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ABSTRACT
Mental illnesses like schizophrenia (SCZ) and major depression disorder (MDD) 

are devastating brain disorders. The SCZ risk gene, disrupted in schizophrenia 1 
(DISC1), has been associated with neuropsychiatric conditions. However, little 
is known regarding the long-lasting impacts on brain metabolism and behavioral 
outcomes from genetic insults on fetal NPCs during early life. We have established 
a new mouse model that specifically interrupts DISC1 functions in NPCs in vivo by a 
dominant-negative DISC1 (DN-DISC1) with a precise temporal and spatial regulation. 
Interestingly, prenatal interruption of mouse Disc1 function in NPCs leads to abnormal 
depression-like deficit in adult mice. Here we took a novel unbiased metabonomics 
approach to identify brain-specific metabolites that are significantly changed in DN-
DISC1 mice. Surprisingly, the inhibitory neurotransmitter, GABA, is augmented. 
Consistently, parvalbumin (PV) interneurons are increased in the cingulate cortex, 
retrosplenial granular cortex, and motor cortex. Interestingly, somatostatin (SST) 
positive and neuropeptide Y (NPY) interneurons are decreased in some brain regions, 
suggesting that DN-DISC1 expression affects the localization of interneuron subtypes. 
To further explore the cellular mechanisms that cause this change, DN-DISC1 
suppresses proliferation and promotes the cell cycle exit of progenitors in the medial 
ganglionic eminence (MGE), whereas it stimulates ectopic proliferation of neighboring 
cells through cell non-autonomous effect. Mechanistically, it modulates GSK3 activity 
and interrupts Dlx2 activity in the Wnt activation. In sum, our results provide evidence 
that specific genetic insults on NSCs at a short period of time could lead to prolonged 
changes of brain metabolism and development, eventually behavioral defects.
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INTRODUCTION

Mental disorders, including SCZ, are chronic and 
debilitating conditions that have a high prevalence in the 
population worldwide [1] and no effective treatments 
available. The lifetime risk of suicide in patients with 
psychiatric disorder is high [2]. They are among the top 
ten leading causes of disability (WHO). 

The neurodevelopmental theory proposes that a 
brain defect is inherited or sustained early in life, but is not 
fully expressed until adolescence [3-5]. Evidences from 
longitudinal in-vivo imaging studies on high-risk subjects 
have revealed that progressive structural changes in brain 
precede the onset of symptoms [6-10], and moreover, 
that these changes continue to progress after the onset of 
psychosis. Epidemiological studies have revealed that the 
prenatal period is vulnerable to mental disorders [11-19]. 

Both genetic and environmental factors are believed 
to contribute to the risk of psychiatric disorders. Genetic 
disruptions during the prenatal stage may influence 
early brain development, including NPC proliferation, 
differentiation, migration and synaptic formation, and 
render susceptibility to mental disorders [20]. Among 
the genetic factors associated with schizophrenia, the 
DISC1 gene is disrupted by a balanced chromosomal 
translocation (1;11)(q42;q14.3) in a Scottish pedigree 
with a high incidence of major depression, schizophrenia 
and bipolar disorder [21]. The association of DISC1 gene 
with major mental illness [22-26] has been confirmed 
and replicated in numerous independent genetic studies 
[26-31]. Although to date, there is a lack of convincing 
evidence for common variation identified from genome-
wide association studies, the high penetrance of the 
translocation in the original Scottish family [21, 32] and a 
frameshift mutation in an American family [33], supports 
that large rare structural mutations in DISC1 gene may 
be a significant risk factor. Consistent with this notion, 
recently DISC1 deletion has been linked to agenesis of 
the corpus callosum [34]. Mouse models for DISC1 have 
been generated using different promoters, and a variety 
of phenotypes have been observed. Mice expressing 
either a transgene of human DISC1 (mimicking the 
Scottish translocation mutant) or point mutations by ENU 
mutagenesis, exhibit increased ventricle size, decreased 
gray matter volume, changes in dendritic morphology in 
neurons, and reduced neurogenesis [35-39]. These mice 
also exhibit behavioral abnormalities such as hyperactivity 
[35, 36], increased immobility in the forced swim test 
[35], decreased sociability [36], and decreased working 
memory [36, 39]. 

Our previous work identified DISC1 as a key 
regulator of NPC proliferation and mouse behavior 
through modulating the canonical Wnt signaling pathway 
[40]. DISC1 regulates cortical NPC proliferation and 
neuronal differentiation via inhibition of GSK3β. 
Moreover, human variants of DISC1 disrupt Wnt signaling 

during development [41]. Previous studies have generally 
focused the neuronal disruption of mental illnesses and 
built animal models based on genetic modifications of 
neurons. However, many available DISC1 mouse models 
use either constitutive neuronal promoters [35, 36, 42-
45] or endogenous Disc1 promoters [37, 46, 47] lacking 
spatial and temporal control of transgene expression. To 
overcome this limitation, we established a new Nes-DN-
DISC1 transgenic mouse model, which will allow us to 
monitor the effect of risk genes on NPCs at the beginning 
of brain development and the long-term effect on neurons. 
This new mouse model allows us to control the timing and 
length of DN-DISC1 expression with a spatial distribution 
specific to NPCs. 

Metabonomics profiling has been used for detecting 
the metabolic information associated with progression of 
many diseases, such as cancer and diabetes. Rather than 
transcriptomic profiling, data analysis of spectroscopic 
data generated from nuclear magnetic resonance (NMR) 
captures changes of small-molecule metabolite in animal 
models of mental disorders and offers the potential to 
characterize specific metabolic phenotypes associated 
with disrupted behaviors. Yet, no studies have directly 
investigated the effect that disruption of DISC1 function 
may have on the metabolic profile. Our mouse model 
demonstrated that a short-term interruption of embryonic 
NPC function by DN-DISC1 exhibited a long term impact 
on behavioral changes and brain metabolism in adult. 
Thus, our research provides a different strategy to probe 
the pathophysiology of mental illness, which will deepen 
our understanding of the developmental origins of mental 
diseases. 

