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1  | INTRODUC TION

Phenotypic variation of natural populations results from a com‐
bination of evolutionary processes, particularly gene flow, drift, 
natural selection, and environmentally induced phenotypic plas‐
ticity (Endler, 1986). Natural selection facilitates adaptation of 

populations in response to localized environmental or competitive 
pressure (Schluter, 2001) and by reducing gene flow (Räsänen & 
Hendry, 2008). In contrast, gene flow can counteract adaptive phe‐
notypic divergence by homogenizing genotypic and phenotypic vari‐
ation across environmental landscapes (Räsänen & Hendry, 2008; 
Slatkin, 1987). Less acknowledged is that the random loss of genetic 
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Abstract
Divergence in phenotypic traits is facilitated by a combination of natural selection, 
phenotypic plasticity, gene flow, and genetic drift, whereby the role of drift is ex‐
pected to be particularly important in small and isolated populations. Separating the 
components of phenotypic divergence is notoriously difficult, particularly for multi‐
variate phenotypes. Here, we assessed phenotypic divergence of threespine stick‐
leback (Gasterosteus aculeatus) across 19 semi‐interconnected ponds within a small 
geographic region (~7.5 km2) using comparisons of multivariate phenotypic diver‐
gence	(PST),	neutral	genetic	(FST),	and	environmental	(EST)	variation.	We	found	phe‐
notypic divergence across the ponds in a suite of functionally relevant phenotypic 
traits, including feeding, defense, and swimming traits, and body shape (geometric 
morphometric).	Comparisons	of	PSTs	with	FSTs	suggest	that	phenotypic	divergence	
is predominantly driven by neutral processes or stabilizing selection, whereas phe‐
notypic divergence in defensive traits is in accordance with divergent selection. 
Comparisons of population pairwise PSTs with ESTs suggest that phenotypic diver‐
gence in swimming traits is correlated with prey availability, whereas there were no 
clear associations between phenotypic divergence and environmental difference in 
the other phenotypic groups. Overall, our results suggest that phenotypic divergence 
of these small populations at small geographic scales is largely driven by neutral pro‐
cesses (gene flow, drift), although environmental determinants (natural selection or 
phenotypic plasticity) may play a role.
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diversity over generations (i.e., genetic drift) may also lead to phe‐
notypic divergence (Lynch, 2007). While less noticeable across large 
heterogeneous landscapes, genetic drift may play an important role 
in early stage divergence, especially in small populations with limited 
gene flow (Wright, 1982).

Studies assessing adaptive divergence and the mechanisms of 
phenotypic divergence are most commonly conducted across large 
spatial (Belinda & Sgrò, 2017; Saether et al., 2007) and environ‐
mental (Belinda & Sgrò, 2017; Wilson, Peters, & McCracken, 2012) 
scales, where populations are expected to be under some degree 
of natural selection or dispersal limitation. Such large‐scale studies 
clearly indicate that natural selection across environmentally het‐
erogeneous landscapes, often with nonrandom dispersal, facilitates 
phenotypic divergence, whereas local processes are often less con‐
sidered (reviewed in Richardson, Urban, Bolnick, & Skelly, 2014). 
However, different evolutionary mechanisms do not act in isolation 
in natural populations, and the relative contribution of drift needs 
to be assessed to understand the sources of phenotypic differen‐
tiation (Clegg & Phillimore, 2010). Whereas the effects of natural 
selection and gene flow are more apparent in larger populations 
across heterogenous landscapes, drift is likely to be a particularly 
important mechanism in driving phenotypic divergence of small pop‐
ulations harboring low genetic diversity, concomitant to small spatial 
scales where environmental conditions are likely more homogenous 
(Hallatschek, Hersen, Ramanathan, & Nelson, 2007; Mayr, 1963; Nei 
& Tajima, 1981).

One way to assess the relative contribution of natural selection 
and neutral processes (i.e., gene flow and drift) on phenotypic vari‐
ation,	within	 and	 among	 natural	 populations,	 is	 to	 compare	 quan‐
titative	 trait	 (QST)	 and	 neutral	 genetic	 (FST)	 variation	 (Leinonen,	
McCairns,	O'Hara,	&	Merilä,	2013).	If	QST	>	FST,	then	divergent	nat‐
ural	selection	is	likely	driving	phenotypic	divergence.	If	QST	=	FST,	
genetic	drift	is	assumed	to	play	a	primary	role,	whereas	if	QST	<	FST,	
stabilizing selection is believed to be at play (Brommer, 2011; 
Leinonen et al., 2013; Spitze, 1993). Moreover, comparing popula‐
tion	pairwise	QST	and	FST	estimates	in	relation	to	population	pair‐
wise estimates of ecological variation (EST) allows insight into the 
relative roles of divergent natural selection and neutral processes 
(selection vs. gene flow vs. drift) influencing phenotypic variation 
within and among populations (Hangartner, Laurila, & Räsänen, 
2012; Kaeuffer, Peichel, Bolnick, & Hendry, 2012). Estimating QSTs 
requires	 rigorous	 assessment	 of	 additive	 genetic	 variance	 (c) and 
narrow sense heritability (h2),	 typically	 using	 quantitative	 genetic	
breeding designs, which are often not measurable for natural pop‐
ulations. PST, a phenotypic variance‐based measure of divergence, 
provides	a	field‐based	proxy	for	QST	(Brommer,	2011).	Although	not	
typically used in this context, PST estimates can also provide initial 
insights to the role of the environment (phenotypic plasticity and 
natural selection) on phenotypic variation when compared to ESTs 
(Kaeuffer et al., 2012).

