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The nervous system is important, because it regulates the physiological function of the body. Neurons are the most basic structural
and functional unit of the nervous system. The synapse is an asymmetric structure that is important for neuronal function. The
chemical transmission mode of the synapse is realized through neurotransmitters and electrical processes. Based on vesicle
transport, the abnormal information transmission process in the synapse can lead to a series of neurorelated diseases.
Numerous proteins and complexes that regulate the process of vesicle transport, such as SNARE proteins, Munc18-1, and
Synaptotagmin-1, have been identified. Their regulation of synaptic vesicle secretion is complicated and delicate, and their
defects can lead to a series of neurodegenerative diseases. This review will discuss the structure and functions of vesicle-based
synapses and their roles in neurons. Furthermore, we will analyze neurotransmitter and synaptic functions in
neurodegenerative diseases and discuss the potential of using related drugs in their treatment.

1. Background

The nervous system plays an important role in regulating the
physiological function of the body [1, 2]; neurons are the
most basic structural and functional units of this system [1,
2]. Billions of neurons exist in the nervous system, most of
which are distributed in the central nervous system (CNS)
of the brain [3, 4]. Neurons can contact each other and
transmit information; they use synapse as the site of infor-
mation exchange, which then determines the function of
the nervous system [5]. The synapse is an asymmetric struc-
ture composed of presynaptic membrane, postsynaptic
membrane, and synaptic cleft between two membranes [6,

7]. Synapse formation involves many extracellular factors,
cell adhesion molecules, and intracellular signaling or
structural proteins [7]. After the establishment of synaptic
connections, synapses undergo structural or functional
changes, known as synaptic plasticity [8], which is mediated
by neuronal activity and a variety of secreted factors [8].

There is a highly specialized site at the presynaptic nerve
terminal, known as the active zone, which is exquisitely
designed to facilitate the fusion of synaptic vesicles with
the plasma membrane [9, 10]. A high-density region also
exists in the postsynaptic membrane [11], which is a
protein-rich collection, and is composed of large scaffold
proteins, some neurotransmitter receptor proteins, and
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related elements regulating synaptic activity to form post-
synaptic density (PSD) [12, 13], which is the structural basis
of postsynaptic signal transduction and integration [14, 15].

The chemical transmission mode of the synapse is realized
through neurotransmitters and electrical processes [16, 17].
When the electrical signal transmitted from the cell body
reaches the axon terminal, it causes the depolarization of the
presynaptic membrane, activates the voltage sensitive calcium
channel on the presynaptic membrane, leads to the influx of
extracellular Ca2+, and subsequently triggers the fusion of syn-
aptic vesicles and presynaptic membrane [18]; then, it releases
neurotransmitters into the synaptic cleft [16]. Neurotransmit-
ters in the synaptic cleft bind to specific receptors on the post-
synaptic membrane, causing the next neuron or effector cell to
complete the signal transmission of the nervous system [19].
According to the differences between chemical transmitters
and specific receptors, postsynaptic potentials can be classified
into two types [20–23], as follows: excitatory postsynaptic
potential (EPSP), which depolarizes the postsynaptic mem-
brane and manifests as the excitation of postsynaptic neurons
[23], and inhibitory postsynaptic potential (IPSP), which
hyperpolarizes the postsynaptic membrane and manifests as
the inhibition of postsynaptic membrane excitability [22].
Neurotransmitters can only be released into the synaptic cleft
through vesicles in the presynaptic membrane to act on the
postsynaptic membrane [16, 17]. The unidirectionality of
chemical synapses [16, 17], the specificity of postsynaptic
receptors [24], and the plasticity of chemical synapses ensure
that the postsynaptic membrane selectively receives and trans-
mits the information in an orderly manner from the presynap-
tic membrane [25, 26], based on the fact that synapse is a
functional unit of the brain, whose dysfunction can lead to a
series of neurorelated diseases [27–29].

2. Basic Process of Synaptic Secretion

Synapses communicate with one another by releasing neuro-
transmitters and other chemicals from presynaptic vesicles
[30, 31]. Vesicles are widely reported as among the impor-
tant functional structural components of the endomembrane
system that are directly transported to different membrane
structures [32, 33]. According to the different morphologies
and contents, two kinds of vesicles were involved in exocyto-
sis, namely, small clear vesicles (SCVs) and dense core
vesicles (DCVs) [34, 35]. SCVs become synaptic vesicles
(SVs) at the end of neurons [36]. In mammals, the diameter
of SVs is generally less than 50nm, and the vesicle contents
are small molecular neurotransmitters, such as acetylcholine
[35]. DCVs are distributed in the axons and dendrites of
neurons and have diameters in the range of 70–200 nm
[37]. The DCVs’ contents include neuropeptides, nerve
growth factor, monoamine, and other neuromodulatory
substances [35, 37]. Although morphological structure and
function differ between the two kinds of vesicles, the exocy-
tosis processes of vesicles are the same, including tethering,
docking, priming, and fusion [38] (Figure 1). Neurotrans-
mitter secretion is the fusion process of synaptic vesicle
and presynaptic membrane and is a calcium-dependent
process (Figure 1) [19, 39].

