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Abstract

Background

With the greatest burden of infant undernutrition and morbidity in low and middle income

countries (LMICs), there is a need for suitable approaches to monitor infants in a simple,

low-cost and effective manner. Anthropometry continues to play a major role in characteris-

ing growth and nutritional status.

Methods

We developed a range of models to aid in identifying neonates at risk of malnutrition. We

first adopted a logistic regression approach to screen for a composite neonatal morbidity,

low and high body fat (BF%) infants. We then developed linear regression models for the

estimation of neonatal fat mass as an assessment of body composition and nutritional

status.

Results

We fitted logistic regression models combining up to four anthropometric variables to predict

composite morbidity and low and high BF% neonates. The greatest area under receiver-

operator characteristic curves (AUC with 95% confidence intervals (CI)) for identifying

composite morbidity was 0.740 (0.63, 0.85), resulting from the combination of birthweight,

length, chest and mid-thigh circumferences. The AUCs (95% CI) for identifying low and high

BF% were 0.827 (0.78, 0.88) and 0.834 (0.79, 0.88), respectively.

For identifying composite morbidity, BF% as measured via air displacement plethysmog-

raphy showed strong predictive ability (AUC 0.786 (0.70, 0.88)), while birthweight percen-

tiles had a lower AUC (0.695 (0.57, 0.82)). Birthweight percentiles could also identify low

and high BF% neonates with AUCs of 0.792 (0.74, 0.85) and 0.834 (0.79, 0.88). We applied
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a sex-specific approach to anthropometric estimation of neonatal fat mass, demonstrating

the influence of the testing sample size on the final model performance.

Conclusions

These models display potential for further development and evaluation in LMICs to detect

infants in need of further nutritional management, especially where traditional methods of

risk management such as birthweight for gestational age percentiles may be variable or

non-existent, or unable to detect appropriately grown, low fat newborns.

Introduction

Neonatal body composition assessment plays an important role in characterising the nutri-

tional and dietary status of newborn infants. Those with limited body fat face risks of increased

mortality and morbidity, with undernutrition linked to inhibited long-term growth and cogni-

tive development [1, 2]. A 2010 report from the World Health Organization (WHO) attributed

undernutrition as a contributing factor in one third of child deaths under five years of age [3].

The majority of these deaths occur within the first few days of life and in low and middle

income countries (LMICs) [4].

Current validated methods for measuring body composition such as air displacement

plethysmography (ADP), dual x-ray absorptiometry and hydrometric methods are often

impractical in LMICs, given stipulations of portability, cost and operational expertise. Anthro-

pometric measures such as mid-upper arm circumferences (MUAC), birthweight for gesta-

tional age percentiles (henceforth birthweight percentiles) and weight-for-length Z scores are

commonly used in place of these more complex techniques to gauge undernutrition [5].

Simple cut-offs have been defined for MUAC to screen for moderate and severe acute mal-

nutrition and although they have been evaluated in older infants (aged 6–60 months) with

respect to risk of mortality [6], there is a lack of similar data on its reliability and association

with these risks in younger infants (under 6 months). MUAC and abdominal circumference

also reflect adiposity [7]. Head circumference reflects brain volume and thus intrauterine

brain development [8, 9] while chest circumference has been shown to be a significant predic-

tor of low birthweight [10, 11], commonly used to identify infants at risk from undernutrition.

Though these circumferences have not been extensively evaluated in relation to malnutrition

risk, their simplicity and scalability may render them suitable candidates for screening use in

LMICs. In the newborn period, birthweight percentiles and less often, weight-for-length Z

scores are traditionally used to identify malnutrition, though as with all anthropometry, they

may be susceptible to measurement inaccuracies. Birthweight percentiles are limited by

unknown or inaccurate gestational age in LMIC settings and cannot detect the appropriately

grown (10-90th percentile) low fat newborn at risk of significant morbidity [12].

ADP has often been used as the reference method in infants, and has been previously vali-

dated for this population [13–15]. Carberry et al. have reported that body fat % (BF%) as mea-

sured by ADP offers a better composite measure of poor neonatal outcome than conventional

birthweight measurements [12].

Anthropometric equations for the estimation of neonatal body fat have been developed

against a range of reference methods. These include total body water as measured via total

body electrical conductivity [16, 17], ADP [18, 19] and dual x-ray absorptiometry [20]. A

recent validation of four anthropometric equations using skinfold thickness measurements
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demonstrated poor explanation of variance (R-squared ranging from 0.55–0.63) between the

developed equations and against ADP [21]. High inter-individual variability in the first few

days of life may have contributed to the poor agreement observed and there is thus a need for

caution in interpretation of the results from predictive equations.

