supplementary Figure

S5A, all the solution of TPPA displayed the characteristic band at

about 420 nm with the similar intensity. Fluorescence emission

spectra of TPPA showed a characteristic band at about 530 nm

(Supplementary Figure S5B), and the intensity in large polarity

solvent (CH3CN) is much lower than in smaller polarity solvent

(Toluene). We further investigated the optical properties of

TPPA in water/THF binary mixture, and the water content in

the system gradually increased from 0% to 90%. A blue-shift was

observed in UV-vis spectra with the increase of water content,

and a dramatical change was found when the water content

reached 80% (Figure 1A). On the other hand, a red-shift was

found in fluorescence spectrum with the increase of water

content. What’s more, the intensity of the peak decreased, and

the fluorescence quantum yield decreased from 9.5% to 2.5%

when the water increased from 0% to 90%, which indicated the

formation of aggregates (Supplementary Table S1).

The morphology of the TPPA in THF/H2O mixture was

observed through SEM. SEM images clearly show that with the

water fraction increased from 0% to 70% and finally to 90%, the

morphology of the assemblies gradually changes from

nanoparticles to oblong-shaped nanoparticles and finally to

SCHEME 3
Synthetic route to pillar[5]arene (P5).
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FIGURE 1
(A) absorption and (B) emission spectra of TPPA (0.4 mM, 4 ml) in 10 ml THF/water mixture with varying the water fraction from 0 to 90% with
10% of interval. (C) 0%, (D) 70%, and (E) 90%water content illustrating aggregation of spherical nanoparticles (0%W), semi-spherical oblong-shaped
nanoparticles (70% W) to 1D-nanofibers (90% W).

FIGURE 2
(A) absorption and (B) emission spectra of TPPA (0.4 mM, 4 ml) in 10 ml THF/water mixture (THF/H2O = 2:8) with different pH. SEM images of
TPPA self-assembly in THF/water mixture (THF/H2O = 2:8) with different pH (C) pH = 1, (D) pH = 2, (E) pH = 3, (F) pH = 5, (G) pH = 6, (H) pH = 7.
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nanofibers. This indicates that water fraction plays a decisive role

in the transformation of aggregate morphology. We further

studied the fluorescence changes of TPPA in DMSO/H2O

mixture to reveal the nature of fluorescence. Both UV and

fluorescence spectra showed abrupt spectral when the water

fraction reaches 40% (Supplementary Figure S6). At the same

time, the aggregation curve of TPPA in DMSO/H2O also

confirmed that TPPA aggregated when the water content is

between 30% and 40%, which is significantly lower than the

water content when TPPA aggregated in H2O/THF mixture,

because the polarity of DMSO is greater than THF, indicating

that the polarity of solvent plays a key role in the assembly

behavior of TPPA.

Role of pH

The molecular structure, along with the polarity of the

medium, plays a significant role in the formation of anisotropic

nano-assembly. Because the pyridineN in TPPA can combine with

H ion to change the polarity of the molecule, further affecting the

optical properties and assembly behavior of the molecule in

solution. The UV-vis spectra showed that the characteristic

absorption peak have a significant red shift as pH decreased

from 7 to 1, and the positions of the absorption peaks change

dramatically when pH is between 3 and 4 (Figure 2A).

Fluorescence spectra showed that the peak at 520 nm gradually

decreased with the decrease of pH, but the peak at 600 nm

gradually increased, indicating the formation of a new assembly

morphology (Figure 2B). Furthermore, SEM images revealed a

gradual disaggregation of the pristine nanofibers to nanoparticles

with pH due to the protonation of the pyridinic nitrogen center

upon the addition of acid (Figures 2C–H).

Living cell imaging

Due to TPPA can self-assembly into fluorescent

nanostructures, we wondered whether they could be applied in

the field of biomedical detection. At first, the toxicity of TPPA to

Hela cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay. After co-culture of

Hela cells with TPPA at concentrations ranging from 5.0 to 80 μg/

ML for 4 h, the viability of HeLa cells was basically unchanged,

indicating that the TPPA-based nanostructure has good cellular

compatibility and very low cytotoxicity. Subsequently, we used

TPPA as a cell imaging reagent. After HeLa and HepG2 cells were

treated with TPPA for 4 h, the distribution of TPPA in Hela and

HepG2 cells was monitored by confocal laser scanningmicroscopy

(CLSM). As shown in Figure 3, both TPPA-treated HeLa and

HepG2 cells showed bright red fluorescence in the lysosomal of the

cells, indicating that TPPA can be successfully used for live cell

imaging.

White-light emission

Over the past decade, white light emitting materials have

attracted much attention due to their potential applications in

display technology and fluorescence sensors. In this work, a

simple and efficient way for constructing white light-emitting

material through the assembly between methoxyl pillar[5]arene

(P5) and TPPA. From 2D NMR (Supplementary Figure S9) and

IR (Supplementary Figure S10) spectra, we found P5 could

provide C−H···π acting force and rich electronic cavity while

the pyridine groups of the TPPA serve as electron-deficient sites.

First, we fixed the amount of TPPA (0.1 μmol) in H2O/THF

mixture and gradually increased P5. We find that with the

increase of P5, the peak at 500 nm decreases and the peak at

650 nm increases, while when P5/TPPA is greater than 20, the

peak at 650 nm decreases and the peak at 600 nm increases,

indicating that the system may present white emission when P5/

TPPA is around 20 (Supplementary Figure S8). We then fixed

P5/TPPA at 20:1 and changed the ratio of THF to water in the

mixture. As shown in Figure 4A, the peak intensity decreased

with the increase of water content from 30% to 80%, while the

peak intensity increased when the water content larger than 90%.

As shown in Figure 4B, the system 0.1 μmol TPPA and 2.0 μmol

P5 in THF/H2Omixture (5% THF and 95% water) was perceived

as white light emitting with color coordinates of (0.329, 0.337),

and the fluorescence quantum yield was 2.05 ± 0.06. The

FIGURE 3
Confocal images of live HeLa and HepG2 cells after
incubation with TPPA (5.00 × 10−4 M) for 4 h. Scale bar is 50 μm.
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coordinate is very close to the pure white point (0.333, 0.333). In

this case, the luminescence covers the entire visible spectral

region (400–700 nm), giving our system overall white light

emission (Figure 4B). It should be pointed that the

morphology of TPPA was transformed from nanofibers to

microparticles after addition of P5 (Supplementary Figure

S11), and these particles can also be used for living cell

imaging (Supplementary Figure S12).

Conclusion

In this paper, a new π-conjugated molecule thiophene-based

α-cyanostyrene-derivative (TPPA) was designed and synthesized
successfully. TPPA showed bright fluorescence when dissolving

in different organic solvents, and the fluorescence intensity

increased with the decrease of the solvent polarity. Further

investigation of TPPA in THF(DMSO)/H2O mixture found

that TPPA formed nanoparticles by self-assembly in organic

solvent (THF or DMSO), accompanied by strong fluorescence

emission. However, with the increase of water ratio, the

fluorescence intensity decreased accompany with red shift,

and the self-assembly morphology changed from nanoparticles

to fibers. Importantly, when macrocyclic host pillar[5]arene (P5)

was added to form host-guest complex with TPPA, white light

emission could be successfully constructed. This work provided a

useful strategy for construction of photoluminescent materials

based on supramolecular self-assembly.
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