RESULTS

Establishment of a new Nes-DN-DISC1 transgenic 
mouse model

Since DISC1 has been identified as a genetic risk for 
multiple mental disorders, several animal models based 
on DISC1 have been established using either constitutive 
neuronal promoters [35, 36, 42-45] or endogenous DISC1 
promoters [37, 46, 47]. To implement the spatial and 
temporal control of transgene expression, we established a 
new Nes-DN-DISC1 transgenic mouse model by crossing 
Nes-rtTA transgenic mice [48], in which GFP and rtTA 
are driven by the nestin promoter, with tetO-DN-DISC1 
mouse line [36], in which DN-DISC1 is controlled by 
the doxycycline (Dox) inducible promoter (tetO) (Figure 
1A). This mouse line provides a spatial control because 
the transgene is only turned on in NPCs by the nestin 
promoter. Dox provides a temporal control of DN-DISC1 
expression. 

The Nes-rtTA mouse line provides a GFP reporter 
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Figure 1: A novel model for dissecting the neural and developmental basis of mental illnesses. A. Generation of Nes-DN-
DISC1 double transgenic mouse line. GFP and rtTA are driven by the nestin promoter, which provides spatial control and only turns on in 
NPCs. Dox provides a temporal control of DN-DISC1(myc tagged) expression. B. Immunostaining of Nes-rtTA-GFP mouse brain with 
nestin (red) and GFP (green) at E17. C. Immunostaining of Nes-rtTA-GFP mouse brain with Sox2 (red) and GFP at the VZ of the neocortex. 
D. Immunostaining of Nes-rtTA-GFP mouse brain with Sox2 (red) and GFP at the VZ of the GE. E. Western blot of Nes-DN-DISC1 mice 
shows that DN-DISC1 (myc tag) is induced at E17. Notably, the basal level of DN-DISC1 is low. 
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to specifically label the NPCs in the embryonic brain. 
The neocortical NPCs of the ventricular zones (VZ) and 
subventricular zones (SVZ) generate cortical projection 
neurons. The cortical interneurons from interneuron 
progenitor cells (IPCs) in the ganglionic eminence (GE) 
migrate tangentially across areal boundaries of developing 
cortex, where they mature to form a functional network 
with excitatory neurons [49]. First, to confirm that GFP 
labels the same cells as endogenous nestin, we stained 
the brain of Nes-rtTA mice at embryonic day 17 (E17) 
with nestin and verified that GFP and nestin showed 
overlapping expression (Figure 1B). We found GFP-
labeled cells in the VZ of the hippocampus, neocortex, 
and GE, indicating that rtTA is expressed in the NPCs 
in these three regions. Second, to examine the extent to 
which GFP+ cells are NPCs, we co-stained brain sections 
with the NPC marker-Sox2 and GFP and confirmed that all 
GFP-positive cells in the VZ of the neocortex and GE are 
Sox2+ NPCs (Figure 1C and 1D). Third, to further confirm 

DN-DISC1 expression on NPCs, we induced DN-DISC1 
expression at the beginning of pregnancy by feeding 
the mother Dox-containing food. Dox can pass through 
the placenta [50] and successfully induce DN-DISC1 
expression in the embryonic brain of Nes-DN-DISC1 mice 
(Figure 1E). In contrast, the mice received regular food 
without Dox did not express detectable DN-DISC1. 

Effects on behavioral changes after a prenatal 
disruption of DISC1 function in NPCs

Our previous study showed that knockdown of Disc1 
in the dentate gyrus of adult mice leads to hyperlocomotion 
in the open field test (OFT), and depressive-like behavior 
in the forced swim test (FST) [40]. Other DISC1 models 
exhibit similar phenotypes [36]. Few studies have directly 
addressed how abnormal proliferation and differentiation 
of NPCs results in behavioral alterations in adulthood. We 

Figure 2: Behavioral tests on Nes-DN-DISC1 mice. DN-DISC1 is induced from E0 to P0 and the mice were examined by different 
behavioral tests. A. and B. OFT; C. EPM test; D. FST; E. and F. NSF test; G. tone-dependent fear conditioning; H. context-dependent fear 
conditioning; I. grooming test; n = 7-15, *, P < 0.05; ***, P < 0.001; ANOVA test. 
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hypothesize that altered embryonic brain development, 
particularly in NPCs, will increase the risk for abnormal 
behaviors in adulthood. To test this, we induced DN-
DISC1 expression from embryonic day 0 (E0) to postnatal 
day 0 (P0) (Figure 2), which specifically disrupted DISC1 
function in embryonic NPCs. To minimize the difference 
between individual mice, in this study, we used the single 
transgenic Nes-rtTA littermates from the same pregnant 
mother as our control, whereas the double transgenic Nes-
DN-DISC1 littermates were the mutant group, the same 
as the previous study [36]. Since they both were exposed 
to Dox with the same dose and time prenatally, this 
minimized the potential effect of antibiotics on behaviors. 

To determine the potential influence of early DN-
DISC1 exert any long-term effect on behaviors in adult 
mice, the littermates were off Dox food after birth (no 
induction) and were tested at 2 months old using a batch 
of behavioral tests, including the OFT, FST, elevated plus 
maze (EPM), grooming, fear conditioning test (FCT) and 

novelty suppressed feeding (NSF). The mice exhibited 
overall normal motor function and showed no significant 
differences in the total time traveled (Figure 2A) in the 
OFT. However, Nes-DN-DISC1 group spent much less 
time in the center than the control group (Figure 2B), 
suggesting anxiety-like behaviors. However, we didn’t 
detect a significant difference between two groups in the 
EPM test (Figure 2C, P = 0.97). 

