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Stem cells are defined as immature cells 
able to proliferate, self-renew and differentiate 
into several more committed cellular types and 

tissues.1 These cells could be generally classified 
in embryonic stem cells (ESCs) which are 
considered pluripotent thanks to their capability to 
give rise to all kinds of cells and adult stem cells. 
These last ones are just multipotent because 
their differentiation potential is restricted to 
certain cell lineages. ESCs are derived from the 
early mammalian embryo at the blastocyst stage 
(Figure 1) and under specific culture conditions 
they can undergo unlimited expansion in vitro 
and differentiation.2 On the contrary, adult stem 
cells are available from many tissues such as 
brain, bone, adipose tissue, umbilical cord blood, 
deciduous teeth, synovium, blood vessels and 
blood.3-5 Adult mesenchymal stem cells (MSCs) are 
at the moment highly considered as a cell-based 
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therapeutic tool for a diverse range of clinical 
purposes. MSCs, in addition to their multipotency, 
are easy to isolate and culture in vitro and they do 
not apparently represent an ethical issue based on 
their source of origin (Table 1).

MSCS: bIoLoGICAL bACKGRouNd
Mesenchymal stromal cells (MSCs) are 

multipotent adult stem cells, nonhematopoietic, 
with mesodermal and neuroectodermal origin. 
They can be found in several and perhaps most 
postnatal organs and tissues like adipose tissue, 
dental pulp, umbilical cord and especially in the 
bone marrow (BM) which appears to be the most 
often used source (Figure 2). MSCs are able to 
differentiate into cells of mesodermal origin like 
adypocites, chondrocytes or osteocytes, but they 
can also give rise to representative lineages of 
the three embryonic layers.6 For instance, it is 
well known that MSCs posses an extended degree 
of plasticity compared to other adult stem cell 
populations, including the ability to differentiate 
in vitro into non-mesodermal cell types such as 
neurons and astrocytes.7 

MSCs can easily be isolated based on plastic 
adherence properties but the lack of one unique 
specific marker still represents a challenge for 
researchers. That is the reason why a general 

rank of positive and negative surface markers has 
been used to ensure homogeneity of the isolation; 
meaning the presence of CD73, CD90, CD105 and 
lack of characteristic hematopoietic markers 
such as CD14, CD19, CD34, CD45 and HLA-DR, 
in addition to representative endothelial markers 
like CD318-10 (Table 2).

IMMuNoModuLAtoRY CAPACItY oF 
MSCS

Stem cell-based therapy is generally linked 
to immunorejection problems when the used 
stem cell-derived tissue is not close or does not 
match the patient´s one. Several approaches 
were tried to solve this major issue. Perhaps, the 
most challenging one was to reprogram adult 
somatic cells into the pluripotent stage (iPSCs 
or induced pluripotent stem cells). Takahashi 
and Yamanaka11 showed that mouse embryonic 
and adult fibroblasts are able to acquire similar 
properties to ESCs after retroviral introduction of 
genes encoding four transcription factors: Oct3/4, 
Sox2, Klf4 and c-Myc.11-13 In fact, the tendency 
was to reduce the number of required genes to 
the minimum. Recently, Zhou et al14 were able to 
generate protein-induced pluripotent stem cells 
(piPSCs) from murine embryonic fibroblasts just 
by using recombinant proteins and consequently, 

Figure 1. Embryonic stem cells (ESCs) are pluripotent cells 
derived from the early mammalian embryo at the blastocyst 
stage which can undergo unlimited expansion in vitro and 
differentiation into any kind of cell lineage, under specific 
culture conditions.

Figure 2. Mesenchymal stem cells (MSCs) can be isolated 
from distinct adult tissue sources. These cells have shown 
a great plasticity, being able to undergo differentiation into 
representative cell lineages of the three embryonic layers.

CELLS Origin Plasticity Expansion Tumorigenic Ethical obstacles

ESCs Embryo Pluripotent Unlimited Yes Yes

MSCs Adult tissues Multipotent Determined No No

Table 1. ESCs vs. MSCs.
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avoiding any risk of changing the target cell 
genome by exogenous genetic modification. 