The increase of intracellular calcium concentration trig-
gers the fusion between synaptic vesicles and presynaptic
membrane, resulting in the release of neurotransmitters
[39–41]. During the fusion, a hydrophilic pore called fusion
pore is formed [42–44]. Chemicals in vesicles need to be
released through fusion pores [42–44]. Vesicle fusion is an
energy-consuming process, and the zipper assembly of
Soluble N-ethylmaleimide-Sensitive factor Attachment pro-
tein REceptor (SNARE) complex can provide energy for
membrane fusion [45, 46].

The contents of vesicles are believed to be released
through two main modes [43, 47, 48]. One mode is the
incomplete fusion and rapid closure (kiss-and-run) that
limits the release of substances in vesicles [49–51]. This
mode only allows catecholamines and other small molecules
to be released through a narrow fusion pore [49–51]. The
other mode is the irreversible expansion of the vesicle mem-
brane until it flattens (full collapse) to promote the complete
fusion of transmitter release [52–54]. Studies have found
that both full collapse and kiss-and-run modes exist simulta-
neously in the CNS, and the two modes can be interchanged
to better complete the vesicle recycling cycle [52, 55]. In the
intimal fusion system, besides the transporting of neuro-
transmitters and other substances to the plasma membrane
through vesicles and releasing them to the synaptic cleft
through membrane fusion in exocytosis [56–58], endocyto-
sis is also required to recover extracellular molecules into
the cell to supplement raw materials [59], such as lipids or
proteins, for the next round of intracellular activities [60,
61]. This series of complex biological reactions constitutes
a dynamic and efficient membrane fusion system [57, 58,
62–64]. Numerous proteins and complexes that are widely
reported to regulate these processes have been identified,
and their regulation of synaptic vesicle secretion is compli-
cated and delicate [57, 62].

3. Regulatory Proteins and Mechanisms in
Synaptic Secretion

Three decades of researches and many major discoveries
have been reported, providing important insights into syn-
aptic secretion and generating a functional model of Ca2+-
triggered neurotransmitter release mechanisms mediated
by protein-protein interaction cascades with SNARE com-
plex as the core [65].

3.1. SNARE Proteins. Soluble N-ethylmaleimide-Sensitive
factor Attachment protein REceptors (SNAREs) are a
molecular machine that mediate such membrane fusion
[45, 46]. SNAREs have been identified and elucidated in
Saccharomyces cerevisiae over the past few decades [66]. In
fungi, more than twenty subtypes of SNARE proteins exist
and function in different organelles or cellular regions [66,
67]. In multicellular organisms, the number of SNARE sub-
types varies from 30 to 50 [68, 69]. Notably, in the nervous
system, SNARE complexes are composed of three proteins
[45, 70]; the canonical and most well-defined SNAREs are as
follows: syntaxin-1 and SNAP-25 (synaptosome-associated
protein of 25kDa) located in the presynaptic membrane,
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which belong to t-SNARE (target-SNARE) [45]; VAMP-2/
Synaptobrevin-2 (vesicle-associated membrane protein)
located in the membrane of synaptic vesicles, which belongs
to v-SNARE (vesicle-SNARE) [71]. Syntaxin-1 and VAMP-
2/Synaptobrevin-2 are anchored to the presynaptic membrane
and synaptic vesicle membrane via the C-terminal transmem-
brane region, respectively [66], whereas SNAP-25 has no
transmembrane region and is anchored to the presynaptic
membrane via the fatty acyl group of four cysteine residues
in the mesenchymal region [72].