As DISC1 variants have been associated with 
MDD [51], we examined if Nes-DN-DISC1 mice show 
any depression-like behaviors using FST and NSF tests. 
Interestingly, although Nes-DN-DISC1 mice do not 
show depressive phenotype in response to the acute 
stress condition in FST (Figure 2D), they are vulnerable 
to chronic stress-induced depression in NSF test (Figure 
2E and 2F, P < 0.001). Nes-DN-DISC1 mice exhibited 
no defect in fear memory at 8-weeks old (Figure 2G-2H) 
and no stereotypic grooming behaviors (Figure 2I). These 
results support that early genetic insults in NPCs could 

Figure 3: O-PLS-DA scores and coefficient-coded loadings plots for the models discriminating between the two 
compared groups. The models are constructed from NMR spectra of aqueous brain extracts obtained at the age of P1 and P30. A. 
Comparison of control and Nes-DN-DISC1 mice at P30. B. Comparison of control and Nes-DN-DISC1 mice at P1. C. Comparison of Nes-
DN-DISC1 mice between age P1 and P30. The cross-validation parameters with CV-ANOVA, Metabolite key to the numbers are shown 
in Supplementary Table 1.
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exhibit a long-term risk for behavioral abnormality in the 
adulthood even though the risk was removed.

Effects on metabonomics after a prenatal 
disruption of DISC1 function in NPCs

To determine the pathological changes of Nes-DN-
DISC1 mice that cause these behavioral changes in adult 
mice, we took advantage of an unbiased metabonomics 
approach, NMR, to determine the detailed metabolite 
changes. Pair-wise comparative orthogonal projection to 
latent structures with discriminant analysis (OPLS-DA) 

was performed using the liver and brain tissue extracts 
from the control and Nes-DN-DISC1 mice at different 
ages. Compared with control mice at postnatal one 
day (P1), Nes-DN-DISC1 mice exhibit lower levels of 
fumarate, choline and glucose in the liver (Supplementary 
Figure 1A). However, no significant differences of 
metabolites in the liver were observed between control 
mice and Nes-DN-DISC1 mice at P30 (data not shown). 
Interestingly, Nes-DN-DISC1 mice at P30 exhibited 
significant elevation in the levels of lipid, 3-HB, creatine, 
unsaturated fatty acids, and some amino acids, including 
glutamate, glycine, tyrosine, histidine, and phenylalanine, 

Figure 4: Increased PV interneuron number in different brain regions. DN-DISC1 is induced from E0 to P0 and mice are 
sacrificed at 2 months old for PV staining (green). PV interneurons are shown as the density divided by area in following regions: A. the 
cingulate cortex, B. motor cortex and C. the retrosplenial granular cortex. n = 4-6. *, p < 0.05; ***, p < 0.005; t-test. Scale bar = 100 µm. 
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and hypoxanthine with a reduction in the levels of 
alanine, glutathione, choline, glucose, and AMP in the 
liver compared to age P1 (Supplementary Figure 1B), 
confirming that NMR can detect age-dependent changes 
in mouse liver metabolites.

Strikingly, in the brain, Nes-DN-DISC1 mice have 
higher levels of GABA, citrate and inosine but lower 
levels of choline and ADP/AMP than control littermates 
at P30 (Figure 3A). Compared with control mice at P1, 
Nes-DN-DISC1 mice at P1 have a lower level of choline 
and higher branch amino acids (BCAAs) (Figure 3B). The 
levels of GABA, NAA, glutamate, aspartate, creatine, 
fumarate and inosine are higher at P1 than those at P30 
in Nes-DN-DISC1 mice while the levels of choline, 
taurine, AMP/UMP are lower at P1. These results suggest 
that DN-DISC1 expression in embryonic NPCs changes 

metabolites in the brain and liver and exerts a long-term 
effect on adult behaviors. 

Alterations of interneurons in the Nes-DN-DISC1 
mice

To test the impact of DN-DISC1 expression in 
embryonic NPCs on circuitry development, we induced 
DN-DISC1 from E0 to P0 and then examined the gross 
brain structures of transgenic mice at two months 
old. Expression of DN-DISC1 did not cause dramatic 
changes in gross brain volume, lamination of cortex, and 
overall cell density in the cortex and hippocampus. As 
we detected increased GABA in the metabomics result 
(Figure 3), we further examined several subtypes of 

Figure 5: PV interneuron number is not changed in some brain regions. DN-DISC1 is induced from E0 to P0 and mice are 
sacrificed at 2 months old for PV staining (green). PV interneurons are shown as the density divided by area in following regions: A. the 
hippocampus, B. the reticular thalamic nucleus and C. the somatosensory cortex. n = 4-6. Scale bar = 100 µm.
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GABAergic interneurons different brain regions, including 
PV, somatostatin (SST) and neuropeptide Y (NPY) 
interneurons. These interneurons are important since 
postmortem analyses of SCZ brains show a specific defect 
in PV interneurons [52]. Strikingly, in contrast to other 
DISC1 transgenic mouse models that showed fewer PV+ 

interneurons [35, 37], the cell density of PV interneurons 
in Nes-DN-DISC1 mice was significantly increased in 
the cingulate cortex, retrosplenial granular cortex, and 
motor cortex (Figure 4A-4C), but not in the hippocampus, 
somatosensory cortex or reticular thalamic nucleus (Figure 
5A-5C). In contrast, SST interneurons were significantly 

Figure 6: Decreased SST interneuron number in different brain regions. DN-DISC1 is induced from E0 to P0 and mice are 
sacrificed at 2 months old for SST staining (red). SST interneurons are shown as the density divided by area in following regions: A. the 
alveus of the hippocampus, B. the DG. n = 4-6. *, p < 0.05; ***, p < 0.005; t-test. Scale bar = 100 µm. 