While PST estimates are not as robust as QSTs, they do offer a 
means to assess phenotypic divergence of natural populations and 
have been applied in several studies (Kaeuffer et al., 2012; Leinonen, 

Cano, Makinen, & Merilä, 2006; Raeymaekers, Houdt, Larmuseau, 
Geldof,	&	Volckaert,	2007;	Sæther	et	al.,	2007).	However,	existing	
PST‐FST	comparisons	are	typically	based	on	univariate	traits	(meris‐
tic or traditional morphometric measurements), which do not account 
for the multivariate trait complexities that are involved in pheno‐
typic	 expression,	 such	 as	 homeostasis	 or	 canalization	 (Forsman,	
2014). Multivariate statistics are routinely used in ecology and mo‐
lecular ecology to characterize total variation within and among pop‐
ulations,	including	geometric	morphometrics	(Mitteroecker	&	Gunz,	
2009), genetic differentiation (Hartl & Clark, 1997), and species di‐
versity	(Seymour,	Deiner,	&	Altermatt,	2016).	Applying	a	multivariate	
PST‐FST	comparison	offers	a	more	complete	assessment	of	organ‐
ism level phenotypic variation as opposed to comparing variation 
across	 several	 univariate	phenotypic	 traits	 (Forsman,	2014;	 Spitze	
& Sadler, 1996).

Here,	we	 implement	 PST‐FST	 and	 PST‐EST	 comparisons	 using	
a multivariate approach on threespine stickleback (Gasterosteus 
aculeatus) inhabiting a small geographic area in Iceland (Seymour, 
Räsänen,	Holderegger,	&	Kristjánsson,	2013).	Freshwater	threespine	
stickleback	(Figure	1)	are	well‐suited	for	such	studies	because	they	
frequently	occur	in	a	range	of	water	bodies	that	differ	in	connectiv‐
ity, size, and environmental conditions. Moreover, phenotypic diver‐
gence of threespine stickleback across a range of morphological and 
life‐history traits can occur within only a few generations (Barrett 
et al., 2011; Bell, 1982; Kristjánsson, 2005). Icelandic threespine 
stickleback are diverse (Kristjánsson, Skulason, & Noakes, 2002; 
Lucek, Kristjánsson, Skúlason, & Seehausen, 2016; Ólafsdóttir, 
Snorrason, & Ritchie, 2007), partly due to the high diversity of 
Icelandic freshwater systems, caused by the interplay of glaciation 
and volcanic activity (Thorarinsson, 1979). We recently showed 
that neutral population genetic structure of threespine stickleback 
across	a	small	pond	system	(Belgjarskógur,	NE	Iceland;	Figure	2)	 is	
influenced by pond isolation and periodic connectedness, due to pe‐
riods of flooding and drought facilitating or constraining gene flow 
(Seymour et al., 2013). Belgjarskógur was presumably formed within 
the last 2,300 years following a volcanic eruption in an area where 
lava fields—in close connection with groundwater—have created a 
complex wetland and pond landscape (Einarsson, 1982). Estimates 
of effective population size (Ne) further indicate that threespine 
stickleback populations in this area are generally small (Seymour et 
al., 2013, see below), making this system well‐suited to investigate 
the relative role of environmental selection/plasticity, gene flow, and 
drift in phenotypic divergence across small spatial scales.

F I G U R E  1  A	representative	threespine	stickleback	from	a	
Belgjarskógur pond 
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Here, we assessed the relative contribution of environmental and 
neutral processes in threespine stickleback within the Belgjarskógur 
pond	system.	First,	we	measured	the	extent	of	phenotypic	diversi‐
fication of threespine stickleback across 19 study ponds, focusing 
on three multivariate meristic/morphometric trait groups (defense, 
feeding, and swimming traits) as well as body shape using geomet‐
ric morphometric. Second, to infer whether selective or neutral 
processes influenced phenotypic divergence, we assessed the rela‐
tionship between each set of phenotypic traits and neutral genetic 
divergence	using	PST‐FST	comparisons.	Third,	we	 investigated	the	
potential effects of environment (influencing both natural selection 
and phenotypic plasticity) by comparing PSTs to environmental dif‐
ferences (ESTs).

2  | METHODS

2.1 | Study system

Belgjarskógur,	northeast	of	lake	Mývatn,	Iceland	(Figure	2),	is	a	geo‐
logically young wetland system (Thorarinsson, 1979) consisting of 
over	a	hundred	lakes	and	ponds	of	various	sizes	(from	a	few	square	
meters to ~105,000 m2) on a small geographic scale (~7.5 km2). The 
system was formed within the last 2,300 years, after lava from the 
Þrengslaborgir eruption flowed over a large part of the former Lake 
Mývatn (Einarsson, 1982). Most of the ponds in Belgjarskógur are 
inhabited	by	threespine	stickleback	 (Figure	1),	which	are	expected	

to have colonized the pond system from a single source, most likely 
from Lake Mývatn, or from the same ancestral source as the lake, 
followed by the division into many subpopulations.

Our previous study found variable genetic structuring among 
19	of	the	ponds	(pairwise	FSTs	across	ponds	ranged	from	0.007	to	
0.141), which was correlated with landscape connectivity associ‐
ated	with	periodic	flooding	events	(Figure	2;	Seymour	et	al.,	2013).	
Specifically, threespine stickleback in the western part of the system 
(Figure	 2)	 showed	 stronger	 genetic	 structure,	whereas	 threespine	
stickleback in the eastern part were more admixed. The studied 
ponds ranged from 608 to 105,000 m2 in size, and estimates of ef‐
fective population size (Ne) indicated small populations (Ne = 12–86; 
Seymour et al., 2013) and high potential for local genetic bottlenecks.

2.2 | Sampling

Threespine	stickleback	 (Figure	1)	were	collected	from	19	ponds	 in	
June	2009	 (Figure	2)	using	un‐baited	minnow	traps	 laid	overnight.	
The collection process was repeated daily until at least 30 adult size 
(>30 mm in total length) threespine stickleback were caught in each 
study pond. Upon capture, threespine stickleback were euthanized 
using an overdose of phenoxyethanol, measured for total length (to 
the nearest 0.1 cm), and then frozen for later morphological and ge‐
netic	analyses.	After	eliminating	individuals	due	to	physical	deforma‐
tions or destroyed feeding structures (due to freezing and storage), 
the final sample size was 15 to 47 individuals per pond (3–24 males 

F I G U R E  2   Map of the study area in 
Belgjarskógur, Iceland, showing 19 study 
ponds harboring threespine stickleback. 
The blue hatched areas indicate the study 
ponds. Top left insert shows an outline 
of Iceland and the geographic location of 
Belgjarskógur area represented as a black 
dot
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and 7–30 females per pond, total N = 670). Removal of deformed 
animals	was	done	to	avoid	errors	in	subsequent	analyses	that	would	
not reflect natural population variation.

