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Defective Gpsm2/Gai3 signalling disrupts
stereocilia development and growth cone actin
dynamics in Chudley-McCullough syndrome
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Mutations in GPSM2 cause Chudley-McCullough syndrome (CMCS), an autosomal recessive

neurological disorder characterized by early-onset sensorineural deafness and brain

anomalies. Here, we show that mutation of the mouse orthologue of GPSM2 affects actin-rich

stereocilia elongation in auditory and vestibular hair cells, causing deafness and balance

defects. The G-protein subunit Gai3, a well-documented partner of Gpsm2, participates in the

elongation process, and its absence also causes hearing deficits. We show that Gpsm2

defines an B200 nm nanodomain at the tips of stereocilia and this localization requires the

presence of Gai3, myosin 15 and whirlin. Using single-molecule tracking, we report that loss of

Gpsm2 leads to decreased outgrowth and a disruption of actin dynamics in neuronal growth

cones. Our results elucidate the aetiology of CMCS and highlight a new molecular role for

Gpsm2/Gai3 in the regulation of actin dynamics in epithelial and neuronal tissues.
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Pharmacogenomics and Drug Research, University of Tübingen, 72074 Tubingen, Germany. 9 UCL Ear Institute, London WC1X 8EE, UK. w Present address:
Michigan State University Cell and Molecular Biology Program, East Lansing, Michigan 48824, USA. * These authors contributed equally to this work.
** These authors jointly supervised this work. Correspondence and requests for materials should be addressed to M.M. (email:
mireille.montcouquiol@inserm.fr).

NATURE COMMUNICATIONS | 8:14907 | DOI: 10.1038/ncomms14907 | www.nature.com/naturecommunications 1

mailto:mireille.montcouquiol@inserm.fr
http://www.nature.com/naturecommunications


C
hudley-McCullough syndrome (CMCS, OMIM 604213) is
a rare autosomal recessive neurological disorder in
humans, characterized by early and severe onset of

sensorineuronal deafness and hypoplasia of the corpus callosum
(CC)1. CMCS syndrome patients often display frontal
polymicrogyria (excessive small folds in the cortex of the brain)
and heterotopia. These may be associated with cerebellar
dysplasia, arachnoid cysts and ventriculomegaly. Some degree
of delayed mental development has been reported for some
patients, as well as occasional seizures, with overall psychomotor
development generally normal2. The reason for this pleiotropy is
not known and neither is the molecular basis of the pathology.

Recently, mutations in G-protein signalling modulator 2
(GPSM2 in humans, also known as Leu-Gly-Asn repeat-enriched
protein (LGN), mammalian Partner of inscuteable (mPins) or
Gpsm2 in mammals) were found to cause CMCS2–4. Because of
the well-known role for Gpsm2 in the control of spindle position
during orientated division5, it was suggested that CMCS might
result from defects in asymmetric division of progenitors, both in
the inner ear and the brain2. Recently, we demonstrated that
Gpsm2 and one of its binding partner, the a-subunit of the
heterotrimeric G-protein Gi3 (Gai3 encoded by Gnai3), control
the asymmetric localization of the kinocilium in developing
postmitotic hair cells (HCs) of the mammalian cochlea6,7.
These results were confirmed by another group that also
reported an accumulation of both proteins at the tip of the hair
bundles of the HCs8,9.

A HC stereocilia bundle is an actin-rich organelle consisting of
a specialized array of microvilli-derived structures that protrude
from the apex of auditory and vestibular HCs. Mechanical
deflection of the hair bundle gates mechano-sensitive ion
channels in stereocilia that leads ultimately to afferent action
potentials being conveyed to the central nervous system. Proper
development and maintenance of stereocilia are vital for normal
hearing10. Mechanisms that control HC bundle length are not
fully understood. During early postnatal development, actin
monomers are added at the barbed (plus) end of the stereocilium,
resulting in elongation from the tip11–13. Several proteins are
known to control this process14,15, with one common property
being their localization at the tips of stereocilia during
elongation16. The scaffold protein whirlin (encoded by Whrn)
and myosin 15 (encoded by Myo15) are two of the
best-characterized proteins among the HC bundle proteome
participating in stereociliary growth. Myosin 15 interacts with
whirlin and traffics it to the stereocilia tips where they colocalize
with the actin-bundling and capping protein Eps8 (epidermal
growth factor receptor pathway substrate 8)17–19, also dependant
on myosin 15 for its localization at the stereociliary tip.
Defects in all three genes individually cause abnormally short
stereocilia19–22, deafness in mice19,21,23 and non-syndromic
human deafness24–26.

In this study, we show that Gpsm2 and Gai3 define an
B200 nm domain at the tip of stereocilia, and that conditional
deletion of either gene prevents stereocilia elongation, the likely
cause of the early deafness and hearing deficits observed in
mutant mice. Furthermore, we demonstrate that mutations
identified in CMCS patients affect protein complexes, including
a novel and functionally relevant interaction between Gpsm2 and
whirlin. Using live super-resolution imaging, we show that actin
dynamics are disrupted in growth cones of young hippocampal
neurons from Gpsm2 mutant mice, affecting neuronal outgrowth.
These data support the idea of a global function for Gpsm2 in
modulating actin dynamics. The versatility of Gpsm2/Gai3

roles on actin and tubulin, in proliferative and postmitotic
cells, is the probable cause of pleiotropy in CMCS brain
anomalies.

Results
Gpsm2 and Gai3 define a tip nanodomain within stereocilia.
We evaluated the localization of Gpsm2 and Gai3 during the
development of stereocilia hair bundles using previously char-
acterized specific antibodies6. Gpsm2 was localized at the tip of
the nascent hair bundle at embryonic day 17.5 (E17.5), the earliest
phase of its formation (Fig. 1a, yellow arrows). Consistent with
previous observations, the apical crescent-shaped accumulation of
Gpsm2 was also present (Fig. 1a, stars; refs 6,8). By postnatal day
7 (P7), when stereocilia are rapidly elongating, Gpsm2 and Gai3

were enriched at the tips of the tallest row of inner hair cell (IHC)
stereocilia, the actual sensory receptors receiving 95% of the fibres
of the auditory nerve that project to the brain (Fig. 1b,c), but also
in vestibular HCs of the ampulla (Fig. 1d). At P15, the
enrichment is maintained in the tallest row, whereas we could
not detect fluorescence in the middle and small rows (Fig. 1e,f).
At this stage, the apical crescent-shaped staining became
fragmented or absent, suggesting a gradual loss of these
proteins from this zone. Multicolour STimulated Emission
Depletion (STED) nanoscopy was used to probe the stereocilia
tip compartment and revealed that Gpsm2 was concentrated into
a circular cap-like structure (Fig. 1f–h), similar to what was
described for myosin 15 (refs 12,17,27), above the actin core
labelled with phalloidin. Multicolour STED revealed that both
Gpsm2 and Eps8 domains mostly overlapped (Fig. 1i). To
evaluate the size of the tip domain, we mechanically isolated
stereocilia after immunocytochemistry, to obtain perfectly flat
structures (Fig. 1j,k). Using fluorescence intensity line-scans along
individual long stereocilia labelled with Gpsm2 and Eps8
antibodies and using the full-width at half-maximum (FWHM),
we estimated that the tip domain extended B200 nm axially at
the stereocilia tip (Gpsm2 FWHM¼ 198±59 nm, n¼ 10; Eps8
FWHM¼ 200±63 nm, n¼ 10). These results reveal a narrow
stereocilia tip compartment of B200 nm where actin filament
polymerization is regulated during hair bundle development.

Loss of Gpsm2 or Gai3 blocks stereocilia elongation. Owing to
their localization at the site of actin polymerization, we hypo-
thesized that Gpsm2 and Gai3 might be molecular components
required for the developmental elongation of stereocilia. To test
this, we examined the cochlear sensory epithelium of conditional
mutant mice generated with a Foxg1-Cre driver (hereafter,
named Gpsm2 cKO and Gnai3 cKO), during critical stages of
stereocilia elongation. At P5, in early phases of elongation,
scanning electron microscopy (SEM) analyses revealed an B40%
decrease in IHC tallest stereocilia length in Gpsm2 cKOs (see
Methods) and B25% decrease in Gnai3 cKOs, compared with
controls (Fig. 2a–d). There was also a statistically significant
increase in the number of stereocilia per bundle in IHCs of
Gpsm2 cKOs (by B25%) and Gnai3 cKOs (by B15%), with
abnormal supernumerary (more than three) rows of short
stereocilia compared with control (Fig. 2e). Omnidirectional
lateral links could be seen in both Gpsm2 and Gnai3 cKOs
(magenta arrows and insets in Fig. 2b,c), similar to the phenotype
reported for the myosin 15-deficient mutant mouse shaker 2
(ref. 28) (sh2, Myo15sh2). We conclude that Gpsm2 and Gai3 are
each required for the normal process of actin filament elongation
that drives stereocilia development.