Figure 7: SST interneuron number is not changed in some brain regions. DN-DISC1 is induced from E0 to P0 and mice are 
sacrificed at 2 months old for SST staining (red). SST interneurons are shown as the density divided by area in following regions: A. the 
cingulate cortex, B. the nucleus accumbens. n = 4-6. Scale bar = 100 µm.
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reduced in the alveus of the hippocampus and the dentate 
gyrus (DG) (Figure 6A-6B). However, the distribution 
of SST interneurons in the cingulate cortex and nucleus 
accumbens (Figure 7A-7B). NPY interneurons were 
reduced in the DG (Figure 8A), but not in the thalamus 
and somatosensory cortex (Figure 8B-8C). These results 

support that DN-DISC1 expression in embryonic NPCs 
alters GABAergic inhibitory neuron distribution in the 
adult brain.

Adult neurogenesis in the DG plays an important 
role in memory and depression [53-57]. We further 
examined the newborn neuron number using the marker, 

Figure 8: NPY interneuron number in different brain regions. DN-DISC1 is induced from E0 to P0 and mice are sacrificed at 
2 months old for NPY staining (red). SST interneurons are shown as the density divided by area in following regions: A. the DG, B. the 
thalamus, C. the somatosensory cortex. n = 4-6. *, p < 0.05; t-test. Scale bar = 50 µm. 
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doublecortin (DCX). We found the adult neurogenesis was 
not changed in Nes-DN-DISC1 mice compared to control 
mice (Figure 9), suggesting that the depressive behavior 
in Nes-DN-DISC1 mice is not caused by abnormal adult 
neurogenesis.

Impact on NPCs at the MGE

The results on metabonomics and interneuron 
distribution were surprising as other DISC1 mouse models 
showed decreased PV-interneurons or reduced GABA 
synthesis [58, 59]. In contrast, our metabonomics data 
suggest that early disruption of DISC1 function in NPCs 
leads to an enhanced GABA pathway, thereby changes 
animal behaviors in the adulthood. As DISC1 modulates 
cortical NPC function and the Wnt signaling pathway [40] 

that is also essential for interneuron development [60, 61], 
we further explored how DN-DISC1 expression affect 
development of interneuron progenitors. 

The cortical interneurons derived from IPCs in 
the GE migrate tangentially across areal boundaries 
of developing cortex, where they mature to form a 
functional network with excitatory neurons [49]. One 
of the consistent findings from SCZ postmortem brains 
is a reduction of PV interneurons [52], which is derived 
from medial GE (MGE). The Nes-rtTA mouse line 
carried the GFP reporter providing a convenient marker 
for labeling NPCs in both excitatory and inhibitory 
neural progenitors. To determine the effect of DN-DISC1 
expression on interneuron progenitors, after Dox induction 
at E0, pregnant mice were sacrificed at E17. Interestingly, 
the number of GFP positive NPCs was significantly 
reduced in the MGE of Nes-DN-DSIC1 mice compared 

Figure 9: Adult neurogenesis in the DG is not changed. DN-DISC1 is induced from E0 to P0 and mice are sacrificed at 2 months 
old for DCX staining (red). Scale bar = 100 µm.
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to control mice (Figure 10A). This decrease was not due 
to suppression of GFP expression by DN-DISC1 as the 
number of GFP+ cells in the neocortex (Figure 10B) did 
not change even though DN-DISC1 was also expressed in 
this region. We hypothesized that the decrease of GFP+ 
cells in Nes-DN-DISC1 mice was caused by a reduced 
proliferation of progenitors at the MGE. The mitotic 
marker, phospho-histone H3 (pH3), was used to label the 
nuclei of dividing cells. We quantified the GFP and pH3 
double positive cells in the MGE. Consistent with our 
hypothesis, disruption of DISC1 function greatly reduced 

NPC proliferation at the MGE region ( > 60%) (Figure 
10C). Intriguingly, we observed more than 2-fold increase 
of ectopic pH3 positive cells that were GFP negative (e. 
g. nestin- negative) at the MGE of Nes-DN-DISC1 mice 
(Figure 10D). 

To test the mechanism that DN-DISC1 modulates 
progenitor proliferation in the MGE, we examined the cell 
cycle exit index. BrdU was injected at E15 into pregnant 
dams. Sections of E16 brains were collected and stained 
using anti-GFP, -BrdU, and -Ki67 antibodies (Figure 
10E). GFP+/BrdU+/Ki67+ cells were in S phase at E15 

Figure 10: Impact of DN-DISC1 expression on NPCs at the MGE. DN-DISC1 is induced by Dox at E0. Pregnant mice are 
sacrificed at E17. A. and B. GFP positive NPCs are significantly reduced in the MGE, but not in the neocortex. Total GFP+ cells were 
qualified in the MGE A. and in the neocortex B. across the whole embryonic brain at E17. The density of GFP+ cells is shown. Scale bar 
= 50 µm. n = 4-5, *, p < 0.05; t-test. C. DN-DISC1 reduces proliferation of NPCs in the MGE. Brain slices from E17 embryos are stained 
with pH3 (red), a mitotic marker, and GFP (green). GFP+ and pH3+ cells were qualified using stereological methods. White arrowheads 
indicate GFP+ and pH3+ cells. Blue arrows indicate pH3+ cells but GFP- cells. Scale bar = 10 µm. n = 4-5, **, p < 0.01. t-test. D. The cell 
non-autonomous effect of DN-DISC1 on GFP- cell proliferation is shown as the quantification of pH3+ but GFP- cells to total cells. n = 
4-5, **, p < 0.01. t-test. E. BrdU was injected at E15. Mice were sacrificed at E16. The cell cycle exit index is calculated as the percentage 
of the GFP-positive cells that exited the cell cycle (GFP+ BrdU+ Ki67-) divided by total GFP and BrdU double positive (GFP+ BrdU+) 
cells. n = 3-4, **, p < 0.01, t-test. Scale bar = 10 µm. Yellow arrows indicate GFP+BrdU+Ki67- cells. 
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and remain cycling at E16 (Figure 10E). GFP+/BrdU+/
Ki67- cells (arrows) were in S phase at E15, but exited the 
cell cycle by E16. The cell cycle exit index represents the 
ratio of GFP+/BrdU+/Ki67- to total GFP+/BrdU+ cells. 
We observed a 2-fold increase in the cell cycle exit index 
in DN-DISC1 expressing embryonic brains, suggesting 
that the reduction of proliferating progenitors in Nes-DN-
DISC1 brains probably results from increased cell cycle 
exit. Our results suggest that DN-DISC1 expression exerts 
a cell-autonomous effect to suppress proliferation of GFP+ 
NPCs, whereas exhibits a cell-non-autonomous effect to 
promote proliferation of neighboring progenitors. 

