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Cancer immunotherapy has revolutionized the paradigm for the clinical management of
cancer. While FDA-approved cancer immunotherapies thus far mainly exploit the adaptive
immunity for therapeutic efficacy, there is a growing appreciation for the importance of
innate immunity in tumor cell surveillance and eradication. The past decade has witnessed
macrophages being thrust into the spotlight as critical effectors of an innate anti-tumor
response. Promising evidence from preclinical and clinical studies have established
targeting macrophage phagocytosis as an effective therapeutic strategy, either alone or
in combination with other therapeutic moieties. Here, we review the recent translational
advances in harnessing macrophage phagocytosis as a pivotal therapeutic effort in cancer
treatment. In addition, this review emphasizes phagocytosis checkpoint blockade and the
use of nanoparticles as effective strategies to potentiate macrophages for phagocytosis.
We also highlight chimeric antigen receptor macrophages as a next-generation
therapeutic modality linking the closely intertwined innate and adaptive immunity to
induce efficacious anti-tumor immune responses.

Keywords: macrophage, cancer immunotherapy, phagocytosis, antibody, chimeric antigen receptor
(CAR), nanoparticle
INTRODUCTION

Immunotherapy has had a long-standing history in the fight against cancer, with its early beginnings
in the 19th century with Coley’s toxin (1). Up until now, about 40 biologics have been approved by
the U.S. Food and Drug Administration (FDA) for patient use, with approximately 4,000 being
actively investigated in clinical trials globally (2, 3). These modalities include immunomodulators
(e.g., antibodies, antibody conjugates, cytokines, and immune agonists), vaccines, oncolytic viruses,
and cell-based therapies (e.g., chimeric antigen receptor (CAR) T cell therapy) (2). As the
exploration of novel immunotherapeutic targets and tumor-immunity interactions continue (4,
5), there is a growing interest in harnessing innate immunity to drive the development of effective
immunotherapies for cancer.

The innate immune system, a major component of the body’s defense system, stands as the first
line of defense against infectious pathogens and malignancies to maintain the body’s homeostasis
(6). Innate immune cells are a diverse group consisting of effector cells such as natural killer (NK)
org March 2021 | Volume 12 | Article 6351731
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cells and professional antigen-presenting cells like monocytes,
macrophages, and dendritic cells (DCs). These cells rely on
germline-encoded pattern recognition receptors (PRRs) and
other cell-surface molecules to detect pathogen-associated
molecular patterns (PAMPs) on invading microbes and tumor
cells to orchestrate downstream responses (7). Furthermore, the
innate immune system also cross-primes the adaptive immune
system, during which antigen-presenting cells (APCs) process
and present antigens to naive T and B cells, resulting in their
activation (6). A precursor to this bridging of innate and adaptive
immunity is APC antigen capture via phagocytosis, a multistep
process closely regulated by the interaction of phagocytes and
target cells (8). To evade detection and phagocytosis by the
innate immune system, tumor cells exploit techniques normal
cells use to label themselves as self-cells or counteract signals that
can be detected by the innate immune system (9, 10). Thus,
understanding the mechanism behind phagocytosis regulation
could provide a new avenue for the development of next-
generation therapeutic modalities, unleashing the power of
innate immune system, especially macrophages, the most
prominent tumor-infiltrating innate immune cell (11, 12).

Macrophages are highly efficient phagocytes capable
of engulfing materials such as debris, dead cells, or
pathogens (13). Tumor associated macrophages (TAMs) are a
subset of macrophages that are abundant within the tumor
microenvironment (14). They have demonstrated clinical
significance in that they have been shown to contribute highly
to tumor progression (15), resistance to therapies (16), and
tumor metastases (17). M2 polarized TAMs are generally
considered to have an anti-inflammatory phenotype and foster
an immunosuppressive environment and produce anti-
inflammatory cytokines and chemokines to benefit tumor
growth (18, 19). M1 polarized TAMs have a pro-inflammatory
phenotype and maintains an environment unfavorable for the
tumor via pro-inflammatory cytokines to help hamper tumor
growth. Both M1 and M2 polarized TAMs are capable of
phagocytosing cancer cells (20), with the former being
arguably superior (21). This function is largely mediated by the
recognition of foreign materials mediated by the engagement of
PRRs, scavenger receptors, and Fc receptors (22). For example,
ligation of Fc gamma receptors (FcgRs) on macrophages with
antibody Fc fragments initiates the process of antibody-
dependent cellular phagocytosis (ADCP), an important
mechanism linking innate and adaptive immunity.

In this review, we highlight recent advances made in
enhancing macrophage by phagocytosis by targeting different
stages of this process based on distinct principles. We first
summarize the effects of therapeutic antibodies in inducing
anti-cancer ADCP, followed by a discussion of strategies to
promote ADCP-independent phagocytosis by macrophages,
including nanoparticles and phagocytosis checkpoint blockade.
Lastly, we will discuss recent breakthroughs in utilizing
macrophages equipped with CARs for enhanced targeting and
attacking of cancer cells. We aim to elucidate strategies ligating
the closely intertwined innate and adaptive immune systems to
elicit a superior anti-tumor response as a pivotal and modern
Frontiers in Immunology | www.frontiersin.org 2
effort to solve an age-old disease. Furthermore, we examine the
implications this has on driving forward the field of immuno-
oncology by challenging the status quo of standard cancer
treatment and care.
ANTIBODY-DEPENDENT CELLULAR
PHAGOCYTOSIS VIA
THERAPEUTIC ANTIBODIES

Monoclonal antibodies are an established paradigm for cancer
treatment (23), achieving therapeutic efficacy not only by the
antigen binding variable domains, but also the fragment
crystallizable (Fc) domains. The Fc domain is bound by its
corresponding immunoglobulin Fc receptor (FcR), a cell
surface receptor family expressed by several hematopoietic
cells, which includes IgG (FcgRI/CD64, FcgRII/CD32, and
FcgRIII/CD16), IgE (FcϵRI), IgA (FcaRI/CD89), IgM (FcmR),
and IgA/IgM (Fca/mR) (24, 25). Within the human FcgR family,
all but FcgRIIB are immunoreceptor tyrosine-based activation
motif (ITAM) bearing activating FcRs that activate upon binding
to IgGs via multimerization of intracellular ITAM domains (24,
26). FcgRIIB, on the other hand, is an immunoreceptor tyrosine-
based inhibition motif (ITIM) bearing inhibitory FcR that
dampens the activation of ITAM-bearing immune receptors
(25), producing an immunosuppressive effect.

ADCP is tumoricidal, as macrophages have been shown to
phagocytose antibody-opsonized tumors across various
preclinical models (Figure 1A). For example, ADCP is a
critical and clinically relevant mechanism of action for
daratumumab, a human monoclonal antibody targeting CD38,
a glycoprotein found on immune cells, in multiple myeloma (27).
Furthermore, ADCP is one of the cytotoxic mechanisms used by
rituximab, ofatumumab, ocaratuzumab, and obinutuzumab,
which are human monoclonal antibodies targeting CD20, a B
cell surface protein, in chronic lymphocytic leukemia (28), as
well as trastuzumab, an anti-HER2 monoclonal antibody that
triggers phagocytic cytotoxicity of HER2+ cancer cells both in
vitro and in vivo (29).