MSCs represent an alternative route to avoid 
immunorejection since they are immunoprivileged 
and posses immunomodulatory properties.15,16 

MSCs are considered immunoprivileged because 
they are able to be transplanted across major 
histocompatibility complex (MHC) barriers 
making immunosupression of patient recipients 
unnecessary. These cells escape detection from 
immune system thanks to their low expression 
of MHC class I and the complete lack of MHC 
class II expression.17-19 Their immunomodulatory 
properties are not yet fully characterized 
even though it seems to implicate inhibition of 
proliferation of T cells and consecutive suppression 
of T cells antigen-primed cytolytic effects.20,21

SouRCES FoR MSCS: VERY SIMILAR 
oR REALLY dIFFERENt?

In principle, MSCs can be isolated from 
different sources: Amnion, placenta, bone marrow 
(BM), umbilical cord and cord blood, adipose 
tissue and dental pulp are the most common ones 
(Figure 2). Moreover, these cells are available in 
virtually all post-natal tissues. There, they occupy 
a perivascular niche to support and maintain 
different connective and skeletal tissues.22 This 
fact makes very probable that other new sources 
may come up in the future since MSCs obtained 
from different places show close phenotypic 
characteristics. However, it is still unclear 
whether we may be dealing with the same MSCs 
or not because proliferation and differentiation 
capabilities in the presence of different growth 
factor stimulus do differ depending on the 
source of origin. For instance, bone marrow 
mesenchymal stem cells (BM-MSCs) have a 
tendency to loose their proliferative potential with 

age and it is notorious the lost of differentiation 
capabilities after age 20.23 On the contrary, it has 
been shown that mesenchymal stem cells from 
the dental pulp (DPSCs) have higher proliferation 
index and growth potential even though both 
stem cell populations (BM-MSCs and DPSCs) still 
express very close surface markers such as Stro-
1, CD44, 3G5, CD146 and CD106.23 As a matter of 
fact, Wagner et al24 performed a gene expression 
profile study of MSCs coming from different origins 
(bone marrow, adipose tissue and cord blood) and 
compared them to HS68 fibroblasts. They showed 
that, though MSCs coming from different donors 
and exposed to the same culture conditions gave 
rise to a stable and reproducible gene expression 
profile, MSCs from different sources or cultured 
with different procedures differentially expressed 
many genes. On the contrary, no differences were 
found in a subset of 22 surface antigen markers 
suggesting that MSCs from different origin may 
share common phenotypic and receptor expression 
but indeed, they seem to be distinct at the genetic 
level. Peculiar differences are also seen in their 
differentiation potential where certain MSCs 
have been reported to show either tendencies or 
difficulties to differentiate into specific cellular 
lineages. For instance, DPSCs predominantly 
differentiate into bone and neurons25,26 and it 
has already been described unsuccessful trials 
for adipogenic differentiation in umbilical cord 
mesenchymal stem cells (UC-MSCs).27 Taking 
all these facts together we may conclude that 
even general biological characteristics of MSCs 
coming from different sources are common and 
comparable, major differences come up in terms 
of expansion and differentiation potential which 
should be taken under consideration before future 
clinical and therapeutic approaches.

tHE dENtAL PuLP StEM CELL NICHE
After injury, the dental pulp (Figure 3) plays a 

major role in tooth regeneration by participating in 
a process called reparative dentinogenesis, where 
cells create and accumulate new dentin matrix 
to repair the damaged area.28 Bigger traumas 
or advanced caries, for instance, can eventually 
cause the death of the pre-existing population of 
odontoblast.29 As consequence, new odontoblasts 
are recruited in order to differentiate at the 
injured area and to form reparative dentine, also 

Positive (+) Negative (-)

CD73 CD14

CD90 CD19

CD105 CD31

CD34

CD45

HLA-DR

Table 2. General surface markers for MSCs.
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known as osteodentine. This early mineralized 
tissue preserves the pulp integrity and serves 
as protective barrier upon the injury.30 Then, one 
can speculate that dentinogenic progenitors may 
be located in that area of the dental pulp and 
in fact, some studies have already showed the 
existence of a population of putative post-natal 
stem cells or dental pulp stem cells (DPSCs) 
which may play a relevant role in reparative 
dentine formation.31 DPSCs can be considered as 
a heterogeneous population of MSCs since the 
dental pulp is composed from both mesenchymal 
and ectodermic components. Probably, they may 
be located in the perivascular area of the pulp as 
expression of characteristic markers suggest. For 
instance, VCAM-1 and α-smooth-muscle actin are 
positively expressed in these cells.32 Despite of the 
multipotential capabilities of these cells and even 
though their primary commitment seem to be the 
production of mineralized tissue,33 DPSCs have 
been shown to be able to generate functionally 
active neurons under determined environmental 
conditions.25 This neuronal differentiation 
potential together with their accessibility makes 
DPSCs a good candidate of study for future 
cell-based therapy in spinal cord injury and 
neurodegenerative diseases.

