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Abstract: Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF
MS) is a rapid and accurate method to identify microorganisms in clinical laboratories. This study
isolates yeast-like microorganisms in the oral washes that are collected from non-bedridden nursing
home residents, using CHROMagar Candida plates, and identifies them using Bruker MALDI-TOF
MS. The ribosomal DNA sequences of the isolates are then examined. Three hundred and twenty
yeast isolates are isolated from the oral washes. Candida species form the majority (78.1%), followed by
Trichosporon/Cutaneotrichosporon species (8.8%). Bruker MALDI-TOF MS gives a high-level confidence,
with a log(score) value of ≥1.8, and identifies 96.9% of the isolates. There are six inconclusive
results (1.9%), and those sequences are verified as rare clinical species, including Candida ethanolica,
Cutaneotrichosporon jirovecii, Exophiala dermatitidis, and Fereydounia khargensis. Almost all of the isolates
have a regular color on the CHROMagar Candida plates. If the colonies are grouped by color on the
plates, a specific dominant yeast species is present in each color group, except for purple or orange
isolates. In conclusion, MALDI-TOF MS is verified as a fast, accurate and practical method to analyze
oral yeasts in elderly subjects.

Keywords: MALDI-TOF MS; commensal yeast; oral cavity microorganisms; CHROMagar Candida;
geriatric medicine

1. Introduction

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-
TOF MS) is a rapid and accurate method to identify microorganisms in a clinical microbi-
ology laboratory [1–3]. The process compares the proteomic fingerprint of an unknown
microorganism, which mainly consists of ribosome proteins, to those in a reference spectral
database. The peak profiles that are generated by Bruker MALDI-TOF MS are matched to
reference libraries using the integrated patterns matching algorithm, BioTyper software
(Bruker Daltonics, Bremen, Germany). This gives an arbitrary score value of 0 to 3.0 to rep-
resent the similarity between the sample and the reference spectrum. A log(score) of ≥2.0
represents successful identification of a species, and a score of 1.7 to 2.0 is acceptable for
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the genus level. Scores higher than 1.8 represent highly-accurate yeast identification [4,5].
Cultivation is inevitable if microorganisms are identified by MALDI-TOF MS, but the
process only requires a minute number of cells, and much less culture time. Along with the
development of microbial culturomics, MALDI-TOF MS plays an effective complementary
role in microbiome analysis using metagenomics [6,7].

The elderly population (60 years or over) is estimated by the WHO to grow from
12.7% in 2017 to 21.3% in 2050 globally, and from 12.2% to 24.2% in Asia [8]. Therefore, the
healthcare needs of elderly people are increasingly significant. A recent study on salivary
microbiota in the elderly shows that general frailty is associated with composition and
formulation of oral microbiota [9]. More than 100 trillion microbial cells are estimated
to inhabit a healthy human body [10]. In the oral cavity, microbes live in the biofilm on
oral tissues to protect against environmental stress and host immunity [11]. A dysbiotic
imbalance of the indigenous oral microbial community is a cause of oral diseases, including
early childhood caries, HIV-associated periodontitis, and rheumatoid arthritis [12–14].
A connection between distinct oral microbiota has also been observed in patients with
oropharyngeal squamous cell carcinoma [15].

The oral microbiota is a complex community that is primarily composed of bacteria
and fungi. Oral mycobiota are more diverse and complex than any other body site in
healthy humans [16]. The intake of environmental fungi through food and breathing un-
doubtedly contributes to the greater fungal diversity in the oral cavity [17]. Thirteen taxa,
including the prevalent Candida species, Cladosporium, Aureobasidium, Saccharomycetales,
Aspergillus, Fusarium, and Cryptococcus, are the core mycobiota in healthy individuals [18].
However, oral mycobiota was observed to change if the host immunity changes: Candida
species are particularly dominant in immunosuppressed solid organ transplant recipi-
ents [16]. In terms of the interaction dynamic between resident fungi and the innate
immunity, it is worth examining the salivary mycobiota, especially the yeasts, of non-
bedridden elderly subjects.