At P21, when elongation is completed, the average length of the
tallest row of stereocilia was reduced by B70% and 50%
compared with controls in Gpsm2 and Gnai3 cKOs, respectively
(Fig. 2f–i, Supplementary Fig. 1a). The phenotype was more
severe in Gpsm2 cKOs that have short, thick stereocilia. In Gnai3
cKO, we sometimes observed normal size stereocilia among an
overall shortened hair bundle (Fig. 2h, magenta brackets), notably
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in the midbasal and more immature apical regions of the cochlea
(Supplementary Fig. 1a, right panel, green arrows). In both cKOs,
we observed supernumerary stereocilia per bundle, with B60%
and 50% increase in Gpsm2 and Gnai3 cKOs, respectively, as
compared with controls (Fig. 2j). These phenotypes are similar to
those reported for Myo15, Whrn and Eps8 mutants20–22,29. Our
results show that IHC bundles in Gpsm2 and Gnai3 mutants
share similar phenotypes, with stereocilia elongation significantly
affected at the onset of hair bundle formation and an overall more
severe phenotype in Gpsm2 cKOs.

Owing to the well-documented role of Gpsm2 (Pins) on
spindle orientation during asymmetric cell divisions, hearing loss
in CMCS patients was proposed to result from a defect in planar
cell polarity2–4. Once apical/basal polarity has been established in
mice, formation of the stereocilia bundle initiates in postmitotic

HCs in the basal part of the cochlea coil. The critical phase
of stereocilia elongation required to form the mature hair
bundle occurs mostly after birth (P0). To confirm a postmitotic
role for Gpsm2 in hair bundle elongation, we generated
Gpsm2 conditional mutants using the Pou4f3 promoter to
drive Cre-mediated recombination in postmitotic HCs only30

(Supplementary Fig. 1b). Hair bundles in these mutants displayed
supernumerary rows of shorter stereocilia at P8 (Fig. 2k), similar
to the phenotype we observed with an early embryonic deletion of
the gene. To confirm a postmitotic function of Gai in stereocilia
elongation, we treated cochlear explants from newborn rats (P0/
P1) for 8 days in vitro (DIV) with increasing concentrations of
pertussis toxin (PTX), a pharmacological inhibitor of all three Gai

protein isoforms (Supplementary Fig. 1c). After 8 DIV, we found
that stereocilia elongate in control cultures, whereas in the
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Figure 1 | Gpsm2 and Gai3 are dynamically expressed at the tips of stereocilia. (a–c) Surface view of whole mounts of rat cochlear sensory epithelium at

E17.5 (a) and P7 (b,c) illustrating Gpsm2 (a,b, green) and Gai3 (c, green) labelling in the actin-rich hair bundle labelled by phalloidin (Ph, magenta). (a) At

E17.5, Gpsm2 localizes at the tips of stereocilia at the onset of hair bundle growth (yellow arrows), but also in an asymmetrical crescent in a distal region of

the apical membrane of HCs (green asterisks). (b,c) By P7, both proteins accumulate at tips of stereocilia (green), strongly in IHC (yellow arrows) and

more weakly in OHC (green arrows). Arrow: inner hair cell (IHC). Bracket: outer hair cell. Scale bars (a–c), 4mm. (d) Gpsm2 (green) is localized at tips of

P8 stereocilia of rat vestibular HC bundles. Ph: phalloidin. Scale bar, 2 mm. (e) At P15, confocal imaging reveals the accumulation of Gai3 protein at the tip of

individual stereocilium. Scale bar 2mm. (f–h) At P15, STED super-resolution imaging of the Gpsm2-expression domain at an individual stereocilium tip

(f). Gpsm2 accumulated at tips of IHC stereocilia (green), above the F-actin labelling (magenta). (f, right panel, g) Acquisition of single plane images in two

perpendicular axis as illustrated on the schematic in h reveals the cap-like structure of the Gpsm2 nanodomain. Scale bars, 2 mm. (i) Triple STED labelling

reveals two mostly overlapping nanodomains at stereocilia tips with Gpsm2 (green) and Eps8 (magenta) above the F-actin signal (Ph, white). Left images:

individual channels for Gpsm2 (top) and Eps8 (middle). The bottom image illustrates the phalloidin channel (grey) with two-colour binary representation of

Gpsm2 (green) and Eps8 (magenta), with the overlapping domain (plain white). Scale bar, 2 mm. (j) Isolated long (j) and short (j, inset) stereocilia illustrate

the accumulation of the two proteins in the long stereocilium only. Scale bar, 1 mm. (k) Intensity profiles of phalloidin, Gpsm2 and Eps8 from (j) (orange line

across tip domain). Immunostainings repeated more than six times.
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presence of PTX, hair bundles of IHCs exhibited supernumerary
rows of short stereocilia (Fig. 2l), similar to those observed for the
Gnai3 cKOs. In these PTX-treated samples, the average length of
the tallest row of stereocilia was reduced by B30% when
compared with controls (Fig. 2m).

Loss of Gpsm2 or Gai3 causes hearing and balance deficits. We
assessed the auditory function of Gpsm2 and Gnai3 cKOs by
measuring the threshold of auditory brainstem responses (ABR)
using click-tones and pure tone of frequencies from 1 to 45 kHz.
Gpsm2 cKOs were profoundly deaf at 6 weeks of age (Fig. 3a),
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Figure 2 | Gpsm2 and Gnai3 mutations inhibit stereocilia elongation. (a–c) SEM of cochlear inner hair cells (IHC) from controls (a), Gpsm2 (b) or Gnai3

cKOs (c) in P5 mouse. The kinocilium is indicated with yellow stars. In Gpsm2 (b) and Gnai3 (c) cKOs, the staircase pattern is almost absent with stereocilia

of similar length and width. Lateral links between adjacent stereocilia are preserved (magenta arrows, insets). Scale bars, 1 mm. (d,e) Quantifications at P5

show reduced length of IHC tallest stereocilia and supernumerary stereocilia in both Gpsm2 and Gnai3 cKOs. Quantifications are presented as whisker box

plots (min/max), *Po0.05; ***Po0.001 with one-way ANOVA (post hoc Bonferonni’s test). (f–h) SEM of basal cochlear IHC from controls (f), Gpsm2 (g)

or Gnai3 cKOs (h) in P21 mouse. In Gpsm2 cKOs, stereocilia are short, typically with more than four rows and severely reduced staircase pattern. A similar,

but weaker phenotype was observed in Gnai3 cKOs, with occasional longer stereocilia in a bundle with overall shorter stereocilia (h, magenta brackets).

Scale bars, 1mm. (i,j) Quantifications at P21 are consistent with the above illustrations with a severely reduced length of IHC stereocilia and supernumerary

stereocilia in Gpsm2 cKOs, and a similar but milder phenotype in Gnai3 cKOs. Quantifications are presented as whisker box plots (min/max), *Po0.05;

***Po0.001 with one-way ANOVA (post hoc Bonferonni’s test). (k) 3D rendering of the surface of a control (top) and a Pou4f3-Gpsm2 mutant (bottom) at

P8. Mutants exhibit supernumerary rows of abnormally short stereocilia, sometimes split or fragmented (yellow asterisks). Scale bars, 4 mm. (l) SEM of

postnatal cochlear explants treated or not for 8 days (DIV8) with 100 ng ml� 1 PTX. In the PTX-treated samples (bottom panels), the stereocilia are shorter

than in controls (upper pannels), with similar widths. Scale bars, 1 mm. (m) Quantification of the length of the tallest stereocilia cultures treated with PTX