tHERAPEutIC APPLICAtIoNS oF 
MSCS: tHE tooL boX 

MSCs exhibit a great potential for cell-based 
therapy in several diseases of different nature. 
Basically, these cells have a set of characteristics 
that somehow makes them adequate for 
clinical trials. They have an optimal expansion 

potential and genetic stability, there are really 
well established protocols of isolation and new 
sources keep on coming up apart from the already 
existing ones. Moreover, MSCs are able to migrate 
to areas of tissue damage in immunoprivileged 
conditions and posses immunosuppressive 
properties. All these advantages have allowed 
successful MSC transplantations (both autologous 
and heterologous).34-36 The current scenario of 
directly transplanting MSCs in vivo to different 
disease animal models and straight to the injured 
sites is changing nowadays. Recent progresses in 
nanotechnology and a better understanding of the 
molecular pathways that control the differentiation 
program made possible the combination of 
biocompatible scaffolds with MSCs, for instance. 
Genetic regulation of the cells within the scaffold, 
in order to achieve secretion of specific proteins 
that may benefit cell integration and tissue repair, 
would be doable with this new combination of 
strategies.37-39 

Treatment of neurological disorders
A number of studies have already shown 

that MSCs are able to differentiate into non- 
mesenchymal lineages as a result of their great 
plasticity. These multipotent cells are able to 
give rise to both neurons and astrocytes in vitro 
and in vivo.40,41 Probably, the most important 
aspect for the use of these cells in neurological 
cell-based treatments was achieved when direct 
transplantation of MSCs into a rodent brain 
stroke model resulted to be safe and indeed 
improved functional deficits associated with the 
insult.42 One can speculate then, that MSCs may 
be the most feasible option to treat brain stroke 
insults and its devastating consequences in 
humans. Several trials were performed in other 
neurological disease models. Mazzini et al,43 for 
instance, started experiments with MSCs in the 
context of amyotrophic lateral sclerosis (ALS); a 
severe disease that leads to specific loss of motor 
neurons. As a result, a chronic decline in muscle 
functionality ends up in gradual paralysis of the 
patient. Mazzini et al43 implanted autologous BM-
MSCs in the spinal cord of monitored patients 
with ALS demonstrating tolerance and most 
importantly, safety of the procedure. 

In general, different neurodegenerative states 
were taken on consideration for therapeutic 

Figure 3. The human dental pulp contains a population of 
putative post-natal stem cells or dental pulp stem cells (DPSCs) 
with multipotential capabilities. After severe injury, the dental 
pulp stem cell niche may play a critical role in reparative dentine 
formation of the tooth. 
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approaches of neuronal circuitry; Parkinson´s 
disease, Hungtinton´s disease, multiple sclerosis 
and Alzheimer´s disease are some examples. 

Spinal cord fusion
A variety of cell transplantation approaches 

have been tested in different spinal cord injury 
models. Spinal cord injury treatment is one of 
the areas with bigger expectations for stem cell-
based therapy. Lesions at the spinal cord triggers 
a number of biochemical cascades that are linked 
to progressive reduction in blood supply to the 
injured site. This event actually multiplies the 
extent of damaged tissue. In parallel, proliferation 
of fibroblasts together with endothelial and glial 
cells (astrocytes and microglia) at the injured area 
eventually constituting a biological scar that will 
act as both physical and chemical wall.44 Moreover, 
axonal growth and its guidance are prevented 
since both Schwann cells and neurotrophic factor 
are lacking and production of post-injury myelin-
associated proteins is enhanced. Those molecules 
(for instance, Nogo-A) act as inhibitors of neurite 
outgrowth in the central nervous system.45 As a 
final result, all these events lead to a deficient 
regenerative capacity after trauma and the 
biggest obstacle for the development of definitive 
spinal cord injury treatments. The use of MSCs 
for the treatment of spinal cord injury seems to 
be an exciting option. In fact, it has already been 
described that transplanted MSCs led to a large 
numbers of surviving cells and formed guiding 
strands in the injured spinal cord.46 To repair 
neural networks, these cells should in addition 
demonstrate integration into the injured host 
tissue, potential to make synapses with host 
neurons as well as capabilities to achieve the 
specific required neural phenotype that is missing 
because of the disease process. We have to 
remember that MSC differentiation into undesired 
tissues has been reported as well. This makes 
crucially necessary the acquisition of strong 
biological knowledge about the behaviour and 
differentiation program of these cells, before any 
clinical trial could be performed in humans.47