Most models for the estimation of neonatal body fat account for sex of the infants using a

single variable in the linear regression model (often 1 = male, 0 = female) [16–19]. This may

not allow sufficient adjustments for sex-specific anthropometry [22] and may be biased by the

predominance of either sex in the dataset used for model development.

The aim of this work was to develop anthropometric models for various applications within

the first few days post-delivery. We sought to develop logistic regression models for identifying

infants at risk of malnutrition, first using a composite measure of neonatal morbidity previ-

ously developed [12], while the second and third were to screen for low and high BF% neo-

nates measured via the reference method, ADP. We also developed a linear regression model

using a sex-specific approach to directly estimate neonatal fat mass (FM) using anthropometric

features and thus characterise nutritional status.

Materials and methods

Data collection

Eligible neonates were term (>37 weeks), singletons born at Royal Prince Alfred Hospital,

Sydney during September and October 2010. Those with major congenital abnormalities were

excluded from the study. Further details of recruitment and study data collection have been

previously reported [12]. Briefly, there were 782 eligible neonates born during the study

period, 581 of whom were enrolled in the study (75% recruitment rate). Of these, 524 neonates

had valid and complete measurements and were included for model development.

Body composition data including BF% and FM was collected via ADP (PEA POD;

COSMED, Concord, USA) and anthropometric measurements were collected within

48 hours of birth. ADP applies basic gas laws to determine the body volume from that of

the air displaced by the infant in an enclosed chamber, maintained at a constant tempera-

ture. Together with the weight measurement from the PEA POD scales, the density of

the subject can be determined and, assuming a two-compartment model and constant

density for each fat and fat-free mass, the weights of each component can be determined.

BF% measurements from ADP was used as the gold standard for subsequent model

development.

Anthropometric measurements (length and head, mid-upper arm, mid-thigh, abdominal

and chest circumferences) were standardised using skills-based educational methods and com-

petency confirmation [23]. Length was measured to approximately 0.1 cm heel to crown using

an Easy-Glide Bearing Infantometer (Perspective Enterprises, Portage, MI). Weight on day of

measurement (henceforth, weight) was measured to the nearest gram using the integrated

PEA POD scales. To simulate the accuracy of standard scales in LMICs, weight was subse-

quently rounded to the nearest 5 grams during pre-processing. Circumferences were measured

using a paper tape measure. Anthropometry and length were taken by a single researcher

except for a subset of approximately 40 infants where duplicate measurements were taken

[24].

Ethics. The study was approved by the Human Research Ethics Committees of Royal

Prince Alfred Hospital and the University of Sydney (HREC/09/RPAH645, SSA/09/RPAH646,

and University of Sydney Ref. No. 12732). Informed parental written consent was obtained,

and participation was voluntary.
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Model development and statistical analyses

Data processing and feature selection was completed in Python (Python Software Foundation,

version 2.7.11 https://www.python.org/), with further statistical analysis undertaken in R 3.3.1

[25].

Neonatal morbidity screening. Composite neonatal morbidity was defined on the basis

of hypothermia, poor feeding and extended length of stay, as previously described [12]. This

composite measure associated with undernutrition was developed using univariate logistic

regression to identify the combination of variables that could identify small-for-gestational

age neonates based on birthweight percentiles [12]. We completed an exhaustive search of

all possible combinations of linear, inverse and square transformations of anthropometric

features. Note that for all measures, gestational age was excluded from the feature set for

model development as this may be unknown or unreliable in LMICs. We also examined the

greatest AUC achieved by a model excluding length as a feature and compared model perfor-

mance using the Delong method [26], should length boards and appropriate training not be

available.

Logistic regression models were constructed using a maximum of four original features,

balancing computational efficiency and model performance. Receiver-operator characteristic

(ROC) curves were generated for each feature combination, providing an indication of sensi-

tivity and specificity in identifying the class denoting composite morbidity. The final models

were selected based on those which maximised the area under the ROC curves (AUC), a mea-

sure of predictive ability.