Mycobiota dysbiosis is an important factor in oral diseases, so a practical method to
analyze the changes in yeast populations that are collected from saliva or oral washes is
necessary. Chromogenic agar is a practical and effective tool to isolate common yeast in
clinical specimens [19,20], but the reported specificity is 62% for bronchial secretion sam-
ples [21]. The color and morphology of colonies that are isolated on CHROMagar Candida is
critical to the presumptive identification of clinically-important Candida species [12,21,22].
It is difficult to differentiate non-Candida yeasts using CHROMagar Candida plates, but the
process allows the rapid detection of common Candida species in mycobiota [2,5].

CHROMagar Candida allows a presumptive identification of common Candida species,
but the diversity of yeast in oral washes extends far beyond the genus Candida. A recent
study by the authors demonstrated that Candida albicans is majorly cultured from oral
washes in a high percentage (52 of 204, 25.5%) of nursing residents, but half of the residents
(106/204, 52%) have at least one non-C. albicans yeast species [22]. Metagenomics with
ribosomal DNA amplification is widely used to characterize of microbiota or mycobiota.
MALDI-TOF MS is a rapid and accurate method to identify microorganisms in clinical
laboratories [1–3]. This study compared different approaches to characterize all the oral
yeast isolates, which are single-colony purified by CHROMagar Candida from oral washes
that are collected from non-bedridden elderly subjects in nursing care institutions [22]. The
results demonstrate that the Bruker MALDI-TOF MS is an effective and highly specific
method for the identification of oral yeast.

2. Materials and Methods
2.1. Oral Yeast Isolates

This study was approved by the Human Experiment and Ethics Committee of the
National Health Research Institute (EC1040411-E). A total of 204 residents of ≥50 years
(average age: 77.1; 153 individuals >70 years old) in 10 nursing homes in central Taiwan
were enrolled, after giving informed consent. The sampling method has been reported



Microorganisms 2021, 9, 142 3 of 13

previously [22]. Figure 1 shows the 20 mL oral rinses containing saline that were collected
from each person. These rinses were then centrifuged and resuspended in 1 mL of sterile
saline. A total of 50 µL of suspension of each sample was streaked onto a CHROMagar
Candida plate (CHROMagar Company, Paris, France) and incubated at 35 ◦C for 2 days.
If present, colonies from each plate were selected for further analysis. Yeast colonies
were identified according to the manufacturer’s instructions or the description of the
morphology by Odds and Bernaerts [23].
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Figure 1. Scheme for the identification of oral yeast for the study. The strategy to isolate and identify
yeast involves: (1) preparation of oral wash samples, (2) yeast isolation, and (3) identification and
confirmation of the yeast.

2.2. Bruker MALDI-TOF MS

A full loop of colonies was selected and suspended in 300 µL of deionized water
containing 900 µL of absolute ethanol. Following centrifugation, the pellet was then
dissolved in 50 µL of 70% formic acid and mixed in a vortex with 50 µL of acetonitrile. The
samples were centrifuged, and 1 µL of the clear supernatant was spotted onto the MALDI
target plate and air-dried at room temperature. Each spot was then overlaid with 1 µL of
CHCA and completely air-dried before the Bruker MALDI-TOF MS measurement. The
microorganism was identified, and data analyses were performed using the Bruker LT
microflex MALDI-TOF MS (Bruker Daltonics, Bremen, Germany) with Bruker BioTyper
3.0 system software (Bruker Daltonics) [24,25]. A MALDI Biotyper log(score) value >2.0
represents reliable identification at the genus level and a score <1.7 represents ambiguous
identification [4,5].

2.3. Sequence Analysis of Ribosomal DNA

The genomic DNA of yeast was extracted and internal transcribed spacers (ITS) or
D1/D2 amplification for identifications was used, as previously described [22,26]. The
thermal cycling parameters were an initial denaturation for 5 min at 95 ◦C and 30 cycles of
1 min at 95 ◦C, 1 min at 55 ◦C, and 1 min at 72 ◦C. A final extension at 72 ◦C for 10 min was
performed at the end of the amplification. The amplicons were purified and then sequenced
by the Genomic Medicine Research Core Laboratory of Chang Gung Memorial Hospital
Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital. The nucleotide
sequence results were analyzed using BLAST searches with default settings against the
nonredundant (NR) database at NCBI, the ISHAM-ITS database, and the Candida Genome
Database (CGD). The best BLAST hit for the query sequence of each amplicon was used to
identify the isolates.