ADCP has also shown to be markedly dependent on FcgR.
When transplanted with human breast tumor and B cell
lymphoma xenografts, mice deficient in FcgRIIB exhibit a
superior antibody-dependent cytotoxicity to tumor cells. That
is, in the absence of the ITIM-bearing inhibitory Fc receptors,
there is significantly more immune activation and cytotoxic
effects exerted on target cells. This is in direct contrast to mice
deficient in ITAM-bearing activating Fc receptors (FcgRI and
FcgRIII), which results in impaired and overall inferior tumor
growth inhibition upon treatment with the same antibody in vivo
(30). This dependency on FcgR is further supported by in vivo
experiments that demonstrate that macrophage depletion
abrogates the ability for anti-CD20 antibodies to deplete B cells
(31). Furthermore, colony-stimulating factor 1 (CSF-1) deficient
mice with impaired macrophage development exhibit
incomplete depletion of B cells upon treatment with anti-CD20
March 2021 | Volume 12 | Article 635173
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antibodies, while T or natural killer (NK) cells depletion had no
impact on B cell clearance (31), emphasizing the importance of
FcgR to propagate macrophage mediated ADCP.

Not only are macrophages professional phagocytes, they are
antigen presenting cells as well. Thus, following ADCP of target
cells, phagosomes containing tumor cells fuse with lysosomes for
degradation, and tumor-derived antigen peptides are trafficked
to major histocompatibility complexes (MHCs). This allows for
the cross-presentation, activation, and priming of T cells (32).
The breakdown of phagocytosed target cells within the
phagosome often releases a significant amount of PAMPs.
Nucleic acid sensors toll-like receptor 7 (TLR7), toll-like
receptor 9 (TLR9), absent in melanoma 2 inflammasome
(AIM2), and cyclic GMP-AMP synthase (cGAS) have been
Frontiers in Immunology | www.frontiersin.org 3
implicated in PAMP detection, subsequently activating
inflammatory pathway cascades and causing the production
and release of pro-inflammatory cytokines such as type I
interferons, IL-1b, IL-6, and IL-12 (33–35).

Multiple lines of evidence have suggested that the
inflammatory biological events in macrophages occur following
ADCP. Interestingly, a recent study demonstrated that ADCP
did not lead to an inflamed tumor microenvironment, but an
immunosuppressive one for NK cells and CD8+ cytotoxic T
cells via upregulation of PD-L1 and IDO expression by tumor-
associated macrophages (34). Admittedly, this phenomenon has
thus far only been reported in breast cancers opsonized by
Trastuzumab, and therefore warrants further investigation.
Beyond this, it has also been reported that upon phagocytosis
FIGURE 1 | Mechanism of action to mobilize macrophages as effector cells against tumor cells. (A) Antibody-dependent cellular phagocytosis (ADCP). Following
treatment with mAbs targeting tumor-associated antigens, Fc gamma receptors on macrophages will recognize the Fc domain of the antibody and trigger
downstream activation of the immunoreceptor tyrosine-based activation motif (ITAM) to cause phagocytosis of the tumor cell. (B) Nanoparticle-mediated reeducation
of M2 tumor associated macrophages (TAMs) into M1 TAMs. Nanoparticles will be recognized as foreign material and engulfed by M2 TAMs. Once this occurs, their
contents will be released into the cytosol and trigger polarization of the macrophage away from the M2 pro-tumor phenotype toward the M1 anti-tumor phenotype.
This process retrains the macrophage to perform phagocytosis on tumor cells. (C) CD47/SIRPa phagocytosis checkpoint blockade. I. Upon binding of CD47 on the
tumor cell to SIRPa on the macrophage, an immunoreceptor tyrosine-based inhibition motif (ITIM) becomes activated, sparing the tumor cell from phagocytosis.
II. Upon binding of the high affinity SIRPa fusion protein or anti-CD47 mAbs to CD47 on the tumor cells, or binding of anti-SIRPa mAbs to SIRPa on macrophages,
the CD47/SIRPa axis is blocked and phagocytosis is restored. III. When a bispecific antibody is used, macrophage SIRPa and PD-1 ITIM activation is inhibited by a
bispecific anti-CD47/PD-L1 antibody targeting the tumor cells, preventing the ligands from binding to its receptors; IV. In another scenario, the specificity of CD47
blockade is reinforced by dual-targeting of CD47 and tumor-associated antigen via a CD47/TAA bispecific antibody, therefore sparing normal tissue cells expressing
CD47 but not TAA; the Fc region on the antibody is recognized by the FcgR on the macrophage, activating its immunoreceptor tyrosine-based activation motif
(ITAM) and subsequently triggering phagocytosis of the tumor cell. (D) CAR-macrophages demonstrate enhanced phagocytic ability and tumor targeting specificity.
When fitted with a CAR construct, macrophages are able to recognize tumor cells via their scFv region and trigger phagocytosis of the tumor cell. This occurs at a
higher specificity and efficacy due to the CAR construct conferring increased tumor recognition capability to the macrophage.
March 2021 | Volume 12 | Article 635173
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of Herceptin-opsonized HER2+ breast cancer tumor cells, AIM2
in tumor-associated macrophages is recruited and activated
upon detection of tumoral DNA. This results in the cleavage
of the IL-1b precursor and the release of bioactive IL-1b,
stimulating the upregulation of PD-L1 and IDO in macrophages.
Essentially, this phenomenon effectively inhibits antibody-
dependent cellular cytotoxicity (ADCC) via NK cells and
CD8+ cytotoxic T cells, but is rescued via PD-L1 and IDO
blockade in addition to an anti-HER2 antibody (34).

Ultimately, the conclusion of these studies support the
rationale of utilizing therapeutic strategies developed from
a deeper understanding of macrophage immunology, either
alone or in combination with standard of care therapeutic
modalities, to create a more efficacious and favorable anti-
tumor outcome. There is a dynamic interaction between
macrophages and cancer cells during which macrophages
detect and target cancer cells via the recognition of “eat me”
signals which in many cases are exposed on cancer cells due to
their intrinsic oncogenic stresses (36–38). On the other hand,
tumor cells could utilize additional layers of “don’t eat me”
signals, passing as self-cells, deceiving phagocytes to evade
phagocytosis (36–38). Priming macrophages to enhance their
ability in recognizing and targeting cancer cells, and/or blocking
negative checkpoints or their ligands that transduce inhibitory
signaling for phagocytosis have become attractive strategies for
inducing the robust tumoricidal functions of macrophages (39).
Moreover, the adoptive transfer of macrophages, especially in
vitro tailored macrophages, to replenish tumor-infiltrating
effector cells emerges as a novel avenue to boost tumor
phagocytosis (40).
PHAGOCYTOSIS
CHECKPOINT BLOCKADE

Although the tumoricidal impact of ADCP is well-established,
the complex relationship between tumors and macrophages has
obscured the potential for harnessing tumor-associated
macrophages as effector cells (18). Recent breakthroughs have
highlighted phagocytosis checkpoint axes which can be targeted
to induce the anti-cancer functions of macrophages, such as the
CD47-SIRPa phagocytosis axis (41), PD1-PDL1 axis (10), MHC
I–LILRB1 axis (42), and CD24–Siglec-10 axis (43). While
antagonizing these phagocytosis checkpoints induces
phagocytosis, the CD47-SIRPa axis is not only the best studied
phagocytosis checkpoint, but also the only one with multiple
therapeutic biologics entering clinical phase investigations with
promising early-stage results.