Kidney repair
Different adult stem cells have been shown 

to differentiate into mature kidney cells, opening 
the question whether post-natal stem cells may 

be a potential tool for renal repair after systemic 
administration. Some studies in different models of 
kidney injury have suggested a role of resident bone 
marrow stem cells in kidney repair.48,49 Poulsom 
et al50 showed in mice that, after receiving bone 
marrow transplantation, circulating stem cells 
could be recruited to the site of injury overcoming 
acute kidney failure. Since the bone marrow (BM) 
contains at least a couple of known stem cell 
populations, haematopoietic stem cells (HSCs) 
and MSCs, these last ones may be responsible for 
improvement in a renal damage scenario, even 
though it remains unclear the actual number of 
MSCs in the adult kidney and whether they would 
be the only sufficient population of stem cells 
involved in the recovery. Despite the discrepancies 
about the mechanism, MSCs have been reported 
to protect against chemical-induced toxicity 
(cisplatin and glycerol) in mice, and in case of 
glycerol, MSC mobilization into the damaged 
kidney seemed to be dependent on the presence 
of CD44. Kidneys damaged by injection of glycerol 
overexpressed hyaluronic acid (HA) and MSCs 
isolated from mice lacking CD44, the receptor for 
HA, were unable to migrate to injured sites of the 
kidneys.51,52 On the contrary, other chronic disease 
models showed no association between MSCs 
and improvement in renal function and/or animal 
survival.53 Nevertheless, additional knowledge 
about MSC transmigration mechanisms and 
differentiation into renal cells is required in order 
to consider MSCs as a future cellular source for 
kidney repair.

Joint regeneration in rheumatic diseases
Joint degeneration usually comes as a parallel 

event to degenerative arthritis (osteoarthritis, 
OA) or rheumatoid arthritis (RA). Like other 
autoimmune diseases, they develop as a result 
of immunologic instability and loss of tolerance. 
Then, the immune system starts to react against 
self structures and tissues of the organism 
leading to gradual reduction of extracellular 
matrices in joint cartilage and bone. In these 
cases, therapy is focused in alleviating symptoms 
and/or changing the disease progress but 
never restores joint structure and functionality. 
Moreover, resistance for conventional therapy 
of anti-inflammatory and immunosuppressive 
drugs has been reported in some patients, making 
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necessary the use of extremely high doses which 
are normally associated to side effects. Therefore, 
in these particular cases, BM restoration is 
recommended.54 It has already been shown that 
chondrogenic activity of MSCs is clearly reduced 
in patients with advanced osteoarthritisis.55 

In fact, MSCs has been proposed as cell 
candidates for tissue engineering approaches 
in joint cartilage and bone defects repair, 
mainly because of their ability to substitute 
chondrocytes and immunomodulatory properties. 
Immunoprivileged status of MSCs became this 
particular type of stem cell an option to consider 
for allogeneic transplants with the advantages of 
an autologous one but it is still on debate whether 
the plasticity and differentiation potential remains 
the same in both cases.56,57 Their capabilities of 
creating new joint tissues and secreting different 
bioactive factors provide the adequate regenerative 
environment.58 Among all possible molecules and 
pathways modulating osteogenic differentiation, 
SOX9 seems to be critical. Tsuchiya et al59 
showed that in BM derived-MSCs, the expression 
of exogenous SOX9 led to increased proteoglycan 
deposition. It has also been described that WNT 
signalling controls MSC fate decisions and this 
role is probably played in cooperation with other 
signalling pathways such as TGF-β and BMPs.60-

62 Nowadays, treatment of cartilage trauma 
coexists with almost null regenerative potential 
and for that purpose MSCs seem to be a good 
option for human tissue engineered cartilage, in 
combination with new nanotechnological tools, 
biomaterials and different growth factors that may 
help propagation, integration and differentiation 
of such cells.63

Therapy for cardiac disease
Cardiovascular failure is the leading cause of 

death worldwide.64 Most of the current therapies 
just delay progression mainly because of heart’s 
weak capacity to self-regenerate.65 Since heart 
failure is directly linked to cardiomyocyte 
death and loss of myocardial cell mass, stem 
cell therapy has strongly come up as a novel 
therapeutic option to treat cardiac disease.66,67 