2.4. Statistic Analysis

An unpaired Student’s t-test was used to compare the value of the Biotyper score: a
p value < 0.05 was considered to be significant.
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3. Results
3.1. Isolation and Identification of Oral Yeast

To isolate and identify the oral yeast isolates of non-bedridden elderly residents in
nursing homes, the oral wash samples were collected and cultivated on CHROMagar
Candida plates. Isolates with different morphologies on each plate were collected, and
320 yeast-like isolates were collected in total. All the fresh colonies of those isolates
were subjected to Bruker MALDI-TOF MS (Figure 1). The genus, Candida (250 isolates,
78.1%), comprised the majority, followed by Trichosporon/Cutaneotrichosporon (28 isolates,
8.8%) (Figure 2 and Table 1). C. albicans was the most abundant (129 isolates, 40.3%) and
Trichosporon asahii (18 isolates, 5.6%) was the largest species of the non-Candida isolates.
In the non-Candida/non-Trichosporon group, the probiotic yeast Saccharomyces cerevisiae
(7 isolates), accounted for 19.4% of the isolates in the rare species of yeasts, followed by
Meyerozyma guilliermondii (6 isolates; anamorph, C. guilliermondii), and others (Figure 2 and
Table 1).
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Table 1. List of isolated yeasts.

Yeast Isolates Numbers Percent

Candida 250 78.1%

Candida albicans 129 40.3%
C. glabrata 51 15.9%
C. parapsilosis 34 10.6%
C. tropicalis 22 6.9%
C. pararugosa 6 1.9%

other Candida 8 2.5%

Non-Candida 70 21.9%

Trichosporon asahii 18 5.6%
Trichosporon/Cutaneotrichosporon 10 3.1%
Saccharomyces cerevisiae 7 2.2%
Meyerozyma guilliermondii 6 1.9%
Exophiala dermatitidis 5 1.6%
Magnusiomyces capitatus 5 1.6%
others 19 5.9%
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3.2. Accuracy of Bruker MALDI-TOF MS Identification

Of the 320 yeast isolates, only six isolates could not be positively identified by Bruker
MALDI-TOF MS with the BioTyper system. All yeast isolates were further ITS- or D1/D2-
sequence verified, unless the colony color and morphology fully matched the patterns of
the five major Candida species on CHROMagar Candida. A total of 302 isolates had log(score)
values of more than 2.0, which represents accurate identification. Of the remaining isolates
with a log(score) value of more than 1.8, six isolates showed the same results for Bruker
MALDI-TOF MS and ITS-sequencing, and two were identified using Biotyper as Candida
guilliermondii var. membranifaciens, which matches the corresponding anamorph Kodamaea
ohmeri that was identified by ITS sequencing [27]. One isolate was identified using Biotyper
as Candida fermentati, with a low log(score) value of 1.707, which is the anamorph of
the ITS-sequencing result Meyerozyma caribbica. In summary, 314 of 320 isolates were
accurately identified by the Bruker MALDI-TOF MS Biotyper system. The main spectrum
patterns of common Candida species (C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis)
and Trichosporon asahii were analyzed individually (Figures S1–S5), and the results show
some highly conservative peaks that could be used as biomarker patterns for dominant
yeasts in oral cavity. Only six oral wash isolates were untypable, including two each of
Exophiala dermatitidis and Fereydounia khargensis, and one each of Candida ethanolica and
Cutaneotrichosporon jiroveci (formerly Trichosporon jiroveci) (Table 2), which were identified
by ITS or D1/D2 sequencing. Candida ethanolica and Fereydounia khargensis are not yet
included in the MALDI Biotyper database version 3, which was used for this study. The
results convincingly show that Bruker MALDI-TOF MS allows the effective identification
of common or rare commensal, environmental yeast species of oral yeast.

Table 2. Oral yeasts in the residents of nursing homes.