CD47, also known as integrin-associated protein (IAP), is a
ubiquitously expressed surface protein comprised of a long N-
terminal extracellular domain, five transmembrane domains, and
a short cytosolic tail (44). CD47 interacts with its binding
partner, signal regulatory protein a (SIRPa), via its IgV-like
domain with the N-terminal IgV-like domain of SIRPa (36). The
CD47-SIRPa binding leads to the phosphorylation of two
SIRPa intracellular ITIMs (45). Phosphorylated tyrosines in
Frontiers in Immunology | www.frontiersin.org 4
ITIMs recruit and activate SHP-1 and SHP-2, leading to the
dephosphorylation of many proteins, including myosin IIA and
paxillin (46). Activated SHP-1 and SHP-2, following CD47/
SIRPa ligation at the phagocytosis synaptic interface, prevent
integrin activation, as demonstrated by a recent study (47). As a
result, cytoskeleton rearrangement is subsequently inhibited, and
phagocytosis of target cells fails as well (Figure 1C–I).
Antagonistic monoclonal antibodies are able to disrupt the
binding of tumoral CD47 with SIRPa expressed on myeloid
lineage cells, such as macrophages, dendritic cells, and
neutrophils (41). Upon this blockade, the phagocytosis
inhibition signal conferred by SIRPa is reversed, restoring
phagocytic ability.

By exploiting this unique feature of CD47, it thus is an
attractive therapeutic target to be used in clinical practice. As
the most well-known anti-phagocytic signal, there have been
and currently are a plethora of studies into using anti-CD47
targeting either as a standalone therapy, in combination with
chemotherapy or to augment existing ADCP-inducing
antibodies for example (48–50). Single agent therapies
involving CD47-SIRPa axis blockade have been extensively
discussed below. Studies have demonstrated that CD47
blockade synergizes with chemotherapy, radiotherapy (51), or
ADCP, such as when in combination with Azacitidine (52), with
anti-HER2 Trastuzumab (53), or with anti-CD20 Rituximab
(54). It has also been reported that CD47 blockade not only
mobilizes macrophages, but also activates dendritic cells,
triggering phagocytosis of target cells and cross-presentation to
the adaptive immune system (55, 56). Taken together, a wide
array in vitro and in vivo studies have reinforced and supported
the appealing therapeutic promise of exploiting CD47 blockade
as a meaningful clinical practice to look toward.

Currently, the CD47-SIRPa axis is one of the most sought-
after phagocytosis checkpoints in anti-tumor therapeutic
development (Figure 1C–II) (57, 58). Multiple therapeutic
biologicals designed to target CD47-SIRPa axis are now under
extensive investigation in different developmental phases (36). A
selection of such therapeutics targeting the CD47-SIRPa
checkpoint currently in clinical trials has been summarized
and compiled in Table 1. As of writing, the most advanced
biologic is magrolimab, a humanized anti-CD47 monoclonal
antibody (59), formally known as hu5F9-G4 (60–62).
Magrolimab was the first-in-class therapeutic antibody,
followed by many, to demonstrate that tumor-associated
macrophages can be weaponized against tumor cells by
blocking a phagocytosis checkpoint. Although magrolimab is
generally well-tolerated in human clinical trials, anemia caused
by on-target off-tumor binding of CD47 expressed on
erythrocytes was a common treatment-related side effect (63).
Given the wide therapeutic potential of anti-CD47 monoclonal
antibody, one that effectively block the CD47 on tumor cells
while sparing erythrocytes would be desirable (64). It is worth
noting that the blockade of tumoral CD47 via a functional
monoclonal antibody does not necessarily bring about
hemagglutination, suggesting that anemia is not an
unavoidable toxicity (65). To resolve this, a “priming dose”
March 2021 | Volume 12 | Article 635173
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strategy was proposed and put to practice in clinics to mitigate
the anemic side effects. 1 mg/kg of body weight magrolimab
delivered intravenously eliminated aging red blood cells
selectively while sparing ‘younger’ red blood cells, followed by
a therapeutic dose of antibody treatment up to 45mg/kg one
week later (63). In addition, tailored antibody screening and
engineering was used when later anti-CD47 monoclonal
antibodies were developed, such as Lemzoparlimab (TJC4),
SRF231, and AO-176 (65–67), in which candidates causing
hemagglutination or red blood cell (RBC) phagocytosis were
pre-excluded alongside the characterization and ranking of their
anti-tumor activity. As a result, these anti-CD47 antibodies
maintain favorable phagocytosis of tumor cells facilitated by
CD47 blocking, but exhibit a minimal to negligible amount of
RBC related on-target off-tumor effect in preclinical in vitro
and in vivo development (65–67). Currently, all three
aforementioned anti-CD47 antibodies are in phase I clinical
investigation. Interim analysis of lemzoparlimab in phase I
clinical trial (NCT03934814) showed improved safety profile,
Frontiers in Immunology | www.frontiersin.org 5
escalated to 30 mg/kg without dose-limiting toxicity while
achieved one confirmed PR in 30 mg/kg cohort (68).

Beyond employing antibodies to block CD47, another
effective and popular approach is by using recombinant
proteins (Figure 1C–II). These CD47 antagonist recombinant
proteins are designed by first fusing an engineered fragment
derived from the N-terminal V-set Ig domain of SIRPa’s
extracellular domain with a Fc region of an antibody. As of
writing, the most advanced fusion products developed are TTI-
621 (69), TTI-622 (70), and ALX-148, previously known as
CV1 (60, 61). TTI-621 and TTI-622 are derived from the
natural human SIRPa allelic variant V2, harboring a 12
amino-acid mutation to the allelic variant V1 commonly
referred to the SIRPa. TTI-621 and TTI-622 preferably bind
with tumoral CD47 with high affinity, but minimally to CD47
expressed on erythrocytes. Taking advantage of this selectivity,
the two SIRPa-Fc fusion proteins achieved a biased CD47
binding selectivity, thereby facilitating phagocytosis of tumor
cells while avoiding hemagglutination in patients (62, 70). It is
TABLE 1 | Current clinical trials involving CD47 blockade.

NCT Trial
Identifier*

Drug Name Target Disease(s) Treatment Type Current
Phase

Status

NCT04435691 Magrolimab
(Hu5F9-G4)

Recurrent acute myeloid leukemia With azacitidine Phase 1 Recruiting
Refractory acute myeloid leukemia With venetoclax Phase 2

NCT04541017 T-cell lymphoma With mogamulizumab Phase 1 Not yet recruiting
NCT02953509 Relapsed/Refractory B-cell Non-Hodgkin’s Lymphoma With rituximab or with rituximab and

chemotherapy
Phase 1/2 Recruiting

NCT03248479 Hematological Malignancies Alone and with azacitidine Phase 1 Recruiting
NCT04599634 Relapsed and Refractory Indolent B-cell Malignancies With obinutuzumab and venetoclax Phase 1 Not yet recruiting
NCT04435691 Acute myeloid leukemia With azacitidine and venetoclax Phase 1/2 Recruiting
NCT03869190 Advanced/Metastatic ureothelial carcinoma With multiple different immunotherapies Phase 1/2 Recruiting
NCT04313881 Myelodysplastic syndrome (MDS) With azacitidine Phase 3 Recruiting
NCT02663518 TTI-621 Hematological malignancies and solid tumors Alone or with either rituximab or nivolumab Phase 1 Recruiting
NCT03530683 TTI-622 Advanced relapsed/refractory lymphoma or myeloma Alone or with either rituximab, PD-1

inhibitors, or proteasome inhibitors
Phase 1 Recruiting

NCT02367196 CC-90002 Advanced solid and hematological cancers Alone and with rituximab Phase 1 Active, not
recruiting