Our preliminary results indicate that DN-DISC1 
exerts detrimental effects on NPCs in the GE (Figure 
10A). This effect is unexpected as DISC1 is highly 
expressed in the VZ/SVZ of all three regions of the 
neocortex and the GE. This suggests that IPCs in the GE 
express some unique factors that functionally interact 
with DN-DISC1 and exert this preferential impact on 
interneuron development. Our previous studies showed 
that DISC1 suppresses the active phosphorylation site 
Y216 on GSK3β, thereby activating Wnt signaling and 
promoting the proliferation in cortical NPCs. Other groups 
have shown that the Wnt pathway regulates interneuron 
differentiation [60, 62]. To examine the effect of DN-
DISC1 expression on Wnt signaling, we expressed DN-
DISC1 and wild type DISC1 (WT-DISC1) in N2a cells 
and measured pY216 levels (Figure 11A). Our data show 
that WT-DISC1 inhibits GSK3β activity by reducing 
pY216 levels, whereas DN-DISC1 significantly increases 
levels of pY216, suggesting that DN-DISC1 suppresses 
Wnt activation through its dominant negative effect on 
endogenous DISC1 (Figure 11A). 

Alterations of the Wnt activity by DN-DISC1

As IPCs in the GE express spatially restricted 
transcriptional factors, including Dlx1/2 [63, 64], 
Dlx5/6 [65], Nkx2.1 [66, 67], Sox6 [68], and Lhx6 
[69], we hypothesize that DN-DISC1 interferes with 
these transcription factors and alters proliferation or 
specification of interneuron subtypes. To search for the 
key regulators that give rise to region-specific activation 
of the Wnt pathway, we uncovered a positive role of Dlx2 
in the Wnt pathway. We co-expressed Dlx2 together with 
DN- and WT-DISC1 in N2a cells using a Wnt-dependent 
TCF/LEF reporter assay. Dlx2 can increases 3 folds of 
the reporter activity over basal levels and can synergize 
with WT-DISC1 in Wnt activation (Figure 11B). However, 
DN-DISC1 blocks this potentiating effect, suggesting 
that DN-DISC1 negatively regulates Dlx2-mediated Wnt 
activation. Thus, these results support that DN-DISC1 
impedes Dlx2’s role in the interneuron development.

DISCUSSION

Our study demonstrated that a prenatal genetic 
insult in early life could lead to long term change on 
brain structure, metabolism and behaviors. First, we 
established a novel mouse model to control spatial and 
temporal expression of DN-DISC1 in NPCs, which 
allows us to monitor the effect of risk genes on NPCs at 
the beginning of brain development. Second, we showed 
that a short-term prenatal expression of DN-DISC1 in 
embryonic NPCs and then off after birth was enough to 
cause subtle but significant behavior changes in anxiety 
and depression-like behaviors in adulthood. Third, using 
an unbiased metabonomics approach we systematically 

Figure 11: Impact of DN-DISC1 expression on the Wnt signaling. A. Vector, WT- and DN-DISC1 were transfected into N2a 
cells and cell lysates were blotted with anti-pY216 GSK3β, total GSK3β and FLAG antibody. B. WT-DISC1 synergized with Dlx2 to 
activate Wnt activity. However, DN-DSIC1 impaired Dlx2-WT-DISC1 synergy in the Wnt pathway. N = 4, ***, p < 0.001, t-test.



Oncotarget84810www.impactjournals.com/oncotarget

analyzed metabolic alterations in the littermates and 
revealed important metabolites in the brain, which lead 
us to identify unexpected changes of PV-interneurons 
in our mouse model. Forth, we examined the cellular 
impact of DN-DISC1 expression in IPCs at the MGE and 
narrow down the molecular mechanism via transcription 
factor Dlx2 in the Wnt pathway. Our study supports the 
“neurodevelopmental” hypothesis of mental disorders 
that the trajectory for dysfunctional neural circuits of 
psychiatric disorders is established early in life and only 
fully expressed in adolescence [3-5]. To the best of our 
knowledge, this is the first study to apply a metabonomics 
method in a DISC1 mouse model. 

Different from the approaches used in many 
other DISC1 mouse models [35, 36, 42-45], we directly 
targeted nestin positive NPCs with inducible DN-DISC1. 
Moreover, using Dox inducible system, we were able to 
control the length of the genetic insult at the beginning 
of brain development selectively in NPCs (Figure 1A) 
but not in postnatal brains. Although this model didn’t 
mimic the chronic effect of the genetic mutations using 
the endogenous promoter, our model directly tests 
how prenatal genetic insults alter the development and 
behavioral trajectory. Interestingly, after expressing DN-
DISC1 in NPCs during the prenatal period, we detected 
some abnormal behavioral changes in adulthood. Another 
way to interrupt DISC1 function in early developmental 
stage is to use in utero RNAi [70]. Niwa et al. showed 
that knockdown of DISC1 during in the pre and perinatal 
stages alters neuronal maturation and attenuates prepulse 
inhibition and responses to methamphetamine. The in 
utero electroporation can only affect neurons at the time of 
electroporation thereby has limited temporal control. Our 
approach will be able to influence neuronal populations 
generated throughout the whole embryonic period. Similar 
to our approach, Greenhill et al. used dox-inducible system 
to express c-terminal fragment of DISC1 from P7 to P9 
in neurons and found a deficit of long-term potentiation 
(LTP) in their model [71]. Our Nes-DN-DISC1 mice show 
changes in anxious and depression behaviors, which are 
consistent with recent genetic finding of an association of 
DISC1 with MDD [51]. Moreover, our results together 
with other studies [72] suggest that the interaction of 
genetic risks with environmental triggers may be needed 
to elicit more severe psychiatric symptoms.