(blue line¼mean). n¼ 34 (control) and 76 stereocilia (PTX). Cultures repeated three times. ***Po0.0001 with unpaired Student’s t-test.
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with ABR thresholds above 90 decibel sound pressure level at all
frequencies, whereas Gnai3 cKOs displayed specifically high
frequency hearing loss starting at 11.3 kHz at the same age
(Fig. 3b). These results are consistent with the differences in
the severity of the phenotype we observed morphologically,
and demonstrate that Gpsm2 and Gai3 are essential for stereocilia
maturation and hearing. Another Gpsm2 cKO resulting in a
truncated protein lacking the carboxy terminus was recently

reported to be deaf31. Also, Gpsm2, but not Gnai3 cKOs,
exhibited increased hyperactive behaviour (413%) from controls
and circling behaviour (4130 rotations in cKO) (Fig. 3c–f).
Gpsm2 cKOs swam in tight circles and are more mobile than their
control littermates in a forced swim test (Fig. 3g). These results
are indicative of a vestibular dysfunction and are consistent with
the shortened stereocilia observed in the vestibular epithelium of
the Gpsm2 cKOs (Fig. 3h).
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Figure 3 | Gpsm2 and Gnai3 mutations affect cochlear and vestibular function. (a,b) Hearing tests on 4-week-old mice reveal severe threshold increases

in Gpsm2 cKO (a), compared with high frequency loss only in Gnai3 cKOs (b). Arrow in a indicates ABR thresholds exceeding the maximum testable

intensity. Mean±s.d. click-evoked ABR (click-ABR) and tone-burst-evoked ABR (f-ABR). Mean threshold values (in dB SPL) of click-ABR of control mice

are shown above corresponding bars. ***Po0.001 (Grey shaded area: Po0.05) by two-way ANOVA (post hoc Bonferonni’s multi comparisons test). f-ABR:

Control (Ctr) and cKO, n¼ 8 ears from eight mice click-ABR: Control and cKOs: n¼ 16 ears from eight mice. (c,d) Left panel: Gpsm2 cKOs (green traces)

display increased circling activity in a representative open-field during the first 30 s and at the end of the track (10 min) compared with control littermates,

whereas Gnai3 cKOs (magenta traces) are unaffected (right panel). (e,f) Gpsm2 cKOs mice cover more distance and rotate more than Gnai3 cKOs mice

(each circle is an individual mouse). Open white circles are controls. (g) Top: heat map of force swim test occupancy for control and Gpsm2 cKOs. Bottom:

during the 2 min test, Gpsm2 cKO mice showed less immobility and more body axis rotation compared with controls. (h) SEM of the surface view of the

macula of the utricle of P11 mice in control (left) and Gpsm2 cKO (right). Stereocilia elongation in the mutant is dramatically reduced compared with control.

Scale bars, 1mm.
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Gpsm2/Gai3 need myosin 15/whirlin for stereocilia elongation.
Since Gpsm2 and Gnai3 mutants have short stereocilia similar to
shaker 2 (sh2; myosin 15 functional null) and whirler (wi)
mutants, we hypothesized that these proteins form a larger
macromolecular complex. The delivery of whirlin to stereocilia
tips requires functional myosin 15, whereas trafficking of myosin
15 can occur independently of whirlin17. We found that Gpsm2
(Fig. 4a,b) and Gai3 (Fig. 4c,d) were both absent from the
stereocilia tips of sh2/sh2 (Fig. 4a,c) and wi/wi HCs at P8
(Fig. 4b,d). These data demonstrate that Gpsm2 and Gai3 require

myosin 15 to be trafficked to the tips of stereocilia. Myosin 15 was
still present at the tip of short stereocilia of Gpsm2 and Gnai3
cKOs at P8 (Fig. 4e,f), whereas whirlin localization was absent in
Gpsm2 and Gnai3 cKOs (Fig. 4g,h). Importantly, in earlier stages
(P4) we observed that the apical crescent of Gpsm2 and Gai3 was
maintained in sh2/sh2 mice (Fig. 5a,b). This result demonstrates
that both proteins depend upon different interactions and protein
complexes for apical membrane or stereocilia tip traffic within the
HC. We also confirmed that the localization of both proteins at
the tips of stereocilia was interdependent (Fig. 5c,d) as is the case
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ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14907

6 NATURE COMMUNICATIONS | 8:14907 | DOI: 10.1038/ncomms14907 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


in many other systems32,33. Altogether, our data demonstrate that
Gpsm2 and Gai3 are sorted to the apical membrane and to the
stereocilia tip via different protein interactions.

Our data suggest that whirlin is necessary for the trafficking
and/or the maintenance of Gpsm2 and Gai3 at the tip of the
stereocilia, and absence of whirlin in Gpsm2/Gnai3 cKOs also
suggest that the protein module participates in whirlin main-
tenance at the stereocilia tips. Altogether, our data show that the
similar phenotypes of sh2, wi, Gpsm2, Gnai3 mutant mice arise
from a common molecular function in driving stereocilia
elongation.

Gpsm2 and whirlin interact. To further explore the functional
interactions between myosin 15, whirlin, Gpsm2 and Gai3 pro-
teins, we used a heterologous system. COS-7 cells co-transfected
with complementary DNA (cDNA) constructs encoding both
myosin 15 and whirlin result in numerous actin-rich filopodia
protrusions and the two proteins accumulate at the tips of those
extensions17. Using this system, we show that Gpsm2 and Gai3

were also transported to the tip of the filopodia in the presence of
myosin 15 and whirlin (Fig. 6a,b). The majority of filopodia
tips (99%) contained Gpsm2 in the presence of whirlin and
myosin 15, and this number drops to 6% when an empty
vector coding for DsRed replaces DsRed-whirlin (Fig. 6c).
Co-immunoprecipitation experiments confirmed an interaction
between full-length myc-tagged Gpsm2FL and either green
fluorescent protein (GFP)–whirlin or untagged whirlin, whereas
non-immune IgG or pEGFP–C3 coding for GFP did not
co-immunoprecipitate either myc-Gpsm2 nor whirlin
demonstrating the specificity of the interaction (Fig. 6d,e,
Supplementary Fig. 2a,b). To assess the interaction in the
context of CMCS, we evaluated a human GPSM2 variant
reported in patients that is predicted to truncate the GoLoco
and linker domains, and is associated with multiple and severe
anatomical brain abnormalities2. The Gpsm2R318RfsX8 variant still
bound to whirlin, indicating that the N-terminal domain of

Gpsm2 was sufficient for this interaction (Fig. 6d,f). We used
glutathione S-transferase (GST)-pull down assays to show that
the unstructured C-terminal region of whirlin, between aa 672
and aa 810 was the minimal domain required to interact with
Gpsm2R318RfsX8 (Fig. 6d,g). All of the whirlin GST-constructs
lacking this region failed to interact with myc-Gpsm2R318RfsX8,
whereas the three GST-constructs containing this region pulled
down the variant (Fig. 6g, lanes 4, 6, 8). To test if Gpsm2FL may
act as an adapter stabilising whirlin at the tips of stereocilia,
we transfected HEK293T cells with increasing amounts of
myc-Gpsm2FL-encoding cDNA while maintaining the quantity
of DsRed-whirlin cDNA constant. Under these conditions, we
observed a net increase in DsRed-whirlin protein expression
levels, whereas increasing doses of DsRed-whirlin had no
significant reciprocal effect on myc-Gpsm2 levels (Fig. 6h,i).
Controls with increasing amount of cDNA encoding myc-
Gpsm2FL did not affect DsRed levels (Supplementary Fig. 2c).
One possible interpretation of these results is that when in a
complex with Gpsm2, whirlin protein may be stabilized, possibly
by being less susceptible to degradation.

As Gpsm2R318RfsX8 still bound whirlin, we evaluated if it
could modulate the ability of myosin 15 and whirlin to
generate filopodia. Figure 6d illustrates the position of GPSM2
truncating variants identified in CMCS patients and the resulting
predicted truncated proteins. In the presence of myc-Gpsm2FL,
42% of COS-7 cells extended filopodia, whereas in the presence of
Gpsm2R318RfsX8, this number was reduced by half to 21%
(Supplementary Fig. 2d, see Methods). These results suggest
that the truncation of the linker and GoLoco domains in
Gpsm2R318RfsX8 impairs the filopodia-generating ability of the
myosin 15/whirlin complex. To evaluate if some of these
truncation mutations could affect the proteins levels, we
quantified immunoblots of the different Gpsm2 variants. Results
show that the myc-Gpsm2Q562X variant (missing the last two
GoLoco domains) had an B15±4% reduction in protein levels
compared with the myc-Gpsm2FL, whereas myc-Gpsm2p.G491GfsX6

variant (missing all four GoLoco domains) led to an B70±4%
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decrease, and the Gpsm2R318RfsX8 variant (missing all four
GoLoco domains and the linker domain) led to B60±4%
decrease (Supplementary Fig. 2e). The shortest truncation
(Gpsm2R127X), with only two tetratricopeptide repeats domains
remaining, was the most severe (too weak for quantification). The
impact of three of these four truncations was evaluated upon
filopodia length in the presence of myosin 15 and whirlin. We
first noted that co-expressing Gpsm2FL with myosin 15 and
whirlin statistically increased the average length of filopodia
(Fig. 6j). This increase was lost with all of the Gpsm2 variants
tested. The truncated proteins also affected the myosin
15/whirlin effect, suggesting a dominant-negative effect. Notably,
the shortest truncations retaining a amino-terminus
(Gpsm2p.G491GfsX6, Gpsm2R318RfsX8) had the most severe effect
on myosin 15/whirlin elongation. Taken together these data show
that truncation mutations lead to some reduction in Gpsm2
protein levels, but they also indicate that the shortest forms still
harbouring a N-terminus are able to interact with whirlin,
therefore affecting the ability of myosin 15 and whirlin to induce
filopodia elongation. We conclude that Gpsm2 is a new binding
partner of whirlin, and that CMCS mutations affect the ability of
the myosin 15/whirlin complex to generate filopodia.