NCT04485052 IBI-188 Acute myeloid leukemia With azacitidine Phase 1/2 Recruiting
NCT03763149 Advanced malignancies Alone Phase 1 Active, not

recruiting
NCT04485065 High risk myelodysplastic syndrome (MDS) With azacitidine Phase 1 Not yet recruiting
NCT03717103 Advanced malignancies Alone and with rituximab Phase 1 Recruiting
NCT03834948 AO-176 Advanced solid tumors Alone and with paclitaxel Phase 1/2 Recruiting
NCT04445701 Relapsed/refractory multiple myeloma Alone and with either dexamethasone or

both dexamethasone and bortezomib
Phase 1/2 Recruiting

NCT04653142 BI 765063 Advanced solid tumors Alone or with BI 765064 Phase 1 Recruiting
BI 765064 Alone or with BI 765063

NCT03990233 BI 765063 Advanced solid tumors Alone or with BI 754091 Phase 1 Recruiting
NCT04417517 ALX-148 High risk myelodysplastic syndrome (MDS) Alone and with azacitidine Phase 1/2 Recruiting
NCT04675294 Advanced head/neck squamous cell carcinoma Alone and with pembrolizumab Phase 2 Recruiting
NCT04675333 Alone or with pembrolizumab or with

pembrolizumab and chemotherapy
Phase 2 Recruiting

NCT03013218 Advanced solid tumors and lymphoma Alone or with either pembrolizumab,
trastuzumab, rituximab, pembrolizumab
and 5FU and platinum, or trastuzumab and
ramucirumab and paclitaxel

Phase 1 Recruiting

NCT04097769 HX009 Advanced malignant tumors Alone Phase 1 Recruiting
NCT04202003 TJ011133 Relapsed/refractory AML or MDS Alone Phase 1/2 Recruiting
NCT03934814 Relapsed/refractory advanced solid tumors and

lymphoma
Alone or with either pembrolizumab or
rituximab

Phase 1 Recruiting
March 20
21 | Volume
*Information adapted from clinicaltrials.gov is current as of 10 January 2021.
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also worth noting that TTI-621 and TTI-622 vary only in their
Fc isotype. TTI-621 is fused to a human IgG1 Fc domain,
whereas TTI-622 to a human IgG4 Fc domain, therefore,
differential activating signals through Fcg receptors in
addition to CD47 blockade can be generated from these two
fusion proteins. However, because the overall safety profile of
the effector functions of Fc fragment in conjugation to
CD47 blockade was not fully determined at the time,
both therapeutic biologics were developed preclinically.
Both TTI-621 and TTI-622 are currently undergoing clinical
trial investigation against hematologic malignancies
(NCT03530683, NCT02663518)

On the other hand, ALX-148 is able to saturate CD47
receptors and easily outcompete endogenous wildtype SIRPa
due to its extraordinarily high binding affinity. However, because
ALX-148 is engineered based on the natural SIRPa allelic variant
V1, it does not differentiate between CD47 expressed on tumor
cells and RBCs, therefore anemia is still observed in clincial trials
(71). The approach of using fusion proteins is largely similar to
using anti-CD47 monoclonal antibodies with regard to their
mechanism of action. Both arms result in a blockade of the
CD47-SIRPa axis, but the fusion protein strategy may have
certain advantages over the monoclonal antibody approach, such
as superior binding affinity and biodistribution. Taking ALX-148
for example, generated via yeast display and directed evolution,
its binding affinity has been enhanced to 11 pM (72), whereas
hu5F9-G4, generated from hybridomas, binds with CD47 at an
affinity of 8 nM, 2 magnitudes lower than ALX-148 (73). Fusion
proteins weigh roughly half the molecular weight of a
monoclonal antibody, therefore it is putative to be easier for
fusion proteins to penetrate into solid tumors, as it has been
shown that smaller molecules can infiltrate solid tumors easier
through leaky capillary vessels via simple diffusion (74, 75).
However, no evidence thus far has supported an improved
biodistribution profile for ALX-148 to the best of our knowledge

However, therapeutic strategies targeting the CD47-SIRPa
axis do not stop at just blocking CD47. Several functional anti-
SIRPa monoclonal antibodies have been reported, serving as an
antagonist for the CD47-SIRPa signal (59, 76–78). For example,
the anti-SIRPa mouse antibody KWAR23 demonstrated
enhanced neutrophil and macrophage anti-tumor abilities in
human SIRPa knocked-in mice. When synergized with
rituximab, the growth of human Burkitt’s lymphoma xenograft
models were profoundly inhibited (76). Humanized anti-SIRPa
antibody 1H9 is the latest reported therapeutic antibody,
showing broad-spectrum binding to several SIRPa variants
without cross-reacting with other SIRP family members. When
synergized with other therapeutic antibodies in various
preclinical in vivo models, 1H9 demonstrates a good safety
profile in non-human primates with less antigen sink
compared to anti-CD47 antibody 5F9 (78). Unlike ubiquitously
expressed CD47, SIRPa expression is largely restricted to cells of
myeloid lineages. Because of this, specifically targeting SIRPa, as
opposed to CD47, could bring about differentiated safety and
efficacy of therapeutic models, therefore allowing for an
improved therapeutic index.
Frontiers in Immunology | www.frontiersin.org 6
CD47-SIRPa “don’t eat me” axis blockade has been proved so
far to be a great success in mobilizing tumor-associated
macrophages for tumor cell eradication (57). Various
improvements for therapeutic monoclonal antibodies were
implemented in pursuit of better therapeutic profiles. However,
monoclonal antibodies are sometimes handicapped by their
mechanism of action, in that their biodistribution could lead to
an unfavorable pharmacokinetic profile, bottlenecking clinical
efficacy. Indeed, though CD47 blockade therapies have achieved
early therapeutic efficacy in acute myeloid leukemia (AML) and
myelodysplastic syndrome (MDS) patients in clinical trials (79,
80), this strategy has so far struggled in coping with solid tumors.
Furthermore, it is possible that monotherapy acting on a single
target is simply insufficient to overcoming the heterogeneous
tumor microenvironment (81).
SYSTEMATIC ENGAGEMENT
OF MACROPHAGES BY
BISPECIFIC ANTIBODY

Given the increasing awareness and interest in tumor
heterogeneity, bispecific antibodies have become a promising
strategy to combat cancer and other diseases. In contrast to
targeting T cells or NK cells through a bispecific antibody (82,
83), this principle has remained understudied in macrophages.
To the best of our knowledge, the concept of approaching
macrophages as tumoricidal effectors by bispecific antibody
was first proposed in 2015 (13). As of writing, only a handful
of bispecific antibodies designed to exploit macrophages have
been reported, with even less validated in clinical trials.