Screening of low and high BF% neonates. A similar approach was adopted for screen-

ing of low and high BF% neonates, which were defined respectively as 1 SD below and above

the mean, stratified by sex. These cut-offs were consistent with previous work finding the

low BF% infants exhibited greater risk of composite neonatal morbidity [12]. Logistic regres-

sion models were developed independently using an exhaustive search for combinations

of transformed features that yielded the greatest AUC for identifying low and high BF%

neonates.

Estimation of neonatal fat. For the estimation of neonatal fat mass (FM) using a linear

regression model, relevant features and commonly-used combinations of anthropometric

measures were included in the complete set of features. We sought to characterise the

underlying drivers behind weight-for-length ratio (W/L) and its higher powers, W/L2 (body

mass index) and W/L3 (ponderal index) [27]. Inclusion of all three ratios would introduce

multiple collinearity effects and thus, factor analysis was applied to determine the ratio for

inclusion in the complete feature set. Weight rather than birthweight was used in these ratios

given the weight loss observed in the first few postnatal days [28] and the varying ages at

measurement.

To mitigate the influence of varying ranges, all continuous variables were standardised

(mean = 0, SD = 1). Feature selection was then undertaken using recursive feature elimination,

ranking features by their linear model coefficients, repeatedly removing them from the model

and determining the optimal set of features. This was determined through minimisation of the

root mean squared error score (RMSE) based on 10-fold cross-validation of the dataset. Once

the set of features was determined, model fitting was completed on the sex-specific subgroups

with the non-standardised features.

The performance of the sex-specific models was compared against combined sex models fit-

ted to the determined feature set combined with a binary variable denoting sex (male = 1,

female = 0). For the combined sex model, we also included sex-anthropometry interaction

terms and examined the effect on the final model.
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Model evaluation

Logistic regression models. We compared the developed logistic regression models

against common anthropometric indices using the Delong method for comparison of corre-

lated ROC curves [26]. Logistic regression models were further evaluated using leave-one-out

cross-validation, with models rejected if the AUC from this was less than or equal to 0.5. This

involved using all samples except one in fitting the logistic regression model and subsequently

evaluating the predicted probability of the omitted sample. The process was repeated for all

samples and the probabilities used to construct a ROC curve for evaluation of the leave-one-

out cross validation AUC.

Linear regression models for neonatal fat mass estimation. To investigate the motiva-

tion for sex-specific model fitting, we compared anthropometric and other characteristic dif-

ferences between male and female neonates. We applied a student’s t-test for continuous

variables such as birthweight, length and head circumference and a chi-squared test for cate-

gorical variables. We then compared the performance of sex-specific models for a range of test

sample sizes by first dividing the dataset into sex-stratified halves, a training and a testing set.

The male and female portions of training set were used to fit sex-specific linear estimation

models while an equal-sized subset containing an even distribution of sexes was used to fit the

combined sex model. We continually and randomly restricted the testing set, determining

RMSE of fat-free mass, FM and BF% estimations for each sample size over 100 iterations. The

overall process was repeated for 10 divisions of training and testing sets and the mean RMSE

calculated for a given sample size.

Results

The characteristics of the population are summarised in Table 1, with continuous variables

expressed as mean and standard deviation (SD) and categorical variables as percentages (%).

Logistic regression models

We developed logistic regression models to screen for a composite measure of neonatal mor-

bidity as well as low and high BF% neonates.

Neonatal morbidity screening. From the exhaustive search of all possible 4-feature mod-

els to screen for neonatal morbidity, the following features were frequently included in high

scoring models: weight or birthweight, chest or abdominal circumference, mid-thigh circum-

ference and length. The greatest AUC achieved was 0.740 (0.63, 0.85) by the combination of

birthweight, length, chest and mid-thigh circumferences (Fig 1). The composite feature is

defined in Eq 1, where circumference is denoted by circ.

CFmorbidity ¼
birthweight � chestcirc

length� thighcirc
ð1Þ

The greatest AUC for a model without length as a feature was 0.736 (0.62, 0.85) and com-

bined the product of birthweight and abdominal circumferences, divided by that of head and

mid-thigh circumferences. The AUC score difference between the reported model (Eq 1) and

this length-free model was minimal and not significant.

We compared the ROC curves of the developed models with those of commonly used met-

rics. Table 2 reports the AUC, standard error and p-values from the Delong method for com-

paring correlated ROC curves [26]. The developed model (AUC 0.740 (0.63, 0.85)) displayed a

high degree of overlap with the BF% ROC curve (AUC 0.786 (0.70, 0.88)) which exhibited the
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next highest AUC. MUAC had a significantly poorer AUC of 0.655 (0.51, 0.80) (p = 0.046)

than that of BF%.