Our metabonomics study uncovered an unexpected 
result that GABA metabolite was upregulated in the mouse 
model. GABA is a major inhibitory neurotransmitter in the 
nerve system. The fine-tuning of excitatory and inhibitory 
inputs within cortical microcircuits is important for the 
proper regulation of behaviors [73]. Excitatory-inhibitory 
imbalance occurs in psychiatric diseases [74-78]. There 
have been extensive studies on inhibitory synapses, which 
have described the underlying mechanisms resulting in 
this imbalance [77, 79-84]. However, a possible cause 
for the imbalance may be due to a decrease in the PV-

expressing GABAergic interneurons [85], which is a 
consistent finding based on postmortem analyses of 
SCZ brains. This evidence suggests that alterations in 
excitatory/inhibitory neuron production could result in this 
imbalance, yet, few studies have assessed how disruption 
of cortical development regarding excitatory/inhibitory 
neuron production leads to behavioral deregulation later 
in life. Our result is striking as several DISC1 animal 
models have shown that interneurons, particularly PV-
interneurons, are decreased when DISC1 dysfunction is 
present chronically [35, 37]. After carefully examining 
the distribution of PV interneurons in our mouse 
model, we found that PV interneurons were selectively 
increased in several regions, including the cingulate 
cortex, retrosplenial granular cortex, and motor cortex, 
but not in the hippocampus, and somatosensory cortex 
or reticular thalamic nucleus. This is consistent with 
that the cingulate cortex regulates important function of 
emotional behaviors in depression [86]. In addition to PV 
interneurons, interestingly, other interneurons, such as 
SST and NPY neurons, were decreased in certain brain 
regions, suggesting a critical role of DISC1 in interneuron 
generation and localization. Our metabonomic extraction 
method is commonly used, but not all ingredients could 
be fully characterized after tissue processing. Even so, 
many metabolites were found significantly changed, which 
would be worthy to follow up.

While quite a lot is known about cell specification 
of excitatory and inhibitory neurons, the underlying 
mechanism for how genetic risk factors associated with 
psychiatric diseases affect the development of inhibitory 
neurons is currently elusive. DISC1 is expressed in 
both excitatory neuron progenitors in the VZ/SVZ of 
the hippocampus and neocortex [40], and inhibitory 
interneuron progenitors in the GE [87]. DISC1 was shown 
to regulate tangential migration of cortical interneurons 
[88]. To determine how DISC1 affects the proliferation 
of both excitatory neuron progenitors and inhibitory 
interneuron progenitors, we established a mouse line 
that expresses DN-DISC1 in a Dox-dependent manner 
within NPCs (Figure 1). This model provides a new way 
to test how selective DISC1 loss-of-function in NPCs 
generates abnormal neuronal output during development. 
Interestingly, we discovered that DN-DISC1 could 
inhibit NPC proliferation simultaneously exert cell-
non-autonomous effect on neighboring cells to promote 
cell dividing. As nestin-expressing cells are neural stem 
cells with multipotential, our results suggest that DN-
DISC1 limits stem cell proliferation and accelerate 
their differentiation into intermediate progenitors with 
proliferation potential by altering cell cycle progression. 
These ectopic dividing progenitors in the MGE could 
contribute to an increase of PV interneurons and a 
decrease of SST and NPY interneurons in specific regions.

The Wnt pathway plays a critical role to regulate 
interneuron development [60-62]. DISC1 is an important 
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regulator of the Wnt pathway through regulating GSK3 
[41, 89-93]. Multiple transcriptional factors, including 
Dlx1/2 [63, 64], Dlx5/6 [65], Nkx2.1 [66, 67], Sox6 [68], 
and Lhx6 [69], are crucial to determine the interneuron 
cell fate. We unraveled a novel role of Dlx2 in the Wnt 
activation and DSIC1 can potentiate Dlx2-mediated 
Wnt activation. However, DN-DISC1 can dampen the 
synergistic effect. Our data further support that DN-DISC1 
could modulate the key transcription factor for interneuron 
development.

This study used multidisciplinary approaches 
involving transgenic mouse model, behavioral 
tests, and metabonomics methods to tackle difficult 
neurodevelopmental issues that cannot be addressed by 
human studies. Thus, our research provides a different 
strategy to model the pathophysiology of mental illness, 
which will deepen our understanding of the developmental 
origins of mental diseases.

MATERIALS AND METHODS

Animals

Tg(Nes-rtTA-ires-GFP)PN9Kern mouse (Nes-
rtTA-GFP) [48] was kindly provided by Dr. Kernie (U. T. 
Southwestern Medical Center). Tg(tetO/CMV-DISC1*)70 
Plet mouse (tetO-DN-DISC1) was kindly provided by Dr. 
Mikhail Pletnikov (Johns Hopkins University School 
of Medicine) [36]. All mice were housed at controlled 
room temperature (22-24°C) with a 12-hour light (light 
on 7:00 am to 6:00 pm) and 12-hour dark cycle. Mice 
had ad libitum access to food and water. The animal 
experiments were approved by the IACUC Committee of 
the Pennsylvania State University.