MALDI-TOF MS Isolate Number Species

BioTyper Score ≥ 2.0 302

C. albicans, C. dubliniensis, C. glabrata,
C. intermedia, C. krusei, C. metapsilosis,
C. orthopsilosis, C. parapsilosis, C. pararugosa,
C. tropicalis, Cl. lusitaniae, Cr. neoformans,
Cu. mucoides, Cy. jadinii, E. dermatitidis,
K. marxianus, Lo. elongisporus, Ma. capitatus,
Me. guilliermondii, P. manshurica,
P. norvegensis, R. mucilaginosa, R. toruloides,
S. cerevisiae, T. asahii, T. faecale

2.0 > BioTyper Score between ≥ 1.8 8

Agree with ITS sequencing results

Agree with morphology on CHROMagar 5 C. orthopsilosis, E. dermatitidis, S. cerevisiae,
T. faecale

Disagree with morphology on CHROMagar 1 Pichia manshurica

Disagree with ITS sequencing results

Agree with morphology on CHROMagar 2 Me. guilliermondii var. membranifaciens (ITS:
Kodamaea ohmeri)

Disagree with morphology on CHROMagar 0

BioTyper Score < 1.8 4

Agree with ITS sequencing results
Agree with morphology on CHROMagar 1 Cu. jirovecii
No CHROMagar morphology information available 2 La. fermentati

Disagree with ITS sequencing results
No CHROMagar morphology information available 1 C. fermentati (teleomorph Meyerozyma caribbica)
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3.3. Rapid Differentiation of Yeasts by CHROMagar Candida

CHROMagar Candida plates were used to screen yeast-like colonies for this study.
The color and morphology of the colonies that were isolated on CHROMagar Candida are
critical for the presumptive identification of clinically-important Candida species [20,23,28].
According to the results using Bruker MALDI-TOF MS, 311 of all 320 isolates (97.5%) on
CHROMagar Candida had a color that matched the reported color [20,29–33]. Most Candida
species, especially the prevalent C. albicans (100%), C. glabrata (100%), C. parapsilosis (94.1%),
and C. tropicalis (90.9%), very closely matched the color corresponding to the species on
CHROMagar (Table 3), as did non-Candida yeasts, such as T. asahii (100%) (Table 4).

Table 3. Appearance of Candida species 1 in the oral samples on CHROMagar Candida plates.

Candida Species Isolates
(Total 320) Morphology Colony Color Frequency of

Regular Type

Candida albicans 129 (40.3%)
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Table 4. Cont.

Yeast Species Isolates
(Total 320) Morphology Colony Color Frequency of

Regular Type

Saccharomyces cerevisiae 7 (2.2%)
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For all color-matched isolates, six color groups were identified: green, purple/pink,
blue, white, gray, and orange. Almost all green colonies were C. albicans (129/130 isolates,
99.2%). C. parapsilosis accounted for more than 80% of the white group, and E. dermatitidis
accounted for more than 70% of the gray colonies. In the blue color group, C. tropicalis
(20/42 isolates, 47.6%) and T. asahii (18/42, 42.9%) were the main two species. In the
purple/pink color group, there were 15 species, including fifty-one of C. glabrata, seven
of S. cerevisiae, six of Cutaneotrichosporon mucoides (formerly Trichosporon mucoides), five of
M. capitatus, four each of C. krusei (teleomorph Pichia kudriavzevii), C. pararugosa, and Me.
guilliermondii (anamorph C. guilliermondii), two of P. manshurica, and one each of C. fermen-
tati, C. intermedia, C. ethanolica, C. metapsilosis, C. utilis (teleomorph, Cyberlindnera jadinii),
Clavispora lusitaniae (anamorph C. lusitaniae), and Kluyveromyces marxianus (anamorph, C.
kefyr) (Table 5). A wide range of species had a purple/pink color on CHROMagar Candida,
but the most abundant species was C. glabrata (51/90, 56.7%) (Table 5).

Table 5. Proportions of color-matched species on CHROMagar Candida plates.