Unlike T cell engagers, which require a specific antibody
variable domain arm for engagement (84), macrophages can
recognize and bind to the Fc fragment of an antibody via FcgR
recognition, followed by the phagocytosis of opsonized target
cells (13). This unique feature licenses bispecific antibodies
adopting IgG-like formats to recruit macrophages without
variable domain engagement. Therefore, variable domains of
bispecific antibodies in this category can be exploited to target
tumor-associated antigens and “don’t eat me” signals on target
cells simultaneously, harnessing the power of ADCP and
phagocytosis checkpoint blockade at the same time to enhance
phagocytosis of tumor cells.

The role of CD47 in immune evasion as well as therapeutic
potential of CD47 blockade was first described in an AML
model (9, 41). Following this study, HMBD004, an anti-CD47/
CD33 bispecific antibody, was developed based on a
humanized anti-CD47 antibody and anti-CD33 gemtuzumab,
adapting a 1 + 1 IgG format (85). This bispecific antibody
maintained CD47-SIRPa axis blockade as well as phagocytosis
induction with negligible hemagglutination of erythrocytes in
vitro. Furthermore, HMBD004 treatment of AML xenograft
mice models resulted in a significant decrease in tumor burden
and increased progression-free survival (85). Another notable
example of a bispecific engager was noted in NI-1701, a CD47/
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CD19 bispecific antibody constructed with the IgG1 isotype to
elicit an ADCP response. This bispecific antibody demonstrated
potent in vitro and in vivo activity across a plethora of B cell
malignancy models, which rely on the co-engagement of CD47
and CD19 on B cells simultaneously to induce potent ADCP of
target cells (86, 87).

With the success of the anti-CD47 antibody Magrolimab
(hu5F9-G4) in combination with Rituximab in clinical trials
treating B-cell non-Hodgkin’s lymphoma (54, 88), a logical
bispecific antibody design strategy is to combine the anti-
CD47 arm with another arm targeting a B-cell specific antigen,
such as CD20 (89, 90) or CD19 (86, 87, 91) (Figure 1C–IV).
Two bispecific antibodies were recently reported adapting
this strategy: one fused an anti-CD20 variable domains at
the N-terminal of the variable domains of an anti-CD47
antibody (89); the other fused with the N-terminal V-set Ig
domain (residues 1-118) of SIRPa to the N-terminal of the
heavy-chain variable domain of an anti-CD20 antibody (90).
Both bispecific antibodies exhibited improved tumor cell
targeting while avoiding any on-target off-tumor effect.
Furthermore, both bispecific antibodies resulted in superior
in-vivo efficacy in Raji xenograft, conferring improved tumor
growth inhibition and prolonged survival in comparison to
parental antibody monotherapy and combination therapy.
Furthermore, a recent study in 2017 engineered a novel
bispecific antibody known as RTX-CD47 with the ability to
target both CD47 signaling as well as CD20-positive cells. To
accomplish this, the CD20-targeting scFV antibody fragment
from rituximab was fused to a CD47-blocking scFv. In vitro
examinations conducted in various CD20 expressing cell lines
demonstrated superior macrophage-mediated phagocytosis,
particularly when used in synergy with therapeutic
antibodies such as cetuximab, daratumumab, alemtuzumb,
rituximab, or obinutuzumab (92).

In addition to targeting tumor antigens, it is also of interest to
target multiple immune checkpoints, such as CD47 and PD-L1.
PD-L1 is generally overexpressed on tumor lesions, and thus
targeting it could help to improve the retention of CD47/PD-L1
bispecific antibody in tumor tissue (Figure 1C–III). Not only is
PD-L1 a canonical T cell checkpoint (93), it has also been
recently identified as a macrophage “don’t eat me” signal.
Therefore, its blockade has been shown to reinvigorate the
anti-tumor function of TAMs (10). Because of this, a CD47/
PD-L1 bispecific antibody could unleash more potent
macrophage phagocytosis ability. In a recent proof-of-principle
study (94, 95), the pre-clinical anti-tumor efficacy of such a
bispecific antibody was tested in multiple synergistic mouse
models. In comparison to anti-CD47 or anti-PDL1
monotherapy or anti-CD47 + anti-PDL1 combinational
therapy, simultaneously targeting both CD47 and PDL1 on
tumor cells with a CD47/PDL1 bispecific antibody delivered
the best tumor growth inhibition and prolonged recipient
survival (94, 95). Mechanistically, the systemic delivery of the
dual-targeting agent significantly increased DNA sensing,
dendritic cell cross-presentation, and an anti-tumor T cell
response (94, 95).
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Another notable example of a bispecific antibody
was constructed by researchers at Stanford University to
target CD70 and SIRPa by fusing the variable domain of
Vorsetuzumab, an antibody targeting CD70, a protein
expressed on activated lymphocytes, to the N-terminal of
corresponding variable domain of KWAR23, an anti-SIRPa
antibody. The CD70/SIRPa bispecific antibody was able to
target CD70-expressing cells including NHL and renal cell
carcinoma and facilitate the engagement of macrophages.
When compared to Vorsetuzumab + KWAR23 treatment,
the CD70/SIRPa bispecific antibody demonstrated an
enhanced in-vitro phagocytosis of target tumor cells,
but there was no apparent difference in in vivo efficacy
observed (76). This demonstrates that the bispecific
antibody is able to function on a par with a combinatory
treatment of both arms of the antibody separately
(Vorsetuzumab + KWAR23). Given that this only requires
the administration of a single biologic, it eliminates the
possible confounding variable associated with balancing the
administration and controlling for interactions between two
separate biologics. Pharmacokinetically speaking, this would
have implications warranting further study into the dosing
and safety profile of such an antibody.
IMMUNO-QUIESCENT
BISPECIFIC ANTIBODY

Phagocytosis is crucial for maintaining homeostasis. A bispecific
antibody to bring together macrophages and phagocytosis targets
would be of particular interest in cases where tissue homeostasis
restoration is key, without inciting an inflammatory response.
Such scenarios include but are not limited to degenerative central
nervous system diseases, autoimmune diseases, and pandemics
like severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2).

Recently, a team at Genentech performed a proof-of-principle
validation of a MerTK-agonist bispecific antibody (96). MerTK is
a part of the Tyro3-Axl-MerTK family of receptor tyrosine
kinases and are indispensable for maintaining tissue
homeostasis. Guided phagocytosis through agonism of MerTK
was shown to be inflammation-quiescent, in sharp contrast to
the inflammatory nature of FcgRs-mediated phagocytosis,
namely ADCP (96–98). By exploiting LALAPG mutations in
Fc fragments (L234A, L235A, and P329G) to completely abolish
Fc mediated effector function (99, 100), the CD20/MerTK
bispecific antibody (CD20/18G7-LALAPG) has been shown to
induce antigen-specific target cell phagocytosis through
activation of MerTK in human macrophages with negligible
production of pro-inflammatory cytokines (96). This bispecific
antibody model was further engrafted with an anti-Ab amyloid
plaque arm. The Ab/MerTK bispecific antibody, 3D6/20F5-
LALAPG, elicited improved Ab aggregate clearance by
microglial cells, but not the production of inflammatory
cytokines (96).
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FACILITATING PHAGOCYTOSIS
USING NANOPARTICLES

Seeing as ADCP is in some cases insufficient to mount an
effective anti-tumor response, a potential method of
invigorating the phagocytic response is using nanoparticles.
The use of different nanoparticles, such as silica, carbon, iron
oxide, or gold to drive macrophage polarization states has been
extensively studied in literature (101). When TAMs recognize
the nanoparticles as foreign, they will engulf them via
phagocytosis, releasing the contents of the nanoparticle within
the TAMs (102). Therefore, nanoparticles can be packed with
drugs or contents designed to induce macrophage polarization
toward a more phagocytic phenotype to reprogram them with an
affinity for phagocytosis, thus making them an attractive vehicle
for therapy delivery (Figure 1B) (101, 103, 104).