Nes-rtTA-GFP mice were mated with tetO-DN-
DISC1 mice to generate Nestin-rtTA-GFP; tetO-DN-
DISC1 (Nes-DN-DISC1) double transgenic line. The 
littermates were genotyping using rtta pimers (5’- GGA 
CAA GAG CAA AGT CAT AAA CGG-3’ and 5’- TTC 
GTA CTG TTT CTC TGT TGG GC-3’) for Nes-rtTA-
GFP mice and TRE-DISC1 primers (TRE-CMV-F4: 
5’-gacctccataga agacaccgggac-3’, and TRE-hDISC1-R2: 
5’-tgagctgaatcccaaagtgcgccg-3’) for TetO-DN-DISC1 
mice. 

DNA constructs

Full length and DN-human DISC1 was amplified by 
PCR and subcloned into the 3XFLAG expression vectors 
[40]. Super 8XTOPFLASH (which contains 8 copies 
of the TCF/LEF binding site), a gift from Dr. R. Moon 
(University of Washington, WA) and a Renilla-Luc-TK 
reporter (pRL-TK, Promega) were used for testing TCF 
transcriptional activity.

Immunohistochemistry and immunobloting

Adult mice were anesthetized with Avertin (200 
mg per kg of body weight) and perfused intracardially 
with 150ml saline, then followed by 150ml of 4% 
paraformaldehyde in phosphate buffer (PBS). Brains 
were removed, post-fixed in 4% paraformaldehyde at 
4°C for overnight. Fifty µm coronal sections were cut 
using a vibrotome for adult brains. Embryonic brains at 
E17 were drop-fixed in 4% paraformaldehyde/PBS at 
4°C for overnight, dehydrated in 30% sucrose and sliced 
in the cryostat instrument (Leica) at the thickness of 10 
µm. Brain sections were blocked with 5% normal donkey 
serum in PBS with 0.3% Triton X-100 for 60 min. Brain 
sections were incubated with primary antibodies, chicken 
anti-GFP (1:1000, Aveslabs), rabbit anti-PV (1:500, Santa 
Cruz), rabbit anti-NPY (1:500, Santa Cruz), rat anti-SST 
(1:500, Millipore), rabbit anti-Ki67 (1:500, GeneTex), 
goat anti-Sox2 (1:500, Santa Cruz), rabbit anti-phosph-
Histon H3 ser10 (pH3), or mouse anti-nestin (1:50, 
DSHB) antibodies in fresh blocking solution and incubate 
with brain slides for overnight at room temperature. 
After washing with PBS, brain slides were incubated 
with secondary antibodies conjugated with fluorescent 
groups (Thermo-Fisher). Brain slides were mounted to 
glass slides and photographed by Zeiss Pascal confocal 
microscope (Carl Zeiss, USA). Zeiss LSM image browser 
software (Carl Zeiss, USA) and Image J was used for 
analysis of images. The number of pH3 positive cells was 
counted from sections and presented as the percentage of 
the GFP-labeled cells. PV positive cells were counted in 
sections and presented as density divided to the region 
area. Stereology analysis was used to examine the cell 
distribution. Basically, brain sections were isolated from 
one in every 6 sections across the whole brain and were 
stained with different antibodies. Over 200 positive cells 
per brain (n = 3-6 brains) were counted. 

Brain lysates from induced or non-induced brains at 
E17 were lysed and blotted with mouse anti-myc (DSHB) 
and mouse anti-actin (GenScript) antibodies. N2a cells 
were transfected with vector, FLAG-tagged WT-DISC1 
and DN-DISC1 for 48 hours and protein concentration 
was determined with the assay kit (Bio-Rad Laboratories). 
Western blot was performed as described previously [94] 
using rabbit anti-pY216 GSK3β, rabbit anti-total GSK3β 
(Cell Signaling) and mouse anti-FLAG epitope (Sigma). 

Luciferase assay

N2a cells were seeded into 24-well plates and 
transfected with 0.2 µg of 8XTOPFLASH reporter and 
0.05 µg of pRL-TK, 0.4 µg WT-DISC1 or DN-DISC1 and 
0.4 µg mouse DLX2 [95] using polyethylenimine. 24 hours 
after transfection, TCF reporter activity was measured 
using the Dual-Luciferase Assay System (Promega).
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Behavioral tests

The pregnant female mice were fed with Dox 
containing food (Bio-Serv, 200 mg/kg) from the beginning 
of pregnancy on embryonic day 0(E0). The Dox food 
was removed right after the littermates were delivered 
on postnatal day 0 (P0). The single transgenic Nes-rtTA 
littermate mice from the same pregnant mother were used 
as control. The control and Nes-DN-DISC1 littermates (6-
15 mice each group) were tested in different behavioral 
tests at age of P60. The mice were kept in their cages and 
acclimated to the behavior testing room 1 h before each 
test. We recorded each trial with an EthoVision XT video 
tracking system and software (Noldus).
Open field test

Mice were habituated to the testing room for 30 
min before the experiment. Each mouse was placed in 
the center of an arena (black floor: 50x50 cm divided into 
25 of 10x10 cm squares, walls: 50cm high). Mice were 
allowed to move freely during a 5 min trial, and the mice 
were videotaped. The center region was defined as the 
30x30 cm area. Percent time spent in the center and the 
periphery of the open field test arena was quantified as 
an index of anxiety. For overall locomotor activity, total 
traveled time was calculated.
Forced swimming test

The forced swimming test was performed as 
previously described [40]. After habituation time, mice 
were placed individually in transparent glass beaker (15 
cm high, 8 cm diameter) containing 800ml water at 25°C. 
Mice were videotaped for 5 min, and the immobility time 
(which refers to the time of the passive floating of mice) 
were recorded. 
Elevated plus maze