2.3 | Environmental measurements

To characterize the environment that threespine stickleback expe‐
rience, we recorded water chemistry parameters, pond size, and 
macroinvertebrate community diversity. Water chemistry was as‐
sessed for each pond using a YSI 600 XLM multiprobe sonde (YSI 
Incorporate) to measure pH (±0.2 units) and total dissolved solids 
(TDS; ppm). Chemistry was measured once in late June 2009 at each 
study pond. Total dissolved solids (TDS) were log10 transformed for 
statistical analyses (see below). To assess pond size, surface area of 
each pond was estimated from high‐resolution (2.5‐m pan‐sharp‐
ened spatial resolution) SPOT‐5 satellite imagery obtained from 
the National Land Survey of Iceland for the years 2002/2003 and 
ARCGIS	10	(ESRI,	USA).

2.4 | Invertebrates

To describe the feeding environment of threespine stickleback within 
each pond, invertebrate samples were collected just below the water 
surface and above the pond bottom by moving a hand net (153 mi‐
cron mesh) for three minutes back and forth while moving forward at 
a slow pace. Samples were then rinsed and stored in 70% ethanol for 
later	identification.	All	invertebrates	retained	in	these	samples	were	
identified to various taxonomic levels (phylum: Mollusca, Nematoda; 
class:	 Acari,	 Coleopteran	 larvae,	 Collembola,	 Copepoda;	 order:	
Cladocera,	Hymenoptera,	 Trichopteran	 larvae;	 family:	Aphidoidea,	
Chironomidae larvae) using a Leica MZ12 (Nussloch) stereo micro‐
scope. If a given sample consisted of 200 or fewer individuals, all 
individuals were identified. If a given sample consisted of more than 
200 individuals, the sample was thoroughly mixed and divided into 
aliquots.	All	individuals	within	an	aliquot	were	then	counted	and	the	
number	of	individuals	in	that	aliquot	multiplied	by	the	total	number	
of	aliquots.	If	the	number	of	individuals	in	the	first	aliquot	was	less	
than	200,	the	next	aliquot	was	counted,	and	so	on,	until	there	were	
more	than	200	individuals	prior	to	calculating	the	total	number.	For	
statistical analyses, invertebrates were classified into three groups: 
limnetic	(Copepoda,	Cladocera),	benthic	(Mollusca,	Nematoda,	Acari,	
Coleopteran larvae, Chironomidae larvae, Trichoptern larvae), and 
“other”	(Collembola,	Hymenoptera,	Aphidoidea)	following	(Schluter	
& McPhail, 1992).

2.5 | Stomach content

To characterize diet, threespine stickleback stomachs were ex‐
tracted from 670 individuals across the 19 study populations (10–30 
individuals/pond). Stomachs were opened and contents scraped out 
with	forceps	to	insure	all	contents	were	removed.	All	invertebrates	
retained in these samples were counted and identified to the low‐
est possible taxonomic level, using the same groups as above, using 

a Leica MZ12 stereo microscope. Partially digested items were not 
always identifiable and softer bodied prey (such as copepods or 
worms) were rarely found, whereas shells of Cladocera, Mollusca, 
and Chironomidae larvae, which take longer to digest, were more 
frequent.	For	statistical	analyses,	prey	items	were	classified	into	lim‐
netic, benthic, and other using the same groupings as for the pond 
invertebrate sampling.

2.6 | Phenotypic variation

Threespine stickleback phenotypic variation was characterized by 
measuring linear morphometric traits or counts of meristic traits, as 
well	 as	using	geometric	morphometrics	 to	 assess	body	 shape.	For	
phenotypic analyses, threespine stickleback were thawed, their 
stomachs removed, sexed by examining gonad morphology, and 
preserved	 in	70%	ethanol,	 and	 subsequently	 fixed	 in	5%	buffered	
formalin for three weeks. Prior to further processing, the formalin‐
fixed fish were rinsed with water and transferred to 70% ethanol. 
For	geometric	morphometric	analyses	of	shape,	each	formalin‐fixed	
fish was pinned onto a wax board, with spines spread out and mouth 
closed, and photographed on the left side using a Nikon (Tokyo, 
Japan)	 Coolpix	 4500	 digital	 camera	 (4	megapixels,	 Figure	 1).	 Fish	
were	 subsequently	 bleached	 (1:1	 ratio	 of	 3%	H2O2 and 1% KOH) 
and	stained	(Alizarin	red	1%	KOH)	to	aid	measurement	of	traditional	
morphometric and meristic traits.

2.6.1 | Feeding morphology

For	morphometric/meristic	measurements	of	feeding	traits	(gill	raker	
number, gill raker length, gill raker gap width), the first gill arch from 
each stained fish was removed, placed between two glass plates to 
assure a straight position, and photographed using a Nikon Coolpix 
4500 (Nikon) mounted onto Leica MZ12 stereo microscope. Total 
gill	raker	number	(GRN)	across	the	long	and	short	gill	raker	arcs,	the	
length	of	the	first	five	gill	rakers	on	the	long	arc	(GRL)	and	the	width	
of	 the	 gaps	 between	 these	 five	 gill	 rakers	 (GW)	 were	 measured	
(to the nearest 0.1 mm) from the gill raker pictures using the pub‐
lic	 domain	 ImageJ	 software	 (Abramoff,	Magelhaes,	&	Ram,	2004).	
Individual	average	GRLs	and	average	GWs	were	then	calculated	for	
subsequent	analyses.

2.6.2 | Swimming morphology

Swimming morphometric traits were assessed by measuring the 
length of the pectoral, anal, caudal, and dorsal fins (to the nearest 
0.1 mm) using an ocular micrometer mounted on a Leica MZ12 ste‐
reo microscope and counting the number of fin rays on each fin.