Color Group Isolate
Number Final ID Regular Color Color-Matched % In Total

(311)
% In Color

Group

Green 130
Candida albicans green 129 41.5% 99.2%

Candida dubliniensis dark green 1 0.3% 0.8%

Purple/Pink 90

Candida glabrata purple 51 16.4% 56.7%

Saccharomyces cerevisiae purple 7 2.3% 7.8%

Cutaneotrichosporon mucoides light purple 6 1.9% 6.7%

Magnusiomyces capitatus pale pink 5 1.6% 5.6%

Candida pararugosa very light purple 4 1.3% 4.4%

Meyerozyma guilliermondii light purple 4 1.3% 4.4%

Pichia kudriavzevii purple with white border 4 1.3% 4.4%

Pichia manshurica pale pink 2 0.6% 2.2%

Candida ethanolica pale pink with white border 1 0.3% 1.1%

Candida fermentati light purple 1 0.3% 1.1%

Candida intermedia dark purple 1 0.3% 1.1%

Candida metapsilosis light purple 1 0.3% 1.1%

Clavispora lusitaniae light purple 1 0.3% 1.1%

Cyberlindnera jadinii light purple 1 0.3% 1.1%

Kluyveromyces marxianus light purple 1 0.3% 1.1%
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Table 5. Cont.

Color Group Isolate
Number Final ID Regular Color Color-Matched % In Total

(311)
% In Color

Group

Blue 42

Candida tropicalis metallic blue 20 6.4% 47.6%

Trichosporon asahii blue 18 5.8% 42.9%

Trichosporon faecale blue 2 0.6% 4.8%

Cutaneotrichosporon jirovecii blue 1 0.3% 2.4%

Lodderomyces elongisporus metallic blue 1 0.3% 2.4%

White 38

Candida parapsilosis white 32 10.3% 84.2%

Candida orthopsilosis white 3 1.0% 7.9%

Pichia norvegensis white 2 0.6% 5.3%

Cryptococcus neoformans milk white 1 0.3% 2.6%

Gray 7
Exophiala dermatitidis olivaceous-gray 5 1.6% 71.4%

Fereydounia khargensis olivaceous-gray 2 0.6% 28.6%

Orange 4

Lachancea fermentati red-brown 2 0.6% 50.0%

Rhodotorula mucilaginosa orange 1 0.3% 25.0%

Rhodotorula toruloides orange 1 0.3% 25.0%

4. Discussion
4.1. Commensal Oral Yeasts in the Elderly

A culture-based mycobiome analysis of oral samples from elderly subjects (age above
65) in New Zealand showed that frequently isolated species included C. albicans, C. glabrata,
C. parapsilosis, Clavispora lusitaniae (anamorph C. lusitaniae), Meyerozyma guilliermondii
(anamorph, C. guilliermondii), Pichia fermentans, and Yarrowia lipolytica [34]. P. fermentans
and Y. lipolytica were not identified by this study, but a significant population (28/55,
50.9% in non-Candida group) was of the group Trichosporon, which belongs to human skin
commensals and is also frequently found in the mouths of healthy individuals [35]. The
very large population of the Trichosporonaceae family (including Trichosporon and Cutaneotri-
chosporon species) in oral microbiota that were collected from elderly subjects in nursing
homes in central Taiwan shows that the Trichosporon group is common in the environment.
In a study that used samples from one-month old infants, oral mycobiome has a signifi-
cantly lower alpha diversity than that of skin and anal mycobiomes, which shows that the
environment of the oral cavity selects commensal fungi, including Candida, Saccharomyces,
and Cladosporium, and that the mycobiome depends more on the environment than the
mother’s vaginal mycobiome [36]. Candida yeasts are a type of human oral commensal that
are mostly located on the tongue [37]. The carriage rate for C. albicans in the mouths of
healthy individuals is estimated to be 17.7%, but this figure increases to 40.6% in hospital-
ized individuals [38], so health is a predisposing factor for C. albicans colonization in the
oral cavity [39]. In addition to the prevalent C. albicans, C. glabrata, C. krusei (teleomorph
P. kudriavzevii), C. tropicalis, and C. parapsilosis have been isolated from the oral cavity of
healthy individuals [37,39,40].