Different cells such as hematopoietic stem 
cells, endothelial progenitor cells, cardiac stem 
cells, ES cells and MSCs were on debate as the 
most adequate one for that approach; especially, 

adult bone marrow derived stem cells which 
were reported to improve myocardial function 
after infarction.68,69 In fact, results from different 
laboratories demonstrated that MSCs, under 
specific conditions (exposition to grow factors 
and/or diverse chemical compounds), are able 
to give rise to cardiomyocyte-like cells.70-72 These 
differentiation potential has also been described in 
vivo but at lower rates and one can never exclude 
the possibility of getting additional unwished 
differentiated cell types. For instance, Breitbach 
et al described the development of encapsulated 
areas with calcifications and/or ossification at 
myocardial sites after MSC transplantation in a 
cryo-infarction animal model.47,73 Indeed, several 
questions remain with no answer at many levels 
and whether MSCs may be the best model for 
cardiovascular repair is still to be shown.

Skin regeneration
Wound healing is a complicated biological 

process where several kinds of cells are required, 
extracellular matrix (ECM) deposition is needed and 
different regulatory events such as angiogenesis 
should be well coordinated.74,75 This process gets 
relevant when it comes to patients suffering 
diabetes.76,77 Foot ulcers are relatively common 
among patients with diabetes and they easily get 
infected. If the infection is not properly treated and 
finally extends, it could lead to foot amputation for 
septic gangrene. Wound healing is an extremely 
important event in burned patients too. In this 
scenario, infections are also the most general 
complication especially in highest degree burns. 
Two stem cell niches are probably involved in the 
repair of the damaged tissue: stem cells from the 
injured tissue itself and/or migratory stem cells 
from bone marrow (MSCs and hematopoitic stem 
cells). Thus, MSCs may migrate from bone marrow 
to damaged tissues in order to reconstitute skin in 
cutaneous wounds.78 Burn wound animal models 
have already been tried demonstrating that tissue-
engineered skin containing MSCs can accelerate 
wound healing successfully. Wounds grafted with 
MSCS showed better epidermal formation and 
increased vascularisation.79 In fact, Wu et al80 
showed that BM-MSCs are able to promote wound 
repair through differentiation and production of 
proangiogenic factors like vascular endothelial 
growth factor (VEGF) and angiopoietin-1. Better 
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understanding about this mechanism may 
contribute to develop novel therapies for severe 
cutaneous status like the ones mentioned above 
as well engineering new skin substitutes. 

Tooth engineering
Tooth loss is often associated with both 

physiological and pathological causes that 
include aging, trauma, dental caries, periodontal 
diseases as well as genetic reasons. In addition 
to physical limitations, tooth loss affects 
facial esthetic and decreases quality of life.81 
Nowadays, different research groups are 
working in the development of new stem-cell-
based tissue engineering approaches for tooth 
regeneration.82-84 Recent strategies focus on 
combination of several scaffolding biomaterials, 
where cells are seeded, together with controlled 
release of signalling cues for stem cells.37,85,86 
These kinds of polymer scaffolds, like polyglycolic 
acid (PGA) or poly (lactic-co-glycolic) acid (PLGA), 
are biodegradable and permit implantation of 
cell-scaffold constructs on the host, revealing a 
promising option for tooth regeneration. Besides, 
MSCs from dental pulp and bone marrow have 
been proposed as potential candidates for tooth 
engineering. Indeed, it was reported that both 
populations are able to successfully form different 
dental structures under specific conditions.87-91 
Moreover, Yu et al92 concluded that DPSCs showed 
the highest odontogenic capability under the same 
inductive microenvironment in comparison to 
bone marrow stromal stem cells. But despite of 
its potential, a number of obstacles such as shape, 
size and growth control of the new developing 
bio-engineered tooth and availability of dental 
epithelium as well as graft rejection in the jaws 
are still challenging researchers in the field.93

CoNCLuSIoNS
Interest about novel stem cell-based therapies 

has exponentially been increasing over the past 
years, not only in the scientific community but 
also within the society. Indeed, stem cells seem to 
give the best chance for human tissue engineering 
and particularly, hMSCs, may be a great tool in 
regenerative medicine because of their ability to 
differentiate into a variety of specialized cells in 
addition to their immunoprivileged characteristics. 
However, caution is always recommended to 

ensure safety and success of clinical trials. More 
detailed data concerning biological and functional 
properties of MSCs is still required. In this review, 
we wanted to summarize the general landscape 
of the MSC tool box for bioengineering, which may 
provide in the future new therapeutic strategies 
for a range of diseases with no cure so far.  
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