2.6.3 | Defense morphology

Defense traits were characterized by counting the number of lat‐
eral plates from the left side of the fish and measuring the length 
of both long dorsal spines (to the nearest 0.1 mm) using an ocular 
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micrometer.	Average	spine	length	was	used	in	subsequent	statistical	
analyses.

2.6.4 | Body shape

Body shape of each fish was assessed using geometric morphomet‐
rics using the program suite TPS (Rohlf, 2006). Before digitizing land‐
marks, photographs of the fish were randomly ordered and 11 fixed 
landmarks digitized on each photograph using the program TpsDig2. 
Landmarks were selected based on key morphological characteris‐
tics, focusing on the head (to capture trophic morphology) and fins 
(to capture locomotion morphology). Individuals were not included 
in these analyses if the mouth of the fish was open or the image 
was	 of	 poor	 quality,	 which	 would	 have	 reduced	 the	 accuracy	 of	
placing landmarks. This resulted in 18 fish being removed from the 
analysis (final N = 643). Digitized fish were aligned using general‐
ized Procrustes superimposition using the geomorph package in R 
(Adams	&	Otárola‐Castillo,	2013).	Briefly,	a	generalized	Procrustes	
analysis	(GPA)	aligns	all	specimens	based	on	position	and	angle	and	
scales each specimen to a common size. The final Procrustes coordi‐
nates for each fish represents the size‐free shape of each fish (Rohlf 
&	Bookstein,	2003).	A	PCA	of	the	Procrustes	coordinates	was	then	
calculated following Caumul and Polly (2005), which were used as 
the body shape matrix for the corresponding multivariate shape PST 
statistics detailed below.

2.7 | Population genetic variation

Neutral genetic variation was assessed using 12 microsatellites (av‐
erage allelic richness 2.7–4.04) to assess dispersal patterns in rela‐
tion to landscape cover as previously reported (Seymour et al., 2013). 
These analyses found strong indications of isolation by distance, as 
determined through least cost pathways through interpolated flood‐
plains.	The	average	pond	pairwise	FSTs	was	0.084	(Seymour	et	al.,	
2013),	and	we	use	here	use	pond	pairwise	FSTs	from	Seymour	et	al.	
(2013) as a measure of neutral genetic divergence.

2.8 | Statistical analyses

All	 statistical	 analyses	 were	 performed	 in	 R	 (version	 3.5.1,	 R	
Development Core Team, 2018). Morphometric measures that cor‐
related	with	body	size	(i.e.,	GRL,	GW,	gill	raker	arc	length,	spine,	and	
fin lengths) were size corrected following Reist (1986) by calculat‐
ing size‐corrected residuals for each trait. Size‐corrected residuals 
were then used as response variables in further statistical analyses 
for these traits.

2.8.1 | Phenotypic divergence

We first assessed morphological variation among all ponds using 
multivariate	analyses	of	variance	(MANOVA).	For	each	MANOVA,	
we assessed the effect of pond identity (19 levels) and sex (male 
and female) on the response trait matrix (feeding, swimming, and 

defense) using the lm function in R. Because of the small sample 
size for males or females in some populations, we did not test for 
the	 population	 and	 sex	 interactions.	 Subsequently,	 we	 assessed	
individual	trait	variation	among	populations	using	ANOVAs,	which	
are	a	special	case	of	linear	regression,	via	the	ANOVA	function	in	R,	
with pond identity and sex as explanatory variables. Response var‐
iables included body length, pectoral fin length, dorsal fin length, 
caudal	 fin	 ray	 number,	 pectoral	 fin	 ray	 number,	GRN,	GRL,	GW,	
dorsal spine length, and number of lateral plates. Length meas‐
urements	were	size	corrected	as	previously	mentioned.	Geometric	
morphometric shape variation across the ponds was assessed 
using	Procrustes	ANOVAs	with	the	procD.lm	function	in	the	geo‐
morph package, with Procrustes coordinates as response variables 
and pond identity and sex as the explanatory variables, with 1,000 
residual	randomized	permutations.	Procrustes	ANOVA	allows	for	
statistical assessment of the term (here: pond identity and sex) 
using	Procrustes	distances	among	specimens	and	is	equivalent	to	
distance‐based	 ANOVA,	 allowing	 comparison	 with	 the	 analyses	
of	 the	 morphometric/meristic	 variables	 stated	 prior	 (Anderson,	
2001). To check for allometric trends across the ponds, we per‐
formed	 a	 preliminary	 Procrustes	 ANOVA	 that	 included	 centroid	
size × pond identity interaction as a covariate. While we found a 
significant difference in centroid size across ponds (p < 0.01) and 
pond identity (p < 0.01), we also found a significant effect of cen‐
troid × pond identity interaction (p = 0.036), indicating that allo‐
metric relationships are not the same in all the ponds. Therefore, 
we elected to not to include size as a co‐variant for the final analy‐
sis due to the nongeneral allometric trends across the ponds and 
underlying importance of the allometric variation in describing the 
observed phenotypic variation (Klingenberg, 2016).

2.8.2 | PST calculation

PST was calculated for each pond using the formula:

where �2
GB

 is the variation between ponds, �2
GW

 is the variation 
within ponds, h2 is trait heritability, and c is a unit‐less scalar vari‐
able	(Brommer,	2011).	Variation	in	traits	between	and	within	each	
pond	pair	were	calculated	using	redundancy	analysis	(RDA),	which	
partitioned the within and among pond variation of each multivar‐
iate trait matrix (the response variable) with pond as the among 
group explanatory variable. We used heritability of 0.5 (i.e., 50% 
of phenotypic variation is genetically based and due to additive ge‐
netic variance) and a scalar value of 1 (i.e., 100% of variance among 
populations is due to additive genetic variance, Brommer, 2011) 
for further analyses. These assumed values are commonly used in 
other QST and PST studies (Brommer, 2011; e.g., Leinonen et al., 
2013). However, we examined the change in PST across all combi‐
nations of a range of heritabilities and scalar values (from 0.1 to 1 
in 0.1 increments). This showed us that changing these variables 

PST=�
2

GB
∕
(

c∗ �2
GB

+2∗h2 ∗ �2
GW

)

,
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did	not	greatly	influence	the	results	(Figure	3).	Furthermore,	her‐
itability estimates of different traits in threespine stickleback 
vary from relatively low (plate count: h2 = 0.25, (Mc Cairns & 
Bernatchez, 2012) and h2 = 0.26, (Baumgartner, 1995; Leinonen, 
Cano, & Merilä, 2011)) to intermediate (fin length: h2 = 0.46 (Loehr, 
Leinonen, Herczeg, O'Hara, & Merilä, 2012), gill raker number: 
h2 = 0.58, (Leinonen et al., 2011) spine length: h2 = 0.61 to 0.66 
(Leinonen	et	al.,	2011;	Loehr	et	al.,	2012)).	Very	high	heritabilities	
are rare, but h2 = 0.84 has been recorded for plate counts in some 
populations (Hagen, 1973).