The elevated plus maze test was used to assess the 
exploratory and anxiety-like behaviors [96]. The elevated 
plus maze used was (+) shaped, 50 cm elevated from the 
floor with two open arms and two enclosed arms (30 cm 
length, wide 5cm). Mice were placed in the center of the 
maze and, allowed to freely move into the four arms of 
the maze for 5 minutes. The mice were videotaped and the 
times spent in open and closed arms were scored.
Novelty suppressed feeding

Novelty Suppressed Feeding is a test for chronic 
depression. Mice were weighed and food deprived from 
their cage 18 hours before the test. Each mouse was placed 
in the corner of a chamber that is 18” by 24” covered in 
bedding. At the center of the chamber was a small amount 
of food placed on a white Whatman filter paper that is 
5 cm in diameter. The center area was brightly lit. The 
animals were allowed to move around freely for the next 
6 minutes, and the time the animal took to start eating the 
food were measured, as well as the total time spent eating. 

Fear conditioning test

In the training session, each mouse was adapted 
in the fear conditioning instrument for 5 min. After the 
habituation, the mouse in the testing chamber will receive 
a 2-sec, 0.55-mA foot shock every 80-sec [97]. The mouse 
was removed immediately after the third shock. During 
the contextual testing, the freezing behavior of each mouse 
was recorded in the testing chamber for two groups. 
Grooming test

Grooming test was used to measure the repetitive 
behaviors [98]. The face of each mouse was misted with 
a spray of distilled water and mouse was placed into an 
empty cage with no bedding. The animals were videotaped 
for 15 min. Total grooming time was measured manually 
from the video. The first 5 min was excepted from the 
analysis. 

Statistical analysis

Data were analyzed using Excel are expressed as 
means ± standard error of the mean (SEM). Significances 
between the experimental group and control group were 
analyzed by Student’s t-test and ANOVA. 

Sample preparation for NMR spectroscopy

Brain and liver were collected immediately 
following CO2 asphyxiation on day 1 or 30. All samples 
were stored at -80°C until analysis. Brain or liver tissues 
(∼50 mg) were extracted three times with 600 μl of 
a precooled methanol−water mixture (2/1, v/v) using 
the Precellys tissue homogenizer (Bertin Technologies, 
Rockville, MD). After centrifugation at 11180g for 10 min 
at 4 °C, the combined supernatants were dried. Each of the 
aqueous extracts was separately reconstituted into 600 μl 
of phosphate buffer (K2HPO4/NaH2PO4, 0.1 M, pH 7.4, 
50% v/v D2O) containing 0.005% sodium 3-trimethylsilyl 
[2,2,3,3-d4] propionate (TSP-d4) as chemical shift 
reference. Following centrifugation, 550 μl of each extract 
was transferred into a 5 mm NMR tube for NMR analysis 
[99, 100]. 

1H NMR spectroscopy

1H NMR spectra of aqueous extracts were acquired 
at 298 K on a Bruker Avance III 600 MHz spectrometer 
(operating at 600.08 MHz for 1H and at 150.93 MHz for 
13C) equipped with a Bruker inverse cryogenic probe 
(Bruker Biospin, Germany). A typical one-dimensional 
NMR spectrum was acquired for each of all samples 
employing the first increment of the NOESY pulse 
sequence (NOESYPR1D). To suppress the water signal, a 
weak continuous wave irradiation in the NOESY method 
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was applied to the water peak during the recycle delay (2 
s). The 90° pulse length was adjusted to approximately 10 
μs for each sample, and 64 transients were collected into 
32 k data points for each spectrum with a spectral width of 
20 ppm. To facilitate NMR signal assignments, a range of 
2D NMR spectra was acquired and processed for selected 
samples, including 1H−1H correlation spectroscopy 
(COSY), 1H−1H total correlation spectroscopy (TOCSY), 
1H−13C heteronuclear single quantum correlation 
(HSQC), and 1H−13C heteronuclear multiple bond 
correlation spectra (HMBC). Mixing time was 100 ms in 
the 1D NOESY and 2D TOCSY experiments. 

Spectral data processing and multivariate data 
analysis

All free induction decays (FID) were multiplied 
by an exponential function with a 1 Hz line broadening 
factor prior to Fourier transformation. The spectra were 
referenced to TSP-d4 at δ 0.00 when TSP-d4 was present 
in the liver or brain extracts. 1H NMR spectra were 
corrected manually for the phase and baseline distortions, 
and the spectral region δ 0.50−9.50 was integrated into 
regions with equal width of 0.004 ppm (2.4 Hz) using the 
AMIX software package (V3.8, Bruker-Biospin). Region 
δ 4.60−5.15 was discarded by imperfect water saturation. 
Each bucketed region was then normalized to the total 
sum of the spectral integrals to compensate for the overall 
concentration differences prior to statistical data analysis. 
Multivariate data analysis was carried out with SIMCA-P+ 
software (version 13.0, Umetrics, Sweden) as described 
[101, 102]. Briefly, principal component analysis (PCA) 
and orthogonal projection to latent structures with 
discriminant analysis (OPLS-DA) were conducted on the 
NMR data. The OPLSDA models were validated using 
a 7-fold cross validation method, and the quality of the 
model was described by the parameters R2X and Q2 values 
(Figure 3). After back-transformation of the loadings 
generated from the OPLSDA, color-coded correlation 
coefficient loading plots (MATLAB, The Mathworks Inc.; 
Natick, MA) were employed to indicate the significance of 
the metabolite contribution to the class separation with a 
“hot” color (e.g., red) being more significant than a “cold” 
color (e.g., blue). In this study, a cutoff value of |r| > 0.653 
(r > +0.653 and r < −0.653) was chosen for the correlation 
coefficient as significant based on the discrimination 
significance (P ≤ 0.05). Metabolite key to the numbers 
are shown in Supplementary Table 1. Data were collected 
from 8 mice each genotype.
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