Gpsm2 mutation affects neuronal development and motility.
In addition to early-onset sensorineural deafness, patients with
CMCS also display specific brain malformations on magnetic
resonance images; hypoplasia of the CC being a hallmark
of this pathology1. To evaluate the impact of Gpsm2
on CC development, we generated Emx1-Cre*Gpsm2 cKOs
(Gpsm2Emx1), deleting Gpsm2 in the early and dorsal
telencephalon. Analysis of brains from these cKOs confirmed
the existence of a caudal CC agenesis (Fig. 7a), as reported in
CMCS patients. CC defects can result from a disruption in
neuronal progenitors or defects in axonal elongation and
guidance, which are dependent upon the microtubule and actin
cytoskeleton34. Neurite elongation is due to the motility of the
growth cone driven in part by protrusive forces generated by actin
polymerization at the leading edge34,35 and the existence of a
retrograde flow of actin resulting from a balance of filament
polymerization and depolymerization, among other factors36,37.
We therefore hypothesized that actin dynamics could be impaired
in mutant Gpsm2 neurons and affect outgrowth. Measures of
growth cone locomotion on N-cadherin-coated substrates showed
that outgrowth of Gpsm2 cKOs neurons was reduced by 37%
compared with controls (control 0.97±0.04mm min� 1 versus
cKO 0.61±0.02mm min� 1), whereas the speed of growth cones
from Gnai3 cKOs was indistinguishable from controls (control
0.92±0.02 mm min� 1; cKO 0.89±0.02 mm min� 1) (Fig. 7b).
This Gpsm2 cKO phenotype was also observed on a laminin-
coated substrate, suggesting that the outgrowth reduction was not
specific to an N-cadherin substrate (Fig. 7c). The number of
pauses the growth cone made during the 30 min time-lapses on
N-cadherin substrate was increased in Gpsm2 cKO neurons
(Fig. 7d–f, Supplementary Movie 1).

To evaluate whether Gpsm2 regulates actin cytoskeleton
dynamics we monitored the behaviour of individual actin-mEOS2
molecules using Single Particle Tracking combined with Photo-
Activation Localization Microscopy (sptPALM) under Total
Internal Reflection Fluorescence (TIRF) illumination, in the
peripheral region of the growth cones (see Methods, Fig. 8a,b).
We recorded trajectories longer than seven frames (median of
nine frames, Fig. 8c), and fit the mean squared displacement
(MSD) using a power function of time with exponent a (values
between 0 and 2). This parameter reflects the curvature of the
MSD function and the type of movement of actin-mEOS2

molecules, with a values close to 2 representing more directed
trajectories, and a values close to 0 representing more static
molecules (illustrated Fig. 8d). Comparisons analysis of the
distribution of exponent alpha for control and Gpsm2 cKO shows
statistical differences in the most extreme a values (below 0.6 and
above 1.4; Fig. 8e). This demonstrates that actin-mEOS2 exhibit
different dynamical behaviour in the peripheral region of growth
cones of control and Gpsm2 cKOs. These results, together with
the reduced neuronal outgrowth in Gpsm2 cKO, suggest that
Gpsm2 affects motility of the growth cone through a modulation
of actin dynamics.

The retrograde flow of actin is a complex phenomenon that is
the result of many individual mechanisms, including actin
filament nucleation and polymerization, capping and depolymer-
ization, in addition to mechanical forces experienced from
myosin contractility and coupling to adhesion molecules.
Although we do not know the molecular complex that could
drive Gpsm2 control of growth cone motility, we were able
to co-immunoprecipitate (co-IP) endogenous whirlin with
Gpsm2 from hippocampi lysates (Fig. 8f). We also found that
co-expression of myc-Gpsm2 with DsRed-whirlin and
GFP–myosin 15 in young (DIV3) hippocampal neurons lead to
a striking colocalization of the three proteins at the tips of
filopodia, supporting a role for these proteins in young neurons
motility (Fig. 8g). To test if Gpsm2 could modulate actin
polymerization, we compared the ratio of F-actin with G-actin
(F/G) in cells transfected with both Gpsm2 and Gnai3 constructs.
When co-expressed, the proteins significantly increased the
F/G-actin ratio by 138% (2.4±0.2) compared with the control,
demonstrating its impact on actin polymerization (Fig. 8h). The
Gpsm2R318RfsX8 variant of the protein resulted in a statistically
significant reduction of this activation (1.6±0.1). A similar assay
performed on cultured cortical neurons (see Methods), resulted in
a 32% decrease in F/G-actin ratio in Gpsm2 cKO neurons
compared with controls (0.68±0.05) (Fig. 8i). These data support
the hypothesis that Gpsm2 (with Gai3) stimulates actin dynamics
in neurons, and that some of the brain anomalies observed in
patients, notably CC hypoplasia, could be related to a disruption
of Gpsm2-dependant actin-based mechanisms.

Discussion
In this study we show that the Gpsm2/Gai3 module regulates
actin polymerization during stereocilia elongation, and that a
pathogenic mutation of either gene leads to abnormally short
stereocilia, the likely cause of hearing loss in CMCS patients. We
demonstrate that this function is due to a newly identified
interaction between Gpsm2 and whirlin, a member of the
stereocilia tip complex. Also, we show that a Gpsm2 mutation
affects CC formation and modulates neuronal outgrowth via the
regulation of actin dynamics, supporting a global role for Gpsm2
in controlling the actin cytoskeleton.

Myosin 15 is the molecular motor responsible for delivering
whirlin and Eps8 to the tips of actin-rich stereocilia and this
ternary complex is required for elongation of nascent stereocilia.
Our results show that myosin 15 and whirlin are also required for
trafficking Gpsm2 and Gai3, two new members of the stereocilia
tip complex, an electron-dense structure believed to contain
proteins that regulate actin polymerization (Fig. 9). Accordingly,
when myosin 15 is non-functional, Gpsm2 and Gai3 (this study),
as well as whirlin17 and Eps8 (refs 19,22) are all absent from the
stereocilia tips. On the other hand, when Whrn, Gpsm2 or Gnai3
are mutated, myosin 15 still accumulates at the tips of short
abnormal stereocilia. The failure of Whrn, Gpsm2 and Gnai3
cKOs stereocilia to elongate despite the localization of myosin 15,
suggests that these proteins assemble in a macromolecular
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complex (including Eps8) to regulate actin polymerization at the
stereocilia tips. Interestingly, it was recently shown that the
distribution of whirlin on the tallest row of stereocilia was
dependent upon the isoform 2 of myosin 15 (short form)38. It is
therefore probable that Gpsm2 and Gai3 are part of a preferential
complex with myosin 15 isoform 2 and whirlin.

Our data extend the complexity of the interactions occurring at
stereocilia tips during differentiation of HCs and provide new
perspectives for the molecular machinery controlling actin
polymerization. This complexity is highlighted by the increasing
number of proteins identified and accumulating at the tip
complex in a domain of B200 nm or less during stereocilia
elongation (Fig. 9). In many cellular contexts, Gpsm2 and Gai3

are at the interface between actin and the membrane, acting as a
link between the two39,40. In stereocilia, Gai3-GDP could be
tethered at the plasma membrane via its myristoyl and
palmitylate moieties, and bound to the C-terminal GoLoco
motifs of Gpsm2. This would leave the tetratricopeptide repeats
and linker region of Gpsm2 free to bind to various proteins (such
as whirlin) to anchor or stabilize them, that could in turn interact
with actin or other actin-regulatory proteins41, including Eps8
(refs 19, 22).

Our results significantly extend a recent report from Tarchini
et al.9, showing the localization of Gpsm2 (LGN) and Gai protein
at the tips of P7 mouse HCs stereocilia, and reporting deafness

and shortened stereocilia in a Gpsm2 mutant similar to ours.
Importantly, we show that although myosin 15 is not required
for the localization of Gpsm2 to the apical membrane
crescent reported previously6,8, it is critical for the targeting of
Gpsm2/Gai3 to the stereocilia tip. This demonstrates that Gpsm2
binds with different protein complexes to engage in distinct
molecular mechanisms at these locations.