Nanoparticles are an appealing therapeutic vehicle largely due
to their physical characteristics and small size (105, 106). Their
appeal is further reinforced by the phenomenon of Enhanced
Permeability and Retention (EPR) effect, which in tumor tissue
helps to promote the accumulation and persistence of
nanomedicines at the site of the tumor (107, 108). The leaky
nature of the tumor vasculature allows for nanomedicines to
penetrate into tumors, where the minimal lymphatic drainage
and filtration facilitates their accumulation and persistence (109,
110). As of writing, there are over 200 clinical trials currently
underway globally investigating the use of different nanoparticles
against different cancers, primarily solid tumors (111). Patient
use of several nanoparticles has already been validated and
approved by the FDA (112).

However, the prospect of nanoparticles delivering drugs to
specific subsets of macrophage phenotypes has been relatively
understudied (113). A recently published study was among the
first to engineer nanoparticles capable of preferentially targeting
M2 TAMs through the delivery of nanoparticles carrying M1-
polarizing transcription factors and mRNAs for interferon
regulatory factor 5 (IRF5) as well as IKKB, its activating kinase
(114). The delivery of both IRF5 and IKKB were able to force M2
TAMs to polarize to a pro-inflammatory state and convert to a
M1 cytotoxic phenotype (114). A unique quality of this method
is its method of administration via injection that does not trigger
an immune reaction or lead to systemic toxicity in the recipient.
Another innovative aspect about this study is how the authors
generated the targeted mRNA delivery system to target mannose
receptors on M2 macrophages. When tested in vivo¸ treatment
with IRF5/IKKB NPs led to a significant regression of ovarian
cancer and was able to be cleared and prolonged the lifespan of
the mice (114).

This finding was supported by a later study in which
researchers loaded IMD-0354, a TAM repolarization agent,
into mannose-modified cationic lipid-based nanoparticles
(M-IMD-CLN), and sorafenib, a kinase inhibitor used to treat
cancer, into cationic lipid-based nanoparticles (SF-CLN) (115).
Mannose is selectively taken up by M2 TAMs, which are
characterized as highly expressing mannose receptors.
Therefore, the mannose present on the nanoparticles become
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the ligand for M2 mannose receptors and thus enhance its active
uptake by M2 TAMs, as demonstrated by the in vivo experiments
exhibited a superior biodistribution profile and localization to
the site of the tumor, eliciting TAM potent anti-tumor properties
in Hepa1-6 tumor bearing mice (115). In addition to this, when
M-IMD-CLN and SF-CLN are used together in junction, there
appears to be a synergistic augmented anti-tumor efficacy and
TAM re-polarization compared to mice treated with SF-CLN
alone (115).

Later, Chen et al. further reinforced the potential for using
mannose as a ligand for targeted delivery of nanoparticles to M2
TAMs by conjugating bivalent ligands for mannose receptors
onto nanoparticles, effectively driving their uptake by M2 TAMs
(113). This was accomplished by differentiating rat peritoneal
macrophages into M1 via IFN-y and M2 via IL-4/IL-13
treatment. Markers distinguishing between resting, M1, and
M2 macrophages were assessed to confirm their phenotypes.
These groups of macrophages were then treated with the bivalent
mannose nanoparticles and their uptake was quantified. These
nanoparticles were found to have a significantly higher level of
uptake in M2 macrophages, especially when compared to M1 or
resting macrophages (113).

It is important to note that nanoparticles are not limited to
containing only a single drug or compound to be delivered (116).
Multivalent nanoparticles have been studied extensively for their
potential to carry multiple drugs or compounds, thus hitting
multiple targets (117, 118). For example, albumin-based
nanoparticles expressing transferrin receptor binding peptide
T12 and mannose were capable of not only polarizing M2
TAMs to become M1, but also remodeling the tumor
microenvironment to allow for an enhanced anti-tumor
response (119). Gliomas highly express transferrin receptor
and albumin-binding receptor SPARC, while M2 TAMs also
highly express SPARC and mannose, therefore facilitating the
dual-targeting role of these nanoparticles for both gliomas and
M2 TAMs. When these nanoparticles are loaded with both
disulfiram/copper complex, a treatment for glioma, and
regorafenib, a kinase inhibitor that repolarizes TAMs to M1,
glioma proliferation was inhibited and M2 TAMs were re-
programmed toward a M1 phenotype (119, 120). Thus, these
studies and others provide a proof-of-principle that
nanomedicines can be designed to preferentially target M2
TAMs. Future investigations could study arming these
nanoparticles with drug payload with a final destination of M2
TAMs to either inactivate or reprogram them. Therefore, when
considering the use of nanoparticles to facilitate and enhance
macrophage-mediated phagocytosis, the following main
approaches are of interest: 1) inactivating or eliminating M2
TAMs, and 2) reprogramming M2 TAMs to acquire a M1 pro-
inflammatory phenotype to enhance phagocytosis.

Furthermore, a multi-functional protein calreticulin has been
demonstrated as an important pro-phagocytic “eat me” signals
for apoptotic cells and many types of cancer cells. In cancer
cells with apoptosis induced by chemotherapeutic agents such
as anthracyclines and oxliplatin, calreticulin trafficks to the
cell surface, dictating a process of immunogenic cell death
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(ICD) (121). ICD is characterized as an immunostimulatory
process that triggers an adaptive immune response against
certain epitopes of antigens, including tumor neo-epitopes
(122). In addition, macrophages have been shown to be an
important resource for calreticulin (123–127). Macrophages
present calreticulin on their cell surface or secrete it to the
extracellular media to directly label unwanted cells such as
aging or malignant cells for subsequent phagocytosis.
Interaction between calreticulin and asialoglycans on unwanted
cells enables their recognition by macrophages and initiation of
phagocytosis. A recent study demonstrated that macrophage-
mediated anti-tumor immunity was found to be enhanced upon
intratumoral injection of nanoparticles containing calreticulin
(128). Yuan et al. designed dual-function colloidal nanoparticles
capable of 1) targeting HER2, a receptor commonly expressed on
cancers, and 2) promoting anti-tumor phagocytosis via
calreticulin (129). In this case, calreticulin promotes
phagocytosis of target cells by enhancing APC recognition of
target cells. In junction with the HER2 targeting, engagement of
this dual-function nanoparticle with APCs augments the anti-
tumor response by activating both the innate and adaptive
immune system with one particle (129). Effectively, these allow
for a synergistic effect achieved through a combinatory therapy
being delivered within a single particle that may be superior to
either therapy alone. Particularly, this allows for the selective
targeting of M2 TAMs to either inactivate them to remove their
immunosuppression or reprogram them into a M1 phenotype to
elicit anti-tumor immunity.

However, a significant barrier for using nanoparticles is the
fact that despite being able extravasate and persist due to EPR,
only a very small percentage (less than 1%) of injected
nanoparticles are actually able to traffic and be delivered to
their intended destination (130, 131). As such, this remains a
critical handicap to the efficacy of using nanoparticle-based
treatments in patients. It remains a challenge for the
nanoparticles to be homed and actively directed to the site of
the tumor, rather than rely on passive targeting (132).