Screening of low and high BF% neonates. The logistic regression models for low and

high BF% exhibited AUCs of 0.827 (0.78, 0.88) and 0.834 (0.79, 0.88) respectively (Fig 1).

The features used to construct the corresponding composite features are summarised in Eqs 2

and 3.

CFlow� fat ¼
weight 2

length� chestcirc
ð2Þ

CFhigh� fat ¼
headcirc � length2

birthweight � weight
ð3Þ

Linear regression models

Feature selection. Factor analysis was applied to the W/L ratio and its 2 higher powers to

determine which of the ratios to be included in the set for subsequent feature selection and

to avoid multiple collinearity effects. Results showed that 89.5% of the variance could be

explained by a single underlying factor, driven mostly by W/L2 (R-squared > 0.99). This ratio

exhibited a R-squared of 0.874 with W/L and 0.809 with W/L3. R-squared between W/L and

W/L3 was 0.472.

Recursive feature elimination identified the combination of weight, head circumference,

mid-thigh circumference and W/L2 as the optimal set of features for neonatal FM estimation.

Table 1. Comparisons of anthropometry and body composition measures for male and female neonates. An independent t-test (two-tailed) was applied to compare

continuous variables and a chi-squared test for categorical variables (neonatal composite morbidity and proportions in each fat range). Statistical significance is denoted by
�p<0.05, ���p<0.001.

Characteristics Male Female p

n 272 252

Birthweight (g) 3533 ± 475 3366 ± 411 <0.001���

Weight (g) 3359 ± 448 3193 ± 398 <0.001���

Length (cm) 50.4 ± 1.9 49.2 ± 1.7 <0.001���

Gestational age (weeks) 39.6 ± 1.1 39.5 ± 1.2 0.120

Age at measurement (days) 1.17 ± 0.6 1.19 ± 0.6 0.695

Mid-upper arm circumference (cm) 11.0 ± 1.0 10.9 ± 0.9 0.0897

Head circumference (cm) 35.0 ± 1.1 34.1 ± 1.1 <0.001���

Mid-thigh circumference (cm) 15.1 ± 1.3 15.0 ± 1.2 0.568

Abdominal circumference (cm) 30.6 ± 2.2 30.5 ± 2.0 0.511

Chest circumference (cm) 32.7 ± 1.8 32.4 ± 1.6 0.023�

Neonatal composite morbiditya (%) 3.7 3.2 0.176

Proportion low fat (%) 12.5 14.7 0.100

Proportion moderate fat (%) 71.7 71 0.199

Proportion high fat (%) 15.8 14.3 0.143

Body fat % 8.89 ± 4.0 10.09 ± 3.9 <0.001���

Fat mass (g) 310 ± 167 332 ± 155 0.119

aComposite neonatal morbidity defined as a composite of hypothermia, poor feeding and extended length of stay. Previously described in [12]

https://doi.org/10.1371/journal.pone.0195193.t001
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Linear estimation of neonatal fat mass. The sex-specific and combined sex linear regres-

sion model coefficients are detailed in Table 3. Weight and W/L2 were significant predictors of

male and female neonatal FM, whereas head circumference was significant (p = 0.018) in the

male population only. All three models exhibited similar R-squared statistics of approximately

Fig 1. Receiver-operator characteristic curves and predicted probabilities for developed logistic regression

models. Panels (a), (c) and (e) display the ROC curves for each of the developed (CF) models and other comparative

models for the identification of composite neonatal morbidity [12], low BF% and high BF%, respectively. Comparative

models include those fitted using body fat percentage (BF%), weight for length (W/L), mid-upper arm circumference

(MUAC) and birthweight percentile (BWpctl). Corresponding boxplots in (b), (d) and (f) show the predicted

probabilities from the corresponding CF logistic regression models for each of the two classes: negative (N) and

positive (M: composite neonatal morbidity, L: low BF% and H: high BF%).

https://doi.org/10.1371/journal.pone.0195193.g001

An anthropometric approach to characterising neonatal morbidity and body composition

PLOS ONE | https://doi.org/10.1371/journal.pone.0195193 March 30, 2018 7 / 15

https://doi.org/10.1371/journal.pone.0195193.g001
https://doi.org/10.1371/journal.pone.0195193


0.59. For the combined sex model, all variables including sex were significant predictors of

neonatal fat mass. There were no significant interactions between sex and anthropometric fea-

tures (p> 0.3).