Based on our data, the early deafness observed in Gpsm2 cKO
would be a consequence of a lack of postnatal elongation of
stereocilia in IHC, the auditory sensory cells that are responsible
for signal transduction, and which receive the vast majority of
afferent innervation. Our results also uncovered Gai3 as a specific
molecular partner for Gpsm2 during stereocilia elongation,
notably within the basal cochlear region, and as a candidate
gene for early-onset progressive hereditary hearing loss. Some of
the differences in hearing loss (earlier and comprising the entire
tonotopic axis in Gpsm2 mutants) probably reflect compensatory
mechanisms by other Gai isoforms42.

Our data support the hypothesis that a decrease in actin
polymerization, maybe through a disruption of the actin retro-
grade flow, underlies the reduced motility of Gpsm2 cKO
neurons. In young postmitotic neurons there is an obvious
molecular similarity between the mechanism controlling the
elongation of the stereocilia, and those controlling the movements
of the growth cone, including the existence of a filopodial tip
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complex43–45 (Fig. 9). In both cases, it is the dynamic insertion of
globular actin (G-actin) at the extremity of the structure
(stereocilium or filopodium and lamellipodium) that allows
elongation. This could be due to a role of Gpsm2 modulating
the stability of the tip complex components, as we suggest for
stereocilia elongation; a hypothesis supported by the endogenous
co-IP of the Gpsm2 and whirlin from young hippocampi. All of

the proteins identified so far that participate in stereocilia
elongation are also expressed in the brain of mammals,
including Gpsm2, Gai3, myosin 15, whirlin and Eps8 (refs 46–
50) (this manuscript). Myosin 15 is related to unconventional
myosin 10 (MYO10), a powerful inducer of filopodia formation
and elongation in neurons and other cells. Myosin 10 is present at
the filopodia tip in bright puncta and remains there as the
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filopodia extend and retract51–53. We find myosin 15 enriched in
neuronal growth cones and most filopodia, and accumulating
with whirlin and Gpsm2 at filopodia tips when co-transfected
into hippocampal neurons. Myosin 15 could have overlapping
functions with myosin 10 in neuronal protrusions, through a
protein complex similar to the tip complex identified in the inner
ear. But it is also possible that other neuron-specific binding
partners for Gpsm2 participate in this process in neurons. Further
studies are required to explore the exact molecular mechanism
underlying this result.

Previous work with a Gpsm2 mouse model resulting in a
truncated protein lacking the C-terminus suggested that cortical

malformations in CMCS are due to abnormally localized apical
progenitors, with no impact on neuronal production or forebrain
thickness54,55. The authors however did not report on the
morphology of the CC. In our Gpsm2 cKO, we confirmed an
overall normal cortical development and thickness, but we
observed a severe hypoplasia of the CC, which appears to
phenocopy a short and thin CC reported in the Palestinian
patient carrying the p.R127X mutation in GPSM2 (refs 2,3). Our
results demonstrating reduced neuronal outgrowth in Gpsm2
cKO neurons offer a mechanistic explanation for CC hypoplasia.
The diverse anomalies observed in CMCS patients can be
understood in the context of three cellular phenomena: (1) the
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Figure 9 | Gpsm2 mutations affect stereocilia elongation and neuronal outgrowth by regulating actin dynamics at tip complexes. Mechanistic

model for Gpsm2-dependent stereocilia elongation and neuronal outgrowth. Gpsm2 accumulates at the tip complex of both structures via the myosin 15

motor protein in stereocilia and a comparable motor protein in filopodia. Gpsm2-dependent macromolecular protein complexes modulate actin dynamics at

the tip of stereocilia (growing end) or the leading edge of the growth cone, participating respectively in the elongation and motility of the two structures.

See text for details.

Figure 8 | Gpsm2 co-immunoprecipitates whirlin in brain lysates and increases actin polymerization. (a,b) Representative DIV2 growth cones from a

control (a) and a Gpsm2 cKO (b) with the outlined peripheral region where sptPALM data were collected (yellow) and the corresponding individual actin-

mEOS2 trajectories (3 min recording). Note the overall more-confined behaviour of the actin molecules in the cKO. Scale bars, 5 mm. (c) Distribution of the

actin-mEOS2 trajectory length shows a median trajectory length of nine frames for both genotypes (blue line). (d) Representative mean squared

displacement (MSD) over time for each of the three types of actin-mEOS2 behaviours with their corresponding a values. The plain curves represent fits to

the function MSD¼4Dta, where D is a diffusion coefficient and a is a power law exponent. (e) Repartition of the a values of actin-mEOS2 molecules in

control and Gpsm2 cKO neurons on N-cadherin substrate. Values from 11 (control) and 12 (cKO) growth cones from three separate experiments (±s.e.m.,

n¼ 1344 trajectories for control and 1121 for mutant). ***Po0.001, **Po0.01, *Po0.05 with an unpaired Student’s t-test or Mann Whitney test when a

normality test failed. NS, not significant. (f) Immunoprecipitation of Gpsm2 together with whirlin using anti-Gpsm2 serum. Membranes were

immunoblotted with the antibodies indicated on the left. The experiment was replicated twice. (g) DIV3 hippocampal neurons electroporated with eGFP–

myosin 15, DsRed-whirlin and myc-Gpsm2 show enrichment of all three proteins at the tips of filopodia (arrowheads). Filopodia are outlined with dotted

lines. The LUT was modified (left, Orange hot) to better visualise the accumulation. n¼ 5 independent experiments. Scale bar, 4mm. (h) Actin assay shows

that the combination of Gpsm2FL and Gai3 expression shift the F/G-actin ratio, whereas the Gpsm2R318RfsX8 mutation decreases this shift. Dot plot from

five biological repeats (black bar represent mean values). **Po0.01 with Unpaired Student’s t-test, **Po0.01 with one sample t-test. (i) Actin assays on

cultures of neurons show a shift in the F/G-actin ratio, suggesting a decrease in actin polymerization in the Gpsm2 cKOs. Dot plot from five biological

repeats (black bar represent mean values). **Po0.01 with one sample t-test.
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production and stability of the predicted truncated proteins,
(2) the loss of GoLoco domains that are required for interaction
with Gai, and (3) the loss or maintenance of domains that can
impact on other binding partners of Gpsm2. This last point is
illustrated here with results from the Gpsm2G491GfsX6 and
Gpsm2R318RfsX8 variants whose expression leads to the
production of truncated proteins with an almost complete
N-terminus that is still able to bind to whirlin and affect the
ability of myosin 15/whirlin to generate filopodia. Notably,
compared with the shortest Gpsm2R127X variant2, the
Gpsm2R318RfsX8 variant is associated with some of the most
severe brain anomalies described so far, perhaps because the level
of this truncated protein is barely detectable.

Recently, we showed that Gpsm2/Gai3 regulates early planar
cell polarity in inner ear epithelia by modulating tubulin
dynamics in postmitotic cells in a mechanism reminiscent of
those controlling oriented cell division6. Here, we show that the
same complex controls actin dynamics not only in postmitotic
HCs but also in neurons, through different binding partners.
Because Gpsm2 has many interacting partners and is involved in
microtubule and actin dynamics, in both dividing and postmitotic
cells, each mutation identified in CMCS patients might affect a
variety of mechanisms. The expression of Gpsm2 in both neurons
and glia44 adds another level of complexity to this, as the role of
the protein in the latter has not been assessed. On the other hand,
in the inner ear the deficits are very similar regardless of the
mutation, with early-onset deafness identified in all patients,
highlighting the absolute necessity of an intact Gpsm2 protein for
hearing.

Altogether our study strongly suggests that the aetiology of
CMCS, notably its complexity and multi-syndromic aspect, is due
to the multifunctional role of the Gpsm2/Gai3 module on actin
and tubulin dynamics, in proliferative and postmitotic cells. This
new molecular role for Gpsm2/Gai3 in the regulation of actin
dynamics in epithelial and neuronal tissues show that this protein
complex plays sequential and/or partially overlapping roles in
mechanisms controlling the polarized growth of tissues. Taken
together, our work emphasizes the importance of identifying all
interacting partners of Gpsm2 and Gai3 and the mechanisms
associated with each interaction, in different (patho)physiological
contexts.