2.8.3 | PST versus FST

We	first	calculated	the	mean	PST	and	FST	for	each	pond	from	the	
initial	pairwise	PST	or	FST	calculations	(see	above)	to	avoid	violat‐
ing	the	assumption	of	independence	in	the	subsequent	linear	mod‐
els.	These	pond	mean	PSTs	and	FSTs	were	then	compared,	using	
the	lm	function	in	R	to	perform	a	linear	regression,	with	FST	as	the	
response	variable	and	PST	as	the	explanatory	variable.	Given	that	
our study utilizes a set of sampling sites that is large enough to 
compare means across all populations, we opted for a mean‐based 
comparison	of	PST‐FST	and	PST‐EST.	Assessing	population	means	
is a conservative approach compared to using analyses of pairwise 
distance	matrices,	such	as	Mantel	test	 (Guillot	&	Rousset,	2013).	

We tested the statistical difference between pond mean PSTs 
and	FST	using	the	ANOVA	function	in	R,	with	pond	mean	values	
(N	=	19)	as	 the	 response	and	FST/PST	group	as	 the	explanatory.	
We removed two outlier points (final N = 17) for the defense PST 
versus	FST	significant	test	to	maintain	the	assumption	of	normal‐
ity	for	the	ANOVA	and	to	ensure	the	outliers	were	not	influencing	
the test.

2.8.4 | PST‐EST

Environmental divergence (EST) here refers to observed ecologi‐
cal gradients (e.g., Kaeuffer et al., 2012) in (a) pond invertebrate 
community, (b) threespine stickleback diet, and (c) abiotic param‐
eters.	For	the	invertebrate	and	dietary	analyses,	mean	proportion	
of limnetic prey to benthic prey was calculated for each pond. The 
abiotic gradient was calculated as the first principal component of 
a	PCA	that	 included	pH,	total	dissolved	solids,	and	pond	surface	
area. Total dissolved solids and pond surface area were normal‐
ized,	using	min–max	scaling,	prior	to	the	PCA	calculation	(pH	was	
normally	 distributed).	 Subsequently,	 for	 each	 set	 of	 pond	 mean	
PSTs (for each trait type) and pond ESTs (for each environmental 
parameter), a linear regression was performed to assess the effect 
of EST on PST using the lm function in R, as previously stated for 
the	PST‐FST	analysis.

F I G U R E  3   Sensitivity of the mean 
PST	estimates,	relative	to	mean	FST	
(black dotted line). Estimated PSTs ranges 
(colored lines) are represented for the 
19 ponds for each set of phenotypic 
traits (panels), assuming different trait 
heritabilities (h2, legend) and additive 
genetic values (scalar = c, x‐axes). If mean 
PST	>	FST,	then	natural	selection	(or	
phenotypic plasticity, if wild collected 
individuals) is likely driving phenotypic 
divergence. The figure shows that 
PST	>	FST	for	most	h2 values for defense 
traits and for h2 < 0.4 for feeding, 
swimming, and shape traits. Moreover, at 
low h2, PST estimates are more strongly 
dependent on assumed additive genetic 
variance (c), especially for defense 
phenotype
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3  | RESULTS

3.1 | Environmental variation

Total dissolved solids ranged from 0.042 to 0.306 ppm, pH from 
7.26 to 9.38 (reflecting neutral to alkaline ponds), and pond surface 
area from 608 to 105,000 m2 across the ponds. Proportions of sam‐
pled limnetic to benthic invertebrates were high across the ponds 
(mean proportion per pond = 0.887; SD = 0.142) The dietary analysis 
showed lower proportions of limnetic to benthic prey across ponds, 
with mean proportion of limnetic per pond being 0.43; SD = 0.21.

3.2 | Morphological variation

Average	 body	 size	 of	 threespine	 stickleback	 varied	 between	males	
(mean = 47.9 mm, SD = 6.4) and females (mean = 51.9 mm, SD = 8.0) 
and ranged from 44 to 57 mm across the ponds (mean = 50.3 mm 
SD = 3.6).

3.2.1 | Feeding traits

Multivariate feeding traits varied significantly among ponds 
(Pillai = 0.703, p < 0.01) and sex (Pillai = 0.057, p < 0.01). Population 
mean	GRN	ranged	from	12.3	to	14	(mean	=	13.1,	SD = 0.35), size‐
corrected	 GRL	 from	 0.76	 to	 1.02	 mm	 (mean	 =	 0.89,	 SD = 0.10), 
size‐corrected	GW	from	0.18	to	0.22	mm	(mean	=	0.19,	SD = 0.01), 
and size‐corrected arc length from 1.40 to 1.72 mm (mean = 1.56, 
SD	=	0.10).	GRN,	GRL,	and	arc	length	differed	also	between	sexes	(all	
p	<	0.05),	whereas	GW	did	not	(p = 0.07; Table 1).