Model evaluation. To characterise model performance, we evaluated RMSE and R-

squared statistics for both sex-specific and combined sex models for a range of test sample

Table 2. Comparison of receiver-operator characteristic curves for the prediction of composite neonatal morbidity, low and high fat BF% using the Delong method

[26]. For each pair of logistic regression models, the standard error and p-value from the Delong method for ROC curve comparison are reported [26]. Comparisons

include BF% from ADP, weight-for-length-for-gestational age (W/L/GA), weight-for-length-squared (W/L2), mid-upper arm circumference (MUAC), birthweight percen-

tiles (BWpctl) and developed composite feature (CF). Statistical significance is denoted by �p<0.05, ��p<0.01 ���p<0.001.

Model AUC (95% CI) W/L2 MUAC BWpctl CF

Composite neonatal morbidity

BF% 0.786 (0.70, 0.88) 0.055, 0.24 0.066, 0.046� 0.062, 0.141 0.061, 0.453

W/L2 0.726 (0.61, 0.84) 0.061, 0.239 0.047, 0.510 0.04, 0.729

MUAC 0.655 (0.51, 0.80) 0.067, 0.548 0.07, 0.227

BWpctl 0.695 (0.57, 0.82) 0.051, 0.376

CF 0.740 (0.63, 0.85)

Low BF%

W/L/GA 0.817 (0.77, 0.87) 0.012, 0.174 0.028, 0.006�� 0.011, 0.031� 0.014, 0.455

W/L2 0.800 (0.75, 0.85) 0.029, 0.035� 0.021, 0.712 0.019, 0.141

MUAC 0.740 (0.68, 0.80) 0.030, 0.076 0.028, 0.002�

BWpctl 0.792 (0.74, 0.85) 0.018, 0.056

CF 0.827 (0.78, 0.88)

High BF%

W/L/GA 0.836 (0.79, 0.88) 0.011, 0.06 0.026, ��� 0.010, 0.832 0.047, 0.961

W/L2 0.816 (0.77, 0.87) 0.028, 0.001�� 0.177, 0.309 0.049, 0.715

MUAC 0.726 (0.67, 0.78) 0.026, ��� 0.047, 0.02�

BWpctl 0.834 (0.79, 0.88) 0.044, 0.998

CF 0.834 (0.79, 0.88)

https://doi.org/10.1371/journal.pone.0195193.t002

Table 3. Linear regression model coefficients for estimation of neonatal fat mass in grams.

Variable Intercept Weight (g) circhead (cm) circthigh (cm) W/L2 (g/cm2) Sex

Male

Coefficient -309.54 0.226 -19.93 15.74 243.53 -

SE 261.74 0.035 8.35 8.42 105.11 -

p 0.238 <0.001��� 0.018� 0.063 0.021� -

Female

Coefficient -677.90 0.190 -8.280 11.47 390.141 -

SE 270.16 0.038 8.705 7.95 105.060 -

p 0.013� <0.001��� 0.342 0.150 <0.001��� -

Combined sex

Coefficient -445.45 0.212 -14.857 13.191 312.795 -47.21

SE 186.35 0.0255 6.008 5.780 74.00 10.14

p 0.017� <0.001��� 0.014� 0.023� <0.001��� <0.001���

R-squared statistics for the male, female and combined sex regression models were 0.589, 0.591 and 0.590, respectively. Units for each variable are shown in parentheses,

with coefficients, standard error (SE) and p value from linear regression model fitting shown for the sex-specific and combined sex models. The variable denoting sex

comprises 1 = male and 0 = female. Statistical significance is denoted by

�p<0.05,

���p<0.001.

https://doi.org/10.1371/journal.pone.0195193.t003
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sizes, displayed in Fig 2. The R-squared statistics for combined sex and sex-specific models

were similar, as also reflected by model fit to the complete dataset in Table 3 (R-squared com-

bined: 0.590, male: 0.589, female: 0.591), though sex-specific models tended to exhibit a lesser

RMSE in the estimation of FM, FFM and BF%.

Discussion

Summary of findings

In this study, we developed and evaluated a range of models for characterising neonatal nutri-

tional status. Using a composite neonatal morbidity, we developed a model to detect under-

nourished newborns which exhibited an AUC of 0.740 (0.63, 0.85). We also examined the

greatest AUC achieved by a model excluding length as a feature and found that a combination

of birthweight, abdominal, head and mid-thigh circumferences yielded a AUC of 0.736 (0.62,

0.85).