Methods
Transgenic mice used in this study. All procedures involving animals were done
in accordance to the European Communities Council Directives (2010/63/EU)
and the French National Committee (2013-118) recommendations. The French
‘Ministere de l’Education Nationale, de l’Enseignement Superieur et de la
Recherche’ approved all experiments under the authorisation no. APAFIS#1360-
201508031720985 after agreement from the ethical committee of the University of
Bordeaux. Gpsm2/mPins cKO was described previously6. Generation of conditional
Gnai3 KO mice. Exon 6 of the Gnai3 gene was flanked by loxP-sequences, because
in the global knockout mouse this exon was successfully deleted56. For the positive
selection of ES cell clones, a loxP-flanked TK-Neo resistance cassette was inserted in
reverse orientation in intron 6 of the Gnai3 gene at the 30 site. For negative
selection a DTA cassette was inserted after exon 7. Subsequently, the loxP-flanked
TK-Neo resistance cassette was deleted in vitro. Correctly targeted ES cell clones
were identified and used for generation of chimeric mice, that is, SV129/C57BL/6
genetic background. After germ line transmission the mutant mice were
backcrossed onto a C57BL/6 genetic background. In this study, Gnai3 cKO
were achieved by crossing Gai3

fl/fl and Foxg1-Cre mice. Shaker 2 (Myo15 allele)
and whirler (Whrn allele) mutant mice were maintained at the NIDCD and
all procedures were approved by the Animal Care and Use Committee (ACUC
#1263-16). Foxg1tm1(cre)Skm (Foxg1-Cre) and Emx1B6.129S2-Emx1tm1(cre)Krj/J

(Emx1-Cre) stocks were obtained from the Jackson Laboratory (Bar Harbor, ME),
Tg(Pou4f3-cre)1Devet mice was a gift from Douglas Vetter (Tufts University, Boston,
MA, USA), B6.Cg-Gt(Rosa)26Sortm6(CAG-ZsGreen1)Hze/J (Ai6) mice were
purchased from The Jackson Laboratory. All Gpsm2 conditional knockout lines
(cKO) were generated by crossing Gpsm2 flox/flox animals6, whereas the Gnai3
conditional knockout (Gnai3 cKO) line was generated by crossing Gnai3 flox/flox
animals. The resulting Gpsm2 cKO still expresses a short 147 amino-acid protein
corresponding to the N-terminal of the Gpsm2FL, whereas the Gnai3 cKO is a

full conditional knockout. The recombination pattern in Foxg1-Cre mice
closely matches the expression pattern of endogenous Foxg1. By E9.5/10.5 the
expression of Cre is strongly driven in both the telencephalon and the entire
otic vesicle/otocyst (early inner ear) of embryonic mice. Recombination occurs
efficiently in both HCs and supporting cells in the cochlea (and vestibular system),
and in most neurons of the telencephalon (glutamatergic and gabaergic), notably in
the cortex and hippocampus57,58. Pou4f3 is expressed only in postmitotic HCs30,
and Emx1 is expressed in the entire telencephalon as early at E10.5 (ref. 59). The
Cre reporter mouse strain B6.Cg-Gt(Rosa)26Sortm6(CAG-ZsGreen1)Hze/J (Ai6),
which induces the expression of ZsGreen from the Rosa26 locus, was used for
evaluation of Pou4f3-Cre-induced recombination localization. Sprague Dawley
Rats were obtained from Janvier (France).

Cochlear explants cultures and PTX treatment. For cochlear cultures, cochleae
from P0/P1 rat are placed in culture and the next morning (12–16 h later) PTX was
applied at 1– 100 ng ml� 1, using a stock solution (50 mg ml� 1, Sigma) as reported
previously described6. Half of the culture medium was changed every 2 days, and
after 8 DIV the tissue were fixed before labelling with phalloidin fluorescein
isothiocyanate (Sigma Aldrich) or processed for SEM.

Cochleae immunostaining. Inner ears from mice or rats were harvested at
specific time points between P5 and P21. Up to P5 mice and rats were killed by
decapitation, and in later stages, the animals were anaesthetized by CO2 before
decapitation. The inner ears were dissected and fixed in 4% paraformaldehyde for
1.5– 24 h at 4 �C for immunostaining. Fixed and dissected cochlear duct were
processed for immunocytochemistry as previously described6. Some cochleae were
mechanically scratched using forceps tips within the mounting medium to isolate
stereocilia. The primary antibodies were as follow: anti-Gai3 (ref. 60 or Sigma
G4040, 1:600), custom-made anti-Gpsm2 (ref. 6, pAb 1:500), anti-myosin 15
(PB48, ref. 50, pAb, 1:400), anti-whirlin (HL5136, ref. 17, pAb, 1:200), or anti-Eps8
(BD Transduction Laboratories, mAb, #610143, 1:200). Samples were incubated
with primary antibodies for 1.5/2 h at room temperature (RT) to overnight (ON)
at 4 �C with the primary antibodies, washed and secondary antibodies applied
(anti-mouse or anti-rabbit conjugated with Alexa-488, -594 or ATTO647N
(Life Technologies) for 1 h at RT. Phalloidin conjugated with fluorescein
isothiocyanate (P5282 Sigma, 1:500) or TRITC (P1951 Sigma, 1:500) were added
for 1 h at RT to label F-actin and thereby stereociliary hair bundles of HCs. When
comparing staining between controls and knockout, the two cochleae were
processed in the same tube at P5. For later stages, they were processed in different
tubes as only a small piece can be dissected at this stage, which renders final
identification difficult. The samples were placed in mounting medium (Prolong
Gold antifade reagent, Life Technologies) and flattened with a glass coverslip under
a microscope.

For image acquisition, we used a confocal/STED microscope (TCS SP8; Leica)
with a module STED � 3. Imaging was done using a Z step from 0.25 to 0.35 mm.
STED microscopy were performed with an objective 100� 1.4 numerical aperture
oil immersion STED objective. We used Atto 488 Phalloidin (Sigma, #49409, 1:600)
with a depletion laser of 592 nm, goat anti-mouse Atto 647 N (Sigma, #50185-1,
1:300) and goat anti-rabbit Alexa Fluor 594 with a depletion laser of 775 nm.
Confocal images were processed in Volocity software (Perkin Elmer) and Adobe
Photoshop or ImageJ.

SEM and measurements. The inner ear (cochlear and vestibular system) of mice
aged P5 and P21 were harvested and immersed in 2.5% glutaraldehyde in 0.1 M
cacodylate buffer, pH 7.35, with 3 mM CaCl2 for 24 h or more. The tissues were
postfixed in 1% OsO4 in the same buffer, dissected and double processed with
thiocarbohydrazide followed by OsO4 (ref. 61) before dehydration through an
alcohol series and critical point drying with CO2. After mounting on specimen
support stubs, samples were sputter coated with platinum. Samples were examined
with a JEOL 6700 F cold field emission scanning electron microscope operating at 3
or 5 kV. Measurements were made on the longest row of stereocilia closest to the
kinocilium on 84 control stereocilia/16 HCs/2 mice and 75/24/2 (for P5 and P21),
on Gpsm2 cKO 36/8/2 and 108/21/2 (For P5 and P21), and on Gnai3 cKO 95/18/2
and 60/14/2 (For P5 and P21) in at least four different cochleae. The quantification
of the number of stereocilia were made on 23 control HCs/2 mice and 12/2 (for P5
and P21), on Gpsm2 cKO 16/2 and 23/2 (for P5 and P21) and on Gnai3 cKO 19/2
and 32/2 (for P5 and P21) in at least four different cochleae.

Images were collected from the basal or middle turn of the cochlea, defined as
B20/30% and 50/60% of the total length of the organ of Corti from the base.
At each location, the hair bundles were viewed both from behind the longest row of
stereocilia to view the height of the hair bundle as well as approximately
perpendicular to the apical surface of the HC or toward the inner aspect of the
bundle to examine its overall morphology and composition. To estimate bundle
height, measurements were made from images at calibrated instrument
magnifications of � 20,000 or occasionally � 10,000. Although we might have
underestimated the actual stereocilia length, all efforts were taken to minimize the
effect of parallax. Measurements were taken from bundles viewed from the lateral
side toward the medial side (from the stria toward the modiolus), so that the row of
longest stereocilia were imaged from the ‘rear.’ Samples were tilted and rotated so
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that the row of longest stereocilia was approximately perpendicular to the direction
of view. Stereo-imaging was used in a few cases to gain an indication of possible
errors in length measurements from 2D images. From the anaglyphs generated by a
pair of images separated by 8 degrees of tilt, height measurements were obtained
using analySIS software. These revealed little difference in the height measurement
from that obtained from the 2D image of a stereocilium at close to perpendicular to
its long axis. Measurements were made using ImageJ software.