3.2.2 | Swimming traits

Multivariate swimming traits varied significantly among ponds 
(Pillai = 0.264, p < 0.01) and sex (Pillai = 0.085, p < 0.01). Size‐
corrected pond mean pectoral fin length ranged from 6.00 to 
6.53 mm (mean = 6.22, SD = 0.17), average dorsal fin ray numbers 
ranged from 11.1 to 11.8 (mean = 11.3, SD = 0.18), and average 
caudal fin ray numbers ranged from 11.9 to 12.5 (mean = 12.2, 
SD = 0.15). Pectoral fin length, dorsal fin ray number, and cau‐
dal tail fin ray number differed among populations (all p < 0.01, 
Table 1), while pectoral fin ray numbers did not (p = 0.78) (Table 1). 
Pectoral fin length, dorsal fin ray numbers, and caudal fin ray num‐
bers (all p < 0.02, Table 1) differed between sexes, while pectoral 
fin ray number did not (p = 0.07).

3.2.3 | Defense traits

Multivariate defense traits varied significantly among ponds 
(Pillai = 0.358, p < 0.01) and sex (Pillai = 0.036, p < 0.01). Size‐cor‐
rected pond mean spine length ranged from 2.82 to 3.33 mm 
(mean = 3.1, SD = 0.15) and lateral plate number from 0.1 to 3.11 
(mean = 0.97, SD = 0.74). Spine length as well as lateral plate num‐
ber differed significantly among ponds (both p < 0.01) and sex (both 
p < 0.01, Table 1).

3.2.4 | Geometric morphometric body shape

Procrustes	 ANOVA	 of	 the	 Procrustes	 coordinate	 matrix	 indi‐
cated threespine stickleback differed in body shape among ponds 
(p	=	0.01,	Table	1;	Figure	4),	but	not	between	the	sexes	(p = 0.16).

3.3 | PST‐FST and PST‐EST comparisons

We tested the effect of changing values for h2 and c	(Figure	3).	The	
results	were	quite	robust,	justifying	our	selection	of	h2 = 0.5 and 
c = 1. Mean PSTs across ponds for feeding morphology, swimming 

TA B L E  1  Analyses	of	variance	(ANOVA)	for	effects	of	pond	
identity on meristic phenotypic traits, grouped by trait type (body 
length,	swimming,	feeding,	and	defense)	and	Procrustes	ANOVA	
of the effects of pond identity on the geometric morphometric‐
derived Procrustes coordinate matrix of body shape

  Sum Sq Mean Sq F p

Length Pond 2.987 0.166 9.53 <0.01

Sex 0.822 0.822 47.23 <0.01

Swimming

PFL Pond 17.217 0.957 4.79 <0.01

Sex 8.607 8.607 43.06 <0.01

DFRN Pond 0.447 0.025 2.78 <0.01

Sex 0.109 0.109 12.16 <0.01

TFRN Pond 0.287 0.016 2.03 <0.01

Sex 0.04 0.04 5.13 0.02

PFRN Pond 0.012 0.001 0.73 0.78

Sex 0.003 0.003 3.31 0.07

Feeding

GRN Pond 1.581 0.088 3.39 <0.01

Sex 0.143 0.143 5.52 0.02

GRL Pond 3.991 0.222 17.06 <0.01

Sex 0.42 0.42 32.29 <0.01

GL Pond 0.051 0.003 3.61 <0.01

Sex 0.003 0.003 3.26 0.07

AL Pond 6.379 0.354 9.84 <0.01

Sex 0.217 0.217 6.02 0.01

Defense

DSL Pond 11.791 0.655 7.2 <0.01

Sex 1.55 1.55 17.05 <0.01

LPN Pond 25.113 1.395 8.8 <0.01

Sex 1.154 1.154 7.28 <0.01

Shape Pond 0.115 0.006 3.75 <0.01

Sex 0.002 0.002 1.31 0.16

Note:	Pond	DF	=	18,	Sex	DF	=	1,	Residuals	=	642.	Statistically	significant	
effects (p < 0.05) are highlighted in bold.
Trait	abbreviations:	AL,	arc	length;	DFRN,	dorsal	fin	ray	number;	DSL,	
dorsal	spine	length;	GRL,	gill	raker	length;	GRN,	gill	raker	number;	GW,	
gill	raker	gap	width;	LPN,	lateral	plate	number;	PFL,	pectoral	fin	length;	
PFRN,	pectoral	fin	ray	number;	TFRN,	tail	fin	ray	number.
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morphology,	 and	 body	 shape	were	 greater	 than	 pond	 FSTs	 only	
when h2 was low (h2	 <	 0.2–0.3;	 Figure	 3).	 In	 contrast,	 defense	
traits	 showed	 consistently	 greater	 mean	 PSTs	 than	 FSTs	 across	
the range of h2 and c	 (Figure	 3).	Using	 a	h2 = 1 (i.e., trait varia‐
tion among populations is fully genetically determined) generally 
greatly altered the magnitude and variation of the PST calcula‐
tions, whereas altering c at h2 < 1 had little effect on any of the 
PST	calculations	(Figure	3).

Pond‐specific PSTs for feeding morphology ranged from <0.001 
to 0.181 (mean = 0.025, SD = 0.030), for swimming morphology 
from <0.001 to 0.060 (mean = 0.017, SD = 0.013), for defense mor‐
phology from <0.001 to 0.056 (mean = 0.057, SD = 0.086), and 
for body shape from 0.007 to 0.091 (mean = 0.026, SD = 0.014). 
Pond‐specific	 FSTs	 ranged	 from	 0.007	 to	 0.141	 (mean	 =	 0.059,	
SD	=	0.030;	Figure	5).

Using h2 = 0.5 in our calculation of PST, we found a significant 
positive	 relationship	 between	 defense	 PST	 and	 FST	 (R2 = 0.404, 

p	=	0.002),	with	defense	PST	significantly	greater	compared	to	FST	
(p	=	0.02;	Figure	5).	We	checked	 that	 the	PST‐FST	 linear	 relation‐
ship in defense traits was not driven by outliers, by removing the 
two extreme populations and reanalyzing the model, whereby the 
results were still significant (R2 = 0.245, p = 0.025). We found nonsig‐
nificant	PST‐FST	relationships	for	feeding	(R2	=	−0.048, p = 0.687), 
swimming (R2	=	−0.058,	p = 0.91), and shape (R2	=	−0.041,	p = 0.596) 
traits	(Table	2).	Pond	mean	PSTs	were	significantly	lower	than	FST	
for swimming traits (p < 0.01) and body shape (p	=	0.02;	Figure	5).	
Feeding	traits	pond	mean	PSTs	were	not	significantly	different	from	
FST	(p	=	0.14;	Figure	5).