Health professionals should be alerted to the presence of a biofilm that is associated
with the Candida species, especially in those with reduced antifungal susceptibility. Dis-
orders of the oral cavity are common in senior citizens who have no underlying health
conditions, including dental caries, gingivitis, periodontitis, xerostomia, denture stomatitis,
and candidiasis [41]. Oral disorders can contribute to poor nutritional status and health and
have a negative effect on immunity in the elderly. Dental prostheses also reduce salivary
flow and predispose elderly individuals to microbial colonization and biofilm formation,
which results in candidiasis.
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4.2. Limitation of MALDI-TOF MS, Chromogenic Agar, and Ribosomal DNA Sequencing in
Microbial Pathogenesis

The results of high-throughput amplicon sequencing and shotgun metagenomics
show that there are 12 million species of fungi, of which only 2.2–3.8 million species
are reported to be cultivable [42]. There has been a rapid growth in sequence data, and
mycobiota/microbiota dysbiosis has been identified as a critical factor in some human dis-
eases [43–45]. Some bioinformatics analyses using metagenomics show the importance of
some alteration of mycobiota, but pure isolates are required to determine the pathogenesis
of candidate pathogens. Ribosomal DNA sequencing and MALDI-TOF MS identification
all require pure cultures. Chromogenic agar plates allow better identification in a clinical
laboratory because they are selective and differential. CHROMagar Candida, which is a pre-
sumptive identification method for C. albicans, C. tropicalis, C. glabrata, C. krusei (teleomorph
P. kudriavzevii), and Trichosporon spp. [32], does not distinguish many environmental yeasts
or some clinically-relevant yeasts. The accumulation of MS profiles for reference fungal
isolates means that MALDI-TOF MS is an effective identification method for clinical exami-
nation. The Bruker database comprises 604 references for yeast and fungus and includes
almost all known pathogenic fungi [46], but mix-cultures are usually misidentified in term
of the microorganisms, and only monomicrobial cultures can be specifically identified [47].
In clinical, the limitation of MALDI-TOF MS is to identify different species in a sample with
mix species. Recently, mix-microbial identification by MALDI-TOF MS has used specific
algorithms to determine the mass spectra biomarkers for microorganisms [47]. Meanwhile,
liquid chromatography–tandem MS is also used to identify mix-microbial samples [48,49].
As the mass spectral database grows significantly, yeast identification using MS, including
identification of mix-culture, would be expected in the near future.

The limitation of both rDNA sequencing and MALDI-TOF MS is that they identify
known species. Even though rDNA sequence is simple, it takes longer preparation time
than MALDI-TOF MS. Nevertheless, the MALDI-TOF MS equipment and database are
not available to all laboratories. For this study, six isolates cannot be typed using Bruker
MALDI-TOF MS, including two yeast species that are not included in the MALDI Biotyper
database—one C. ethanolica isolate and two F. khargensis isolates—and two yeast species that
are shown in the database—one Cu. jiroveci isolate and two E. dermatitidis isolates. That Cu.
jiroveci isolate was MALDI-TOF MS identified, but its log(score) value was 1.703, which is
less than the identification threshold (1.8), is probably due to the limited number of isolates
in the database. Five of seven E. dermatitidis isolates were identified by MALDI-TOF MS,
with a wide range of scores: 2.072, 1.967, 1.951, 1.861, and 1.792, but two were MS untyped.
The diversity and polymorphism of E. dermatitidis [50] might contribute to the variation in
MS patterns.

4.3. Mycobiome Analysis Using Culture- and Non-Culture Methods

Advances in DNA sequencing technology mean that many microbiota and mycobiota
analyses can be conducted without the need for time-consuming cultivation. However,
the oral cavity is the entrance for food, drink, and air, so many environmental microbes or
debris can be detected using a non-culture method. This study shows that Trichosporon is
the second largest genus in the oral cavity of elderly subjects, but it is not widely distributed
in samples from a previous ITS-sequencing mycobiome study that was conducted in the
Cleveland area on standard Western diets [18]. Oral mycobiota is affected by environment,
drink, and food styles, but the difference in yeast taxa for this study and others that use
ITS-sequencing is probably due to cultivation. Malassezia yeast is a skin commensal yeast
that has been reported in oral mycobiota using sequencing methods, but is not detected in
oral microorganisms using culture methods, because the fatty acid synthesis pathway is
incomplete [51]. Therefore, a cohort study to determine whether the culture-based MALDI-
TOF MS method is compatible with analysis using DNA extraction-based sequencing
analysis would be of use.
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4.4. Using of CHROMagar Candida to Differentiate Yeast Species in the Oral Cavity