ABR and vestibular tests. ABR is measured by averaging the evoked electrical
response recorded via subcutaneous electrodes. ABR to click and pure tone stimuli
were recorded in anaesthetized mice aged 6 weeks. All physiological recordings
were performed under anaesthesia (75 mg kg� 1 ketamin hydrochloride, Ketavet,
Pharmacia, Pfitzer, Karlsruhe Germany, 5 mg kg� 1 xylazin hydrochloride
(Rompun 2%, Bayer Leverkusen, Germany), 0.2 mg kg� 1 atropine (Atropinsulfat B
Braun, Melsungen, Germany) in a soundproof chamber (IAC, Niederkrüchten,
Germany). In short, ABR thresholds were determined with click (100 ms), and pure
tone stimuli (2–45.3 kHz, 3 ms duration).

For vestibular test, Gpsm2 and Gnai3 cKO mice and their control littermates
(6 weeks old) were housed in a controlled environment (20–23 �C) with free access
to food and water and maintained on a 12 h/12 h day/night cycle, light on at 7 am.
Mice littermates were housed in collective cage and behavioural experiments were
performed between 1 and 5 pm. Open-field and Forced swim test activities were
analysed with Ethovision (Version 11.5, Noldus Technology, Wageningen, The
Netherlands). In the open-field test, mice were placed in the arena (30� 40 cm)
and activity was recorded for a period of 10 min. The total distance travelled and
the number of rotations were measured (every 360� turn is counted as one
rotation). In the forced swim test, mice were placed in a cylinder (height, 30 cm;
diameter, 21 cm) filled with water (25 �C). The activity, the total immobility and the
number of rotation was recorded for a 2 min period. Immobility is defined by
movements inferior to 2 cm s� 1.

Filopododia quantifications in COS-7 cells. The constructs used were as
follows: untagged Gai3 (Origene), pK-myc-Gpsm2FL,48, pEGFP–c-MyoXVa,
pDsRed-c-whirlin and DsRed-empty (Clontech) or pK-myc-empty. Site-directed
mutagenesis was used to generate mutations R127X (Gpsm2R127X), Q562X
(Gpsm2Q562X), G491GfsX6 (Gpsm2p.G491GfsX6) and R318RfsX8 (Gpsm2R318RfsX8)
on Gpsm2 (QuickChange, Stratagene). We used an anti-myc (Covance mAb,
#MMS-150P-200, 1:1,000), anti-Gai3 (ref. 60 and Sigma G4040, 1:600), anti-GFP
chicken (Abcam, pAb #ab13970, 1:3,000), anti-DsRed (Living color, mAb #632392,
1:1500 and Living color, pAb #632496, 1:2,000), and Phalloidin conjugated with
coumarin (Sigma #P2494, 1:500). Images were acquired using Zeiss Axovision 4.7
and processed through Photoshop. For long-term assays (48 h), we considered a
COS-7 (ATCC-American Type Culture Collection) ‘filopodial cell’ a cell with at
least five long filopodia. For short-term assays of filopodia length, we split the cells
after 48 h of transfection, and re-plated them on coverslips previously coated with
5 mg ml� 1 of poly-L-Lysine (PLL), and let them adhere for 2 h, before they are
processed for immunocytochemistry. For the quantification of percentage of
colocalization at the tip of filopodia, 500,000 COS-7 cells were transfected by
nucleofection using an Amaxa nucleofector kit (Lonza). After, 48 h the cells were
re-plated on coverslips previously coated with 5 mg ml� 1 of PLL, and processed
for immunocytochemistry after a 2 h adhesion. Cell appearing unhealthy were
excluded from the analysis. Quantifications were performed blind to the
experimental group using ImageJ.

Co-IP. For Co-IP, HEK293T (ATCC-American Type Culture Collection) were
cultured on 10 cm dishes, transfected using polyethylenimine and harvested after
48 h in cold PBS. We used myc-tagged Gpsm2 constructs and/or GFP–whirlin
(whirlin was subcloned into the mammalian expression vectors pEGFP–C1-
Clontech) or untagged whirlin constructs (generous gift from Professor C Petit,
Pasteur Institute, Paris) and pEGFP–C3. Extracts were solubilized with Triton-X-
100 and a cocktail of protease inhibitor (Complete ethylenediaminetetraacetic acid
(EDTA)-free, Roche), and processed as previously described48. In brief, lysates
were incubated with protein A/G or A resin ON with primary antibodies. The
antibodies used were anti-myc (Millipore, pAb #06-549, 10 mg ml� 1), anti-GFP
(Millipore, pAb #Ab3080P, 10 mg ml� 1), and IgG from rabbit serum (Sigma,
pAb #I5391, 3 mg ml� 1). After extensive washes, the beads were re-suspended in
sodium dodecyl sulfate (SDS) sample buffer immunoprecipitated proteins were
analysed by SDS–PAGE and immunoblotting. Proteins were visualized using
chemiluminescence-based immunodetection of horseradish peroxidase
(Amersham). Each co-IP was replicated at least three times.

For endogenous co-IP, 10 hippocampi from P21 male and female rats were
harvested and solubilized with 1% DOC and 1% Triton-X-100 in 50 mM Tris
buffer pH 8 with protease inhibitors, and processed as previously described48. In
brief, lysates were incubated with 20 ml of pre-immune or Gpsm2 serum48 and with
protein A resin ON. For immunoblots, we used anti-whirlin (ref. 17, pAb 10 mg),
and the anti-Gpsm2Linker (generous gift from Joe Blumer, Medical University
South Carolina, USA) (ref. 46, pAb, 1:1,000).

GST pull-down. Different whirlin regions were cloned by polymerase chain
reaction and inserted into pGEX-4T-1 (GE) to create in-frame fusions with GST.

GST-tagged whirlin 1–229 containing PDZ1, GST-whirlin 1–362 containing PDZ1
and PDZ2, GST-whirlin 276–362 containing PDZ2, GST-whirlin 276–907
containing secondary structures between PDZ2 and PDZ3, GST-whirlin 276–672
containing PDZ2 and the HN-L2 region, GST-whirlin 673–907 containing the
proline-rich region and PDZ3, GST-whirlin 810–907 containing only the PDZ3
and GST-whirlin 363–809 containing the HN-L2 and proline-rich region were
purified from Escherichia coli strain BL21 supernatants by standard affinity
purification on glutathione-Sepharose 4B beads. In brief, bacterial pellets were
re-suspended and incubated for 30 min on ice in TBS pH 7.5 lysis buffer containing
150 mM NaCl, 10–20 mM phosphate buffer and 0.1 mg ml� 1 lysozyme. Protease
inhibitors were then added along with DTT (15 mM), EDTA (10 mM) and sarkosyl
to a final concentration of 1.5%. The mixture was gently shaken, incubated for
15 min on ice and centrifuged for 1 h at 186,000� g. sarkosyl in the supernatant
was neutralized with 2% Triton X-100 and the supernatant was incubated for 3 h at
4 �C on glutathione-sepharose 4B beads. The beads were washed three times with
TBS pH 7.5 containing 0.1% Triton X-100 and re-suspended in TBS pH 7.5 with
proteases inhibitors for later use.

A pull-down assay was performed with myc-Gpsm2R318RfsX8 overexpressed in
HEK293T. HEK293T are re-suspended and sonicated in Tris-HCl pH 7.5
containing 5 mM EDTA, 1 mM sodium fluoride, 1 mM sodium orthovanadate,
proteases inhibitors and then solubilized 30 min with 1% Triton X-100 and
0.5%SDS. The lysate was centrifuged for 30 min at 150,000� g. The supernatant
containing myc-Gpsm2R318RfsX8 was incubated ON at 4 �C with GST alone or
GST-whirlin fusion proteins. After four washes with buffer containing 0.1% Triton
X-100, the bead pellets were re-suspended in SDS sample buffer and subjected to
SDS–PAGE and immunoblotting. Interaction was evaluated with anti-myc
antibody (Covance, mAb, 1:1,000). To evaluate GST amounts, the samples are
loaded on SDS–PAGE and stained with Coomassie blue.

Western blot and immunoblot. HEK293T cells in six-well plates were
co-transfected with 50, 100, 200 and 300 ng of myc-Gpsm2FL in the presence of a
constant concentration of DsRed-whirlin or DsRed-empty vector (50 ng), or with
stable levels of Gpsm2 with increasing concentrations of whirlin. In each condition,
the total plasmid concentration was balanced with a control plasmid to a total per
dish of 350 ng plasmid. After 48 h, the cells were collected using cold PBS,
centrifuged and solubilized by sonication. Lysates were re-suspended in SDS
sample buffer and subjected to SDS–PAGE and immunoblotting with anti-myc
(Covance, mAb 9E10, 1:1,000), anti-whirlin (Santa Cruz Biotech, mAb #sc-365250,
1:1,000), anti-DsRed (Living color, pAb #632436, 1:1,000), anti-GAPDH
(Millipore, mAb #MAB374, 1:1,000), anti-GFP (Living Color, mAb #632381,
1:1,000) followed by secondary antibodies (donkey anti-rabbit #CNA394V 1:5,000
or sheep anti-mouse IgG #CNA931V 1:5,000 conjugated to horseradish peroxidase,
GE Healthcare UK). The membranes were processed with chemiluminescence
(ECL, Thermo Scientific) as previously described6.