A study conducted in 2019 highlighted the potential for using
exosomes derived from effector CAR-T cells as they retain their
anti-tumor capabilities with minimal toxicity or cytokine storm
(133). This method could thus be used to mitigate the problem of
poor trafficking and localization of nanoparticles to their
destination. That is, the “CAR exosomes” retain the CAR
expressed on their host cells, allowing these nanoparticles to
maintain their parental cells’ unique targeting feature (133).
Conversely, rather than taking exosomes from CAR-T cells,
another recent study demonstrated this phenomenon in
nanoparticles coated with the cell membrane of CAR-T cells,
therefore conferring them target antigen specificity similar to
CAR-T cells (134). In this study, the CAR-T cell membrane
coated nanoparticles demonstrated a superior tumor targeting
ability compared to uncoated nanoparticles (134). Both of
these findings open the door to future investigation into
how to maximize nanoparticle infiltration, persistence, and
targeting to overcome these barriers in order to enhance their
therapeutic efficacy.
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CHIMERIC ANTIGEN RECEPTOR
ENGINEERED MACROPHAGES

Despite the increasing interest in CAR-T cell therapies, there has
been a struggle in reproducing its therapeutic efficacy observed in
hematological malignancies in solid tumors (135–137). This is
heavily related to the biology of how T cells fight tumor cells, as
they need to be presented with antigens, primed, trafficked to the
tumor, infiltrate tumor tissue, and recognize and kill malignant
cells (81, 138). However, due to the heterogeneous nature of
tumor tissue and the complex immunoinhibitory tumor
microenvironment, not all of these critical events can occur
successfully (74, 136, 139–142).

To address these roadblocks, CAR T cell therapy has recently
turned to macrophages. Macrophages are known to be abundant
and actively recruited to various types of solid tumor tissue (17,
143, 144). Recruited by macrophage chemo-attractants (i.e,
CCL2, MCP1, CSF-1), tumor-associated macrophages
represent up to 50% of tumor-infiltrating cells, as seen in
melanoma, renal cancer, and colonic carcinoma (145, 146),
suggesting they may be able to efficiently infiltrate into solid
tumors upon adoptive transfer. Not only this, but macrophages
have a unique quality in that they have a high degree of versatility
and plasticity (147), and are thus able to adapt and change in
response to external stimuli or the environment (148). The
abundance and plasticity of tumor associated macrophages
corroborate the idea of fitting macrophages with CAR
constructs, therefore conferring target antigen specificity, and
promoting engineered macrophages to efficaciously target
solid tumors (Figure 1D). However, it is worth noting here
that although their plasticity may provide therapeutic versatility,
it may also act as a potential pitfall. In particular, although
plasticity can be a desired trait, it is only so if they skewed toward
a M1 pro-inflammatory phenotype that will target the tumor.
Furthermore, macrophage activation has been associated with
the development of macrophage activation syndrome (MAS),
characterized by a surge in pro-inflammatory cytokines,
resulting in a cytokine storm (149, 150). Ultimately, this
warrants further investigation to see how to prevent or
mitigate these phenotypes in vivo to minimize unwanted side
effects and enhance treatment efficacy and most importantly,
patient safety.

The construction of CARs for macrophages requires similar
components to that of T cells: a target binding extracellular
domain adapted from an antibody, followed by a hinge sequence,
a transmembrane domain connecting the extracellular domain
and intracellular signaling domain (136). It is worth to keep in
mind the differences of signal pathway required for T cell
activation and macrophage phagocytosis when designing a
CAR for macrophages. The intracellular domains of CAR-
macrophages reported so far have varied from that of CAR-T
cells. CD3z is a common intracellular domain being studied in
both, while CD147, FcgR, and Megf10 have been studied more
exclusively in CAR-macrophages (CAR-Ms) only, for example
(40, 151, 152). Phagocytosis-oriented CAR constructs are capable
of rewiring macrophages and jumpstarting phagocytosis.
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Theoretically, CAR expression by macrophages would not only
help the effectors to target cells, but also to circumvent the need
of an “eat me” signal, to initiate phagocytosis signaling.
CURRENT STUDIES OF
CAR-MACROPHAGES

Up until now, the study of utilizing CAR-Ms, has been relatively
limited. A recent study by Morrissey and colleagues was among the
first to provide initial evidence that CAR-engineered macrophages
can promote phagocytosis. By utilizing an extracellular antibody
variable fragment (ScFv) targeting CD19 as well as the CD8
transmembrane domain present in a traditional CD19 CAR-T
construct, researchers were able to generate chimeric antigen
receptors for phagocytosis (CAR-Ps) on murine macrophage cell
line J774A.1 that successfully drove the phagocytosis of antigen-
coated decoy particles in an ex vivo setting (151). In this study, the
authors were able to test phagocytosis specificity guided only by the
antigen recognition feature of the ScFv domain of the CAR
construct. The authors were also able to compare the capacity of
driving phagocytosis by various intracellular domains in a relatively
simplified ex vivo assay (151).

The potential for engineering macrophages with CAR
constructs was further reinforced by another study that elected
to generate murine CAR-Ms specifically targeting the solid tumor
antigen HER2 that utilized the intracellular signaling domain of
CD147 to drive expression of matrix metalloproteinases (MMPs)
in a HER2-dependent manner. To accomplish this, the authors
first forced HER2 expression on 4T1 tumor cells and transduced
murine macrophage cell line Raw264.7 with the HER2-147-CAR
(152). From this, they were able to induce matrix MMP3 and
MMP13 expression specifically upon ligation of the CAR and its
antigen to remodel tumor microenvironment, increase T cell
infiltration, and reduce tumor growth in vivo (152).

A study published earlier this year was the first to successfully
generate human CAR-Ms with demonstrated functionality in
both in vitro and in vivo models (40). CAR-expressing human
macrophages were generated with a chimeric Ad5/F35
adenovirus (40, 153). Using CAR constructs with the CD3-z
intracellular signaling domain and ScFvs targeting CD19, HER2,
and mesothelin, the authors showed that antigen specific tumor
cell killing was triggered by the CAR-transduced human
macrophage line THP-1. Importantly, the authors establish
that primary human macrophages can also be engineered to
express a CAR to promote phagocytosis, and showed that HER2-
CAR Ms exhibited dramatic in vivo therapeutic efficacy in
various preclinical xenograft models. Interesting, transduction
using Ad5/F35 adenovirus polarized human macrophages to a
pro-inflammatory M1 state independent of CAR expression.
Furthermore, CAR-Ms recognition of tumor cells shifted the
tumor microenvironment from an anti-inflammatory one to a
pro-inflammatory one, activating several interferon genes and
inflammatory pathways along the way (40). Taken together,
these findings suggest that CAR-Ms can both induce tumor
phagocytosis, as well as reshape the tumor microenvironment to
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promote anti-tumor T cell responses. A Phase 1 preclinical trial
(NCT04660929) investigating the safety and early-stage efficacy
of HER-2 CAR-Ms is underway.