This study uses chromogenic agar plates to screen yeast-like microorganisms. CHRO-
Magar Candida in isolation allows the presumptive diagnosis of clinically-important Candida
species [20,28,34,37,52]. The colony color and the morphology of the isolates are catego-
rized in Table 5. Of all colony color groups in the oral samples of elderly subjects, green
precisely differentiates C. albicans from others (129/130 isolates, 99.2%) and white color
represents most of the C. parapsilosis (32/38 isolates, 84.2%). C. tropicalis and T. asahii con-
tribute to nearly half of the blue colonies, but the purple or pink colonies show no majority.
The color category for this study indeed allows reliable analysis of oral mycobiome.

4.5. Use of MALDI-TOF MS to Analyze Oral Mycobiome

The presence of Candida strains with reduced susceptibility to antifungal agents, such
as reduced susceptibility to azoles in C. glabrata and C. krusei (teleomorph P. kudriavzevii)
and reduced susceptibility to flucytosine in C. krusei and C. rugosa, could pose a problem
for immune-compromised elderly subjects who require drug treatment [34]. Therefore,
fast and accurate diagnosis of yeast species is important for geriatric medicine. MALDI-
TOF MS is a rapid, reliable, economical, and environmentally-friendly method for routine
microbial identification. It requires a shorter culture time, because a tiny sample is sufficient,
so it can be used to instigate timely and appropriate antibiotic treatment in a clinical
setting [3,5]. However, oral mycobiota are highly diverse and contain some rare yeast
species, such as Trichosporon jirovecii (current name: Cutaneotrichosporon jirovecii) [53] and
Lachancea fermentati [54] (Table 2), which is in contrast with clinical samples. Only species
with the morphology of frequently encountered, disease-associated fungi are familiar to
physicians or medical technicians, so accurate diagnosis of yeast or molds is difficult.
MALDI-TOF MS with a Bruker Biotyper system was used to analyze yeast taxa in the
elderly subjects for this study, and a very high identification rate was achieved for oral
yeasts (314/320 = 98.1%), with only six yeasts note being untyped. C. albicans and C.
glabrata have a significantly higher Biotyper score (mean score = 2.34 and 2.35 respectively,
Figure 3), as well as Trichosporon species (mean score = 2.23. This was probably because
the Biotyper database contains a large number of MS profiles for Candida and Trichosporon
species. As the number of MS profiles of fungi that can be cultured increases, MALDI-TOF
MS will become an increasingly effective means of microbial identification.
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Figure 3. The log(score) values for yeast isolates that are identified using the MALDI-TOF Bruker
Biotype. The Biotyper log(score) values for Candida, Trichosporon, and other genuses are compared in
(A). All scores for the isolates of the Candida species that are identified by this study are compared
(B). The box plots show the diversity of the log(score) values for the yeast isolates. The upper and
lower edges of the boxes correspond to the first and third quartiles. The median is represented by a
horizontal line within the box. The whiskers extend from the box in order from the highest to lowest.
Each score is marked by a dot. The log(score) values are compared using an unpaired Student’s t-test;
a p-value <0.05 is represented as *, <0.01 as **, <0.001 as ***, and <0.0001 as ****.
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5. Conclusions

This study used CHROMagar Candida to grow oral yeast colonies, which were then
identified using Bruker MALDI-TOF MS. This combination better discriminates yeasts that
can be cultured, and allows the study of yeasts that are associated with disease. Bruker
MALDI-TOF-MS is shown to be a reliable and rapid method for the identification of yeast
isolates in the oral washes of elderly residents in nursing homes, especially those of the
Candida and Trichosporon species.
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7/9/1/142/s1, Supplementary figures contains overlaid mass spectra with smoothing and baseline
subtraction for Candida albicans isolates (Figure S1), Candida grablata isolates (Figure S2), Candida
parapsilosis isolates (Figure S3), Candida tropicalis isolates (Figure S4) and Trichosporon asahii isolates
(Figure S5).
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