To evaluate the level of expression of Gpsm2 truncated forms, we transfected
the variants of Gpsm2 in HEK293T and after 48 h the cells were harvested and the
amount of protein evaluated by BCA assay. For each condition we pooled two wells
(six-well plates), and equivalent protein levels were loaded and separated on
polyacrylamide gels, and immunoblot performed with anti-myc antibody
(Covance), and anti-GAPDH (Millipore). Quantifications were made using GS-800
calibrated densitometer Bio-Rad and Quantity One Analysis software (Bio-Rad).
Unprocessed original scans of blots are shown in Supplementary Figs 3–7.

Actin polymerization assays. The amount of F-actin and G-actin was
evaluated according to the Cytoskeleton Actin Polymerization Assay Kit (BK037,
Cytoskeleton) protocol and as previously described62. HEK293T were transfected
with a combination of pK-RFP/pK-YFP (control), or myc-Gpsm2/YFP-Gai3

(ref. 48). 24 h after HEK293T transfection we reduced the levels of fetal bovine
serum in the medium from 10 to 1%, and the next day, the cells were stimulated
with fresh medium containing 10% fetal bovine serum for 30 min, then re-
suspended in F-actin stabilization buffer with adenosine triphosphate (1 mM) and
protease inhibitors.

Cortical and hippocampal neurons from P0 controls and Gpsm2 cKOs were
dissociated and plated at a density of 200,000 cells per dish, and stimulated with
KCl before harvesting at DIV3. For neuron stimulation, we used 20 mM KCl at
37 �C for 1 min, then collected the neurons in cold PBS before pelleted them at
3,000� g for 5 min at 4 �C, and stored at � 80 �C. To separate F-actin (pellet) from
G-actin (supernatant) a 1 h centrifugation at 100,000� g was performed on the
lysate, then the pellet was re-suspended in a volume equivalent to the supernatant
using F-actin depolymerizing buffer. Actin levels were quantified by immunoblot
using an anti-actin antibody (Cytoskeleton, #AANO1, 1:500). For each condition
we pooled three petri dishes. The expression levels were determined using a GS-800
calibrated densitometer and Quantity One Analysis software (Bio-Rad), and
represented as a percentage of control band intensity. We used a total of 14
controls and 10 Gpsm2 cKOs mice.

Histology. For histology, brains were harvested and fixed in Bouin’s fixative
(Electron Microscopy Sciences) ON, dehydrated in ethanol, paraffin-embedded,
and coronal sections (20 mm) obtained, before being stained with hematoxylin
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and mounted with Entellan (Millipore). Brain sections were examined using Leica
MZ-16 stereomicroscope using the NanoZoomer 2.0-HT slide scanner and ana-
lysed with the Hamamatsu NDP viewer software (Hamamatsu).

Neuronal cultures and transfections. Hippocampal neurons were dissociated
from E 18 rat embryos as described48 and electroporated with 2 mg of
eGFP–Myo15a, myc-Gpsm2FL and DsRed-whirlin using Amaxa nucleofector kit
(Lonza). Approximately 500,000 cells were transfected via nucleofection plated on
coverslips treated with 10 mg ml� 1 of PLL. After 2 days, neurons were fixed for
10 min with 4% paraformaldehyde at RT, then pre-incubated 30 min at RT in
permeabilization buffer (PBS, 10% NGS, 0.1% triton). Cells were then incubated at
RT for 1 h with chicken anti-GFP (Abcam, pAb #ab13970, 1:3,000), anti-myc
(mAb, Covance, 1:1,000) and anti-DsRed (Clontech, pAb #632496, 1:3,000).
Fluorescent images of the neurons were obtained using a confocal microscope
(Leica SP8) and processed with Adobe Photoshop.

Videomicroscopy and sptPALM-TIRF. Regular 18-mm glass coverslips were
incubated for 2 h at 37 �C with 1 mg ml� 1 PLL in 0.1 M borate buffer (pH 8.5),
rinsed with H2O, then incubated 2 h at 37 �C with 4 mg per coverslip of goat
anti-human Fc (Jackson Immunoresearch) in 0.2 M boric acid (pH 8.5), before
another incubation ON at 4C with 0.2 mg per cover (stpPALM-TIRF) and 0.6 mg
per coverslip (time-lapse) of N-cadherin-Fc. Before use, the coverslips were rinsed
again with boric acid. For laminin, coverslips were coated with 1 mg ml� 1 PLL and
then laminin (5mg per cover).

For time-lapse experiments (growth cone outgrowth), hippocampal neurons
from newborn (P0/1) pups were plated at a density of 50,000 cells per coverslip.
Neurons were used after 2 DIV. Neurons were covered with 700 ml of Tyrode
solution (120 NaCl mM, 5 KCl mM, 2 MgCl2 mM, 2 CaCl2 mM, 25 mM 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid, and 30 mM d-glucose, pH 7.4), and
observed under an inverted Leica DMI 6000 microscope (Leica Microsystems,
Wetzlar, Germany) using a HCX PL APO CS � 63 oil 1.32 numerical aperture
objective and differential interference contrast illumination (Lumencor, Beaverton,
USA). Images were acquired every 1 min for 30 min using a HQ2 camera
(Photometrics, Tucson, USA) driven by the MetaMorph software (Molecular
Devices, Sunnyvale, USA). The multi-positions were done with a motorized stage
Scan IM (Märzhäuser, Wetzlar, Germany). Temperature was maintained at 37 �C.
The system was controlled by MetaMorph software. Quantification of neuron
growth cone speed was performed using ImageJ software plugin ‘manual tracking’.
The average speed (in mm min� 1) was quantified as this distance divided by
30 min. A ‘pause’ is when no movement (within the pointing accuracy of the
growth cone centroid) of the growth cone is observed over two consecutive
time-lapse images (1 min image� 1), while maintaining filopodial activity.

The stpPALM-TIRF experiments were done as described in ref. 63. In brief,
coverslips were mounted in a chamber and placed on a Nikon Ti Eclipse inverted
microscope (Nikon France S.A.S., Champigny-sur-Marne, France) equipped with a
TIRF arm coupled to a fibre optic linked to a four-colour laser bench (Roper
Scientific). Images were acquired using an Apo TIRF 100 � oil numerical aperture
1.49 objective, and a sensitive EMCCD camera (Evolve, Photometrics, Tucson,
USA). Photoswitching of mEos2 was done at 405 nm, converting the molecule into
a red-emitting form, which was detected using the 561 nm laser and a long-pass
emission filter. All the equipment was driven by the software Metamorph. Image
stacks of 320 frames were acquired in time-lapse mode at a frequency of two
images per second, with a camera exposure time of 250 ms. This procedure ensures
that fast-diffusing actin monomers which contribute to a blur in the images are
eliminated from subsequent analysis, and that only slowly moving actin molecules
incorporated in filaments are retained63,64. Experiments were done on 11 growth
cones for control and 12 growth cones for cKO Gpsm2 neurons, from at least three
separate experiments.

Speed and trajectories analysis. Actin trajectories recorded by sptPALM were
computed and analysed using custom-made algorithms written as a MetaMorph
plug-in as described in ref. 63. Single-molecule localization was performed using a
wavelet-based algorithm, and trajectories were computed using a simulated
annealing algorithm65. The trajectory duration, which corresponds to the time
during which single mEOS2 fluorophores emit red light upon 561 nm laser
illumination, follows an exponential distribution strongly shifted to short values.
Only trajectories longer than seven frames in regions of interest were kept, which
yielded a median of around nine frames. The proportion of trajectories with more
than seven points is 80% in control and 78% Gpsm2 cKO growth cones
respectively. The MSD function was computed for each trajectory over time, and fit
by the power law MSD¼ 4Dta using Kaleidagraph 4.1, where t is the time, D is an
adjustable coefficient and the exponent a (values between 0 and 2) reflects the
curvature of the MSD function and the type of movement. For highly directed
trajectories, the MSD is a quadratic function of time, thus a is close to 2 (ref. 64,66).
The numbers of trajectories analysed were 1344 (controls) and (1121) mutants.

Statistical analyses were carried out using Prism statistical package (GraphPad).
Normality of distribution and homogeneity of variance were validated and statistical

significance between means was calculated using unpaired Student’s t-test or Mann–
Whitney test when normality test failed. Po0.05 was considered significant.

Data availability. All data are available from the authors.
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