Collectively, these studies represent the first proof-of-principle
validation of using CAR-M as an immunotherapeutic. CAR-Ms
not only function via direct target cell phagocytosis, but also
through vaccinal antigen cross-presentation and T cell co-
stimulation (40). Macrophages have been shown to reside and
persist within tissues, and certain tissue-resident macrophages are
able to survive quiescently for relatively long period of time until
challenged (154–156). This very feature makes CAR-Ms the ideal
local sentinels for metastatic tumor cells, thus preventing tumor
relapse at early metastasis stage. It is worth noting that the
plasticity of macrophages endows itself the potential for
application beyond tumors where inflammation is dispensable.
With the proper design of CAR constructs, macrophages can be
converted into immunoquiescent CAR-Ms while preserving their
capacity to phagocytose, thus addressing other unmet medical
challenges such as pathogen infection, autoimmune diseases, and
degenerative neural diseases. Given the vast potential, CAR-Ms
can transform the current landscape of cancer care and become a
next-generation therapy for cancers and beyond.
CONCLUSION

The mechanisms of macrophage phagocytosis and subsequent
adaptive immune cross-priming have been increasingly
appreciated and studied as a crucial effector function
complementing adaptive anti-tumor immune responses.
Antibody-dependent cellular phagocytosis has long been
extensively studied and applied in clinical settings for at least 20
years. For example, ritxuimab was the first-in class monoclonal
antibody approved by the FDA in 1997. Since then, this list has
expanded to include a plethora of novel antibodies of varying
designs that are now approved or undergoing clinical trial
evaluation. Although this exciting field of study first began with
the initiation of ADCP via therapeutic antibodies, it has now gone
on to expand into exploiting phagocytosis checkpoints and beyond
to enhance therapeutic efficacy, leading to novel fields of study
including: 1) using nanoparticles to engineer macrophages with
enhanced phagocytic ability, 2) strategies to block self-protective
signals on cancer cells, and 3) fitting CAR constructs on
macrophages to confer target antigen specificity. These exciting
breakthroughs have marked an important step forward as
macrophage-mediated phagocytosis of cancer has begun to enter
the spotlight as a promising novel cell-based therapy.

The CD47–SIRPa axis was the first phagocytosis checkpoint
discovered in cancer (41), and new phagocytosis checkpoints have
since been identified, such as PD1-PDL1 (10), MHC I–LILRB1 (42),
and CD24–Siglec-10 (43). Phagocytosis checkpoint blockade
therapies have thus far resulted in promising human trial data,
such as CD47 blocking therapeutics Magrolimab in NHL and AML,
or TTI-622 in lymphoma (52, 70). By the nature of different yet
complementary immunological pathways mobilized upon
phagocytosis checkpoint blockade, macrophage phagocytosis
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proves itself as a novel and promising therapeutic tool on par
with many approved treatments, such as PD-1 checkpoint
blockade (157). Given the heterogeneity of solid tumor cells,
and the suppressive and often immune exclusive tumor
microenvironment, phagocytosis checkpoint blockade appears to
be a promising starting place for effective anti-tumor innate
immune responses. Whether phagocytosis checkpoint blockades
can serve as a vehicle, either in the form of monoclonal antibody or
bispecific antibody, to conquer solid tumors, especially hard-to-treat
metastatic tumors, warrants further intense investigation.

There are also several clinical trials underway to evaluate
therapies specifically targeting TAMs via nanoparticles. These
trials and other original research studies have yielded promising
data that can hopefully be applied to patients soon (158, 159).
However, in order for these therapies to be optimally translated
into patient use, there is much work that still needs to be done to
prove TAM targeting via nanomedicine is feasible. Thus far,
promising preliminary results suggests there is vast potential in
which these nanoparticles can be applied, even beyond just
targeting TAMs (116). Despite this, more proof-of-principle
and validation studies need to be conducted before its use can
be optimized and integrated into standard practice for cancer
patient care. For example, a critical question that remains to be
answered is how to optimize and maximize the number of
nanoparticles that will actually traffic and localize to the tumor.
As demonstrated in countless studies, despite being bolstered by
EPR to enhance nanoparticle accumulation via leaky vasculature,
only around 1% of the nanoparticles will actually make it to the
site of the tumor (130, 131). This is an important first roadblock
that critically needs to be overcome before expanding into the
plethora of possibilities surrounding nanomedicines.
Furthermore, another question of interest is how to facilitate
the persistence of these nanoparticles in vivo such that they are
not rapidly eliminated by the immune system. Even if the
particles are able to overcome the low trafficking and tumor
localization rate, another factor to consider is the body’s immune
system perceiving them as foreign threats and eliminating them
before they are able to exert their therapeutic effect. To address
this, it would be interesting to apply a principle studied in Deuse
et al. in generating hypoimmunogenic nanoparticles that evade
immune detection and elimination to allow them to persist and
ensure drug delivery through the suppression of MHC I and
MHC II while overexpressing anti-phagocytic signal CD47 (160).
Seeing as these are major handicaps dampening the full potential
and efficacy of nanomedicine-based approaches to elicit potent
M1 TAM activity, there ultimately remains much work to be
done to study this exciting and novel form of immunotherapy.

Last but not least, the prospect of CAR-M based
immunotherapy was propelled forward by previous findings by
Morrissey et al. and Zhang et al. (151, 152). The Klichinsky et al.
study marked a critical breakthrough in reinforcing the efficacy
of macrophage-based therapeutics against cancer (40). By fitting
macrophages with a CAR construct, they leveraged the potency
of macrophage-mediated phagocytosis in conjunction with
target antigen specificity to elicit potent anti-cancer effects that
appear to be on par with their CAR-T counterparts. Not only
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were they able to successfully overcome the difficulties with
transducing primary macrophages, they were also able to
exploit their plasticity to drive them toward a M1 phenotype
while simultaneously remodeling the tumor microenvironment
to be pro-inflammatory. These exciting findings are now
beginning to be put to the test clinically, beginning with a
CAR-M against HER2. Though the use of CAR-Ms holds great
promise as an innovative immuno-oncology therapeutic avenue,
there is still a need for the development of a pipeline investigating
its efficacy and safety profile. As many studies have demonstrated
in their CAR-T counterparts, cytokine release syndrome remains
one of the main obstacles to overcome. Cytokine release
syndrome is largely mediated by the activation of
macrophages, triggering an overwhelming sudden release of
pro-inflammatory cytokines (161). As such, investigations into
the safety profile of CAR-Ms would be particularly interesting to
delve into. In addition to this, another question of interest is how
to design CAR constructs and strike a balance between
maximizing phagocytosis signals and enhancing the CAR-M’s
specificity while minimizing unwanted toxicity. Collectively, this
could be an emerging direction of study in this promising field.

Ultimately, recent breakthroughs in the exciting field of
harnessing macrophage-mediated phagocytosis have highlighted
their potential for clinical use to improve patient outcomes. With
an estimated 1.8 million new cancer cases to be diagnosed and
600,000 cancer-related deaths to occur in the United States in 2020,
the development of effective and innovative therapeutics is urgently
needed more than ever (162). The up and coming field of
immunotherapeutics has yielded a vast array of promising data
and approaches for the treatment of different cancers. However,
there remains much work to be done to continue the momentum
and push forward the hopeful progress that has been established in
preliminary work in this exciting avenue. This would be crucial for
developing further therapies that bridge the innate and adaptive
immune systems to benefit patients with cancer in a clinical setting.
We hope this review inspires more studies to advance the work
done and continue challenging the status quo of standard cancer
care and treatment in order to improve patient outcomes.
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