There was a positive relationship between PSTs of swimming 
morphology and ESTs represented as pond limnetic invertebrate 
communities (R2 = 0.230, p = 0.022), and a positive relationship be‐
tween PSTs and EST as limnetic prey (R2 = 0.161, p = 0.050; (Table 3). 
All	other	PST‐EST	relationships,	 including	associations	with	abiotic	
variation, were nonsignificant (Table 3).

F I G U R E  4  Geometric	morphometric‐
based Procrustes plots of the mean 
fish shape from each pond (M04 to 
P33) relative to the mean reference fish 
shape across all populations. Black dots 
correspond to landmarks
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4  | DISCUSSION

We found clear differences among phenotypes of threespine stick‐
leback across 19 small, intermittently connected, ponds. These phe‐
notypic differences were seen in meristic/morphometric feeding, 
defense, and swimming traits and in body shape (geometric mor‐
phometric). Phenotypic divergence (population pairwise PSTs) in 
defense traits was greater than neutral genetic differentiation (pop‐
ulation	pairwise	FSTs),	indicating	divergent	selection	or	phenotypic	
plasticity. There were no clear difference between phenotypic diver‐
gence and neutral genetic differentiation for swimming traits, feed‐
ing traits, or body shape, suggesting that divergence in these traits 
may be mostly influenced by genetic drift or stabilizing selection. We 
found little evidence for the role of environmental divergence (EST) 
in phenotypic divergence, which may partly reflect relative environ‐
mental similarities of the ponds across the study area. The exception 

was that divergence in swimming traits positively correlated with 
pond differences in the proportion of limnetic invertebrates in the 
environment and in stickleback diet. Overall, our results suggest 
that phenotypic divergence in these small populations is driven by a 
combination of neutral processes (gene flow, drift) and either natural 
selection or phenotypic plasticity in response to small‐scale environ‐
mental variation.

Defensive traits showed stronger phenotypic divergence relative 
to neutral genetic divergence, regardless of assumed heritability, 
which suggests that divergent selection or phenotypic plasticity may 
have promoted differentiation in defensive traits across our study 
ponds. The among pond divergence in these traits was most appar‐
ent among the southern and westernmost ponds, which have pre‐
viously been shown to have greater dispersal limitation compared 
to the more admixed northeastern ponds (Seymour et al., 2013). In 
general, defensive traits (pelvic girdle, lateral plate number and size, 

F I G U R E  5   Upper graph: Box plots 
showing	mean	PST	and	FST	values	(y‐axis) 
across all 19 sampling ponds for each PST 
and	FST	groups	(x‐axis). Dotted line is 
mean	FST	across	all	ponds	to	allow	direct	
comparison	between	mean	PST	and	FST	
values. The upper and lower whiskers 
correspond	to	the	1.5	times	interquartile	
range. Lower graphs: pond‐specific PSTs 
and	FSTs	for	each	phenotypic	trait	type	
(defense, feeding, swimming, and body 
shape). The corresponding pond‐specific 
PSTs	(blue	line,	closed	points)	and	FSTs	
(orange line, open points) values (y‐axis) 
plotted for each pond (x‐axis). Error bars 
show the standard error for mean PSTs 
and	FSTs	for	each	pond	calculated	from	all	
possible pairwise comparisons. Ponds are 
ordered geographically from west to east 
(x‐axis,	Figure	2)

PST‐FST

Group Sum Sq Resid. Mean sq F value R2 p

Defense 5.60E−02 7.18E−02 13.20 0.404 0.002

Feeding 1.51E−04 1.52E−02 0.17 −0.048 0.687

Swimming 1.44E−06 1.84E−03 0.01 −0.058 0.91

Shape 4.91E−05 2.86E−03 0.29 −0.041 0.596

Note: Residual degrees of freedom = 17.

TA B L E  2   Linear regression statistics 
for	effects	of	FST	on	PST,	grouped	by	PST	
measure
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spine lengths) in threespine stickleback are commonly under diver‐
gent selection via predation pressure (Barrett, Rogers, & Schluter, 
2008). The defensive traits of ancestral marine threespine stickle‐
back likely evolved when gape‐limited predators, including fish and 
birds, promoted the selection of long spines and numerous lateral 
plates	 (Bell	 &	 Foster,	 1994).	 In	 freshwater	 populations,	 this	 selec‐
tion has commonly been reversed, although there is considerable 
variation	 (Bell	 &	 Foster,	 1994).	 In	 Belgjarskógur	 the	 predation	 of	
threespine stickleback is suspected to be primarily avian, for exam‐
ple, by the horned grebe (Podiceps auritus), red‐breasted mergan‐
ser (Mergus serrator), and great northern diver (Gavia immer), which 
migrate	 to	 the	area	 for	breeding.	Fish	predation	 is	expected	 to	be	
rare in these ponds due to their small size. Larger ponds may con‐
tain	Arctic	 charr	 (Salvelinus alpinus) and brown trout (Salmo trutta; 
Einarsson et al., 2004), who are possible predators on threespine 
stickleback. Small ponds may have greater vegetation cover, where 
threespine stickleback could more easily hide from possible pred‐
ators, both avian and fish, in comparison with larger ponds. Lower 
plate numbers, which would indicate low predation, were observed 
in small western ponds; however, other fish in ponds of similar size 
also had plate numbers comparable to larger ponds.

Interestingly, we found that phenotypic divergence in swimming 
traits, feeding traits, and body shape was either promoted by drift 
(PST	=	FST)	or	under	divergent	selection	(PST	>	FST).	Commonly	for	
QST‐FST	 comparisons,	 trait	 heritability	 is	 assumed	 to	 be	0.5	 (e.g.,	
Hangartner et al., 2012; Kaeuffer et al., 2012), although Brommer 
(2011) indicated that heritability is an important assumption that 
should	 be	 considered.	 All	 PST/QST	 analyses	 depend	 strongly	 on	
the assumed value for narrow sense heritability; however, studies 
commonly do not conduct sensitivity analysis for PST calculations. 
Here, we decided to include a sensitivity analysis of the PST calcu‐
lation, which supported our selection of values for h2 and c, but also 

highlights the importance of narrow sense heritability when calcu‐
lating PST.