Fig 2. Mean model RMSE and R-squared statistics for estimations of body composition parameters at a testing sample size. Panels (a)-(b) fat free

mass (FFM), (c)-(d) fat mass (FM) and (e)-(f) body fat percentage (BF%) measured via air displacement plethysmography. Population was divided into

two sex-stratified halves, with the first half used to fit male and female-specific linear estimation models and an equally-sized subset containing an even

distribution of sexes used to fit the combined sex model. The second half or test set was then randomly and repeatedly restricted with root mean

squared error (RMSE) and R-squared determined for each iteration.

https://doi.org/10.1371/journal.pone.0195193.g002
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Models for identifying low and high BF% neonates exhibited AUCs of 0.827 (0.78, 0.88),

and 0.834 (0.79, 0.88), respectively. This suggests potential for application in LMICs, offering a

low-cost and scalable approach for screening at birth, though this may depend on measure-

ment accuracy and reproducibility, availability of appropriate equipment, training and evalua-

tion of competency [24]. These factors considered, the models could nevertheless motivate

the routine collection of anthropometric measurements, especially considering the socio-eco-

nomic transition that many LMICs are undergoing, with both under and overnutrition present

at birth.

Neonatal morbidity screening

The combination of birthweight, length, chest and mid-thigh circumferences exhibited the

greatest AUC of 0.740 (0.63, 0.85) to identify neonatal morbidity. AUC from leave-one-out

cross-validation was 0.698. It was interesting to note the presence of the birthweight-to-length

ratio, possibly corrected for chest and mid-thigh circumferences as a potential marker for

composite neonatal morbidity. Neither of these circumferences have been routinely used as a

marker of adiposity, though chest circumference has been identified as a strong predictor of

low birthweight [10] and there have been similar correlations reported between mid-thigh cir-

cumference, antenatal nutrition [29] and birthweight [30].

The model excluding length as a feature exhibited a AUC of 0.736 (0.62, 0.85) and did not

exhibit a significantly poorer performance than that where length was included. Given the

more expensive and bulkier nature of length boards compared with paper tape measures for

circumference measurements, this length-free composite measure may be preferred for use in

LMICs.

MUAC is a simple and fast measurement widely-used to detect undernutrition in LMICs.

Though MUAC in infants under 6 months may have predictive value for infant death [31], the

difference between the ROC curves for MUAC and BF% would suggest that prediction of mor-

bidity as defined by our composite measure in this population may be improved by accurate

measurement of BF% if available, or by using our anthropometric model, subject to further

evaluation and validation in an independent dataset. Our model exhibited an AUC of 0.740

(0.63, 0.85) which was the next highest to BF%, among other comparisons including W/L2

(0.726 (0.61, 0.84)), birthweight percentiles (0.695 (0.57, 0.82)) and MUAC (0.655 (0.51, 0.80))

(Fig 1, Table 2).

Screening of low and high BF% neonates

Both models yielding the greatest AUC for screening low and high BF% contained a ratio

between weight and length in some form, with the low BF% neonates consisting of weight,

length and chest circumference and the high BF% containing birthweight, weight, length and

head circumference.

The developed model for screening low BF% neonates exhibited a AUC of 0.827 (0.78,

0.88), greater than that of the W/L for gestational age model, though the difference was not sta-

tistically-significant. In contrast, the W/L for gestational age exhibited the greatest AUC of

0.836 (0.79, 0.88) for identifying high BF% neonates, consistent with previous reports of

increasing BF% with increasing gestational age [32], due to rapid fat gain late in gestation [33].

This is followed by both the composite feature and the birthweight percentile models with

AUCs of 0.834 (0.79, 0.88), suggesting that for this cohort, accounting for multiple anthropo-

metric measures performs no better than considering the birthweight percentile alone, despite

the latter being considered a limited predictor of morbidity and mortality. Such percentiles are

nevertheless problematic as gestational age is frequently unreliable in LMICs.
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Linear estimation of neonatal fat

Anthropometric models for the estimation of neonatal fat mass developed by Catalano et al.