In threespine stickleback, highly heritable traits include lateral 
plate number, gill raker number, and dorsal fin rays, whereas body 
size, body shape, gill raker length, and gap width, as well as spine 
length, tend to be more plastic with narrow sense heritability rang‐
ing	between	0.3	and	0.6	(Hermida,	Fernandez,	Amaro,	&	San	Miguel,	
2002).	For	this	study,	we	assumed	narrow	sense	heritability	across	
the multivariate traits groups to be 0.5, based on existing literature 
and comparable PST/QST study assumptions. While assuming a 
mean narrow sense heritability of 0.5, which is comparable to her‐
itability estimates in plastic length‐based threespine stickleback 
traits (Leinonen et al., 2011), it is likely that the more plastic pheno‐
types (lower heritability) in our study (i.e., body shape and swimming 
structures), are highly influenced by drift or potentially stabilizing se‐
lection	(i.e.,	PST	<	FST).	Traits	that	are	likely	less	plastic	(higher	her‐
itability), for example, feeding structures, are more likely influenced 
by drift and could possibly be under some stabilizing selection if we 
assumed an elevated h2 of 0.6 or greater, although elevated herita‐
bility values above 0.5 are not common for these traits (Leinonen et 
al., 2011; Loehr et al., 2012).

4.1 | Drivers of phenotypic divergence: environment 
versus neutral processes

We found that variation in swimming trait of stickleback was posi‐
tively correlated with the relative abundance of limnetic prey (e.g., 
copepods and cladocerans) in the diet and the availability of limnetic 
prey in the ponds. Threespine stickleback morphology is often linked 
to	availability	of	 limnetic	versus	benthic	prey	(Bell	&	Foster,	1994),	
whereby stickleback develop longer gill rakers, larger fins (relative 
to body size), and more streamlined bodies to capture limnetic prey 

Group Sum Sq Resid. Mean sq F value R2 p

(a) PST‐EST (diet)

Defense 2.61E−03 1.25E−01 0.355 −0.037 0.559

Feeding 2.51E−04 1.51E−02 0.282 −0.042 0.603

Swimming 3.83E−04 1.46E−03 4.456 0.161 0.050

Shape 6.64E−05 2.85E−03 0.397 −0.035 0.537

(b) PST‐EST (biotic)

Defense 2.75E−03 1.25E−01 0.375 −0.036 0.549

Feeding 1.76E−04 1.52E−02 0.197 −0.047 0.663

Swimming 5.03E−04 1.34E−03 6.383 0.230 0.022

Shape 8.62E−06 2.90E−03 0.051 −0.056 0.825

(c) PST‐EST (abiotic)

Defense 3.44E−03 1.25E−01 0.471 −0.037 0.502

Feeding 1.27E−03 1.48E−02 1.532 −0.019 0.233

Swimming 2.90E−04 1.57E−03 3.172 0.097 0.093

Shape 4.84E−04 2.52E−03 3.384 0.085 0.083

Note: Residual degrees of freedom = 17.

TA B L E  3   Linear regression statistics 
for effects of EST on PST, grouped 
by PST measure, for (a) diet EST, (b) 
pond invertebrate EST, and (c) abiotic 
environment
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(Willacker, Hippel, Wilton, & Walton, 2010). While previous studies 
have shown clear benthic–limnetic divergence in threespine stick‐
leback in several lakes across the northern hemisphere, the differ‐
entiation is much weaker within the shallow Lake Mývatn, where 
divergence of stickleback is related to benthic habitats (Millet, 
Kristjánsson, Einarsson, & Räsänen, 2013). Likewise, Belgjarskógur 
threespine stickleback swimming morphology may be a plastic re‐
sponse to more limnetic feeding strategies in order to chase limnetic 
prey that are more abundant in the water column (Day & McPhail, 
1996)—as reflected in the similar relationship between swimming 
PST	and	prey	availability	and	diet	ESTs.	Based	on	the	PST‐FST	and	
PST‐EST comparisons, swimming traits may be under stabilizing se‐
lection due combinations of small effective population size and sea‐
sonal changes in prey availability. Whereas, body shape and feeding 
traits	seem	to	reflect	drift	(PST	=	FST)	across	small	geographic	and	
environmental	scales	(Whitney,	Bowen,	&	Karl,	2018).	Given	the	lim‐
ited number of generations since Belgjarskógur separated from the 
larger Mývatn system (~2,500 threespine stickleback generations), 
the observed phenotypic variation between ponds may be a recent 
example of genetic drift resulting from genetic sorting and range ex‐
pansion following localized extinction (Hallatschek et al., 2007).

5  | CONCLUSIONS

Here, we examined the phenotypic divergence of threespine stick‐
leback, across small populations under partially dispersal limited 
conditions and over a small geographic scales. Specifically, we exam‐
ined whether different evolutionary processes may account for the 
observed variation in different sets of traits. Our findings show that 
genetic drift is likely a key player for a large extent of the observed 
phenotypic	diversification.	At	the	same	time,	environmental	differ‐
ences were correlated with small spatial scale phenotypic divergence 
in	swimming	morphology,	although	PST‐FST	comparisons	indicated	
that these traits were under stabilizing selection. Due to the small 
effective population sizes (Ne = 12–86, Seymour et al., 2013) and 
variation in connectivity of ponds across Belgjarskógur (Seymour et 
al., 2013), combinations of random genetic drift and local natural se‐
lection at small geographic scales in isolated populations are likely 
facilitating phenotypic divergence in this system. Overall, our find‐
ings highlight the importance of assessing variation in phenotypic 
and genetic variation on dispersal limited and geographically close 
systems to further our understanding of the relative roles of drift, 
gene flow, and natural selection in biological diversification.
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