[16], Schmelzle et al. [20] and Deierlein et al. [18] exhibit an R-squared of 0.84, 0.94 and 0.81,

respectively. A direct comparison between our models and those developed previously is diffi-

cult given the lack of corresponding skinfold thickness measurements, differences in the crite-

rion method for FM estimation and demographic variations. Our developed models exhibited

an R-squared of 0.59 for both male and female populations, accounting for a lower variance in

FM than previous reported models. This highlights the important contribution and correlation

of skinfold measurements to FM estimation, though without considerable practice, these mea-

sures may have poor reproducibility amongst multiple users [34].

Comparisons of sex-specific anthropometry revealed that males tended to be longer and

heavier than females, with larger head and chest circumferences on day of measurement

(Table 1). The male neonates in our cohort also had lower BF%, which also remains consistent

with previous studies [32]. In the anthropometric models previously developed for estimation

of body composition [16–20], sex is often not included or adjusted for using a binary variable

in the linear regression model. This adjustment for sex differences in anthropometry and body

composition may well be inadequate, especially for robust model development. Though vari-

ability in body composition measures were similar across both sex-specific and combined sex

models, we observed a greater estimation error for the combined sex models (Fig 2) and a dif-

ferent combination of variables that were significantly predictive of fat mass between male and

female-specific models (Table 3).

The population-specific nature of body composition also extends beyond sex; there are also

differences between infants of different ethnicities [35, 36], that may be genetic, biological,

environmental or composites of these. Body composition is also influenced by perinatal char-

acteristics, infant feeding methods [37] and days after birth, with infants undergoing an initial

weight loss particularly during the first four postnatal days [28]. In this period, energy intake is

limited until breastfeeding is established by day 5 when fat stores are no longer needed as alter-

native energy stores and energy is expended to the requirements of extrauterine life including

thermoregulation, fluid balance and respiration [38, 39]. These factors contribute to high vari-

ability observed in the neonatal period and thus need to be considered in robust model devel-

opment and application.

The changes in RMSE and R-squared with testing set size in Fig 2 demonstrate the influ-

ences of both training and testing sets on the performance and robustness of the final model.

These results support sex-specific model fitting, highlighting the potentially inflated error

from combining both male and female subjects in the same model with a single variable

adjusting for sex. It also aids in establishing a context for model evaluation, with different tar-

get variables (fat-free mass, FM and BF%) tending towards different degrees of correlation

with anthropometric variables. An understanding of model fit and robustness extends beyond

R-squared which characterise the relationship between two variables, rather than agreement or

differences between them. Despite similar R-squared statistics across both combined sex and

specific model estimations of neonatal body composition, the RMSE tended to be lower for

sex-specific models.

Strengths and limitations

The strengths of this study include the large sample size of neonates and the use of ADP as the

criterion method which has been specifically validated in this population [13–15]. The model

development for detecting neonatal morbidity was limited by the low representation (3.4%) of

neonatal morbidity [12]. Although we approached this by using leave-one-out cross-validation
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for model evaluation, there is a need for further evaluation on a population with higher neona-

tal morbidity. The optimal measurement of morbidity may change in a different population,

as the composite score used for this analysis was based on a logistic regression analysis of

potentially significant factors in the given population [12]. This dataset would ideally be

sourced from LMICs where demographic characteristics align with the intended area of appli-

cation for the model.

Due to the accurate measurement of weight using the integrated PEA POD scale, further

validation of accurately measuring weight for the models may be required. Anthropometry

including length and circumference measurements were also not obtained in duplicate except

for a small subset of approximately 40 infants [24].

Body composition estimation in the neonatal population is especially difficult given the

varying criterion methods, the growing evidence to suggest poor agreement between gold stan-

dards in this population [40] and the variation in body composition during the first few days

of life. The model development and potentially, predictive ability, may be improved by adjust-

ing for additional features such as skinfold measurements, which were not collected in this

dataset. Evaluation in an independent population to gauge estimation error and robustness of

predictive ability for neonatal morbidity, low and high BF% infants is also needed.

Conclusions

The greatest burden of neonatal and infant undernutrition and morbidity lies in LMICs,

where there is an urgent need for suitable, simple approaches to monitor and manage infants.

Using combinations of anthropometric features, we fitted models for application in these set-

tings that could detect composite morbidity with an AUC of 0.740 (0.63, 0.85) in neonates

in the first few days of life. Composite features involving simple, accurate, easily-measured

anthropometric features could also identify low BF% infants with an AUC of 0.827 (0.78,

0.88). These models have demonstrated potential for further development and evaluation in

LMICs for identifying infants in need of further nutritional management.
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