SNARE complexes are formed by binding to each other
through SNARE motifs [73–75]. Although SNARE proteins
differ in amino acid length and structure, the SNARE motifs
with a length of about 65 amino acids are highly conserved
[76, 77]. When SNARE proteins exist alone, their SNARE
motifs are mostly random curls; when these regions are
combined together, they fold to form tight SNARE core
complexes [78, 79]. The crystal structure of the core complex
consists of parallel four helical bundles with an overall
length of 12nm [79]. Among the helical bundles, both
syntaxin-1 and VAMP-2/Synaptobrevin-2 provide one

α-helix, and SNAP-25 provides two α-spirals [80]. The core
of the helix bundle consists of 15 layers of hydrophobic
amino acid residues, except for the layer called “0” in the cen-
ter of the helix bundle [81], which is a hydrophilic layer con-
taining one arginine residue and three glutamine residues
that form hydrogen bonds within the hydrophobic core
[79]. Arginine residues come from VAMP-2/Synaptobre-
vin-2 and are called R-SNARE proteins [82]. Three gluta-
mine residues come from syntaxin-1 and SNAP-25 and are
named Q-SNARE proteins [82]. Among them, syntaxin-1 is
called Qa, and the N-terminal and C-terminal of SNAP-25
protein are called Qb and Qc, respectively [82]. Biochemical
experiments showed that the SNARE core complex has high
thermal stability [46, 83, 84]. These characteristics show that
the formation of the complex is very favorable in terms of
energy, which is a key feature of current membrane fusion
models [85, 86].

In the process of vesicle fusion, the assembly of SNARE
complex is ordered from N- to C-terminal, also known as
N-terminal nucleation [87–90]. The assembly energy of each
layer of SNARE complex differs. Macroscopically, the energy
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Figure 1: Secretory process and recycling of synaptic vesicles. The synaptic vesicle cycle consists of exocytosis, endocytosis, and recycling.
Synaptic vesicles filled with neurotransmitters are docked to the presynaptic active zone by translocation, where the vesicles undergo a
priming reaction. When they fuse with the presynaptic membrane, the neurotransmitters are released. Subsequently, synaptic vesicles
undergo endocytosis and recycling.
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released by N-terminal (-7 layers to -1 layer) assembly is
higher than that of C-terminal (+1 to +8 layers) and also
more stable after installation [81, 91]. The C-terminal
assembly is reversible, because the N-terminal contains more
hydrophobic amino acids with larger side chain volume
compared with the carbon end, thereby providing more
binding energy and making the hydrophobic core closer
[85, 90]. Considering that the N-terminal and C-terminal
of SNARE complex have different thermodynamic proper-
ties [88], the assembly of SNARE complex is a stepwise pro-
cess; that is, the N-terminal is responsible for nucleation
effect and stable assembly state, whereas the C-terminal con-
nects the assembly of the SNARE complex with membrane
fusion process [88, 89, 92]. Although this theory is deeply
supported by theory and experiment, several studies demon-
strated that the assembly of the SNARE complex in vitro is
continuous [92].

According to previous studies, the energy released by the
assembly of SNARE complexes is close to 35 kBT , and this
energy is enough to overcome the barrier and lead to fusion
[90, 93], which means that only one group of SNARE com-
plexes can complete the membrane fusion process [94]. In
fact, the conclusion is based on the continuous assembly of
SNARE complex [94]. However, there are multiple proteins
and complexes regulating the assembly of SNARE complex
under physiological conditions [95]. The assembly of
SNARE complex is unlikely to meet the conditions of con-
tinuous assembly under precise regulation [96, 97]. There-
fore, five to six groups of SNARE complexes are needed to
meet the formation of fusion pores between synaptic vesicles
and presynaptic membranes [96, 97].

3.2. Munc18-1. Munc18-1 is a member of the Sec1/Munc18
(SM) protein family [98–100], which is expressed in neurons
and neuroendocrine cells and plays an important role in the
release of neurotransmitters [101–104]. Multiple experi-
mental evidences show that Munc18-1 is involved in the
process of synaptic vesicle anchoring, priming, and fusion
[105–107]. These functions are related to the interaction
betweenMunc18-1 and SNARE proteins [108], the most signif-
icant of which is syntaxin-1 [104, 105, 108, 109]. The interaction
surface between Munc18-1 and syntaxin-1 is complicated, and
the binding modes are diverse, which is why the affinity
between Munc18-1 and syntaxin-1 is high [105, 110].

The binding of Munc18-1 to syntaxin-1 is important for
the regulation of synaptic vesicle secretion [107, 111]. The
kinetic data show that free syntaxin-1 exists in a mixture
of at least two different conformations [112]. When
syntaxin-1 combines with Munc18-1, Munc18-1 can make
syntaxin-1 in a stable closed conformation [38, 109, 113].
In addition, Munc18-1, as a molecular chaperone, contrib-
utes to the correct transport and localization of syntaxin-1
[102, 109, 114]. Munc18-1/syntaxin-1 complex can prevent
syntaxin-1 from forming a heterodimer with SNAP-25,
affect the formation of normal SNARE complex, and protect
syntaxin-1 before the arrival of the signal [113, 115].

Although the combination of Munc18-1 and syntaxin-1
is also important for the fusion of vesicles, the results of
SNARE complex recombination experiment in vitro show

that when syntaxin-1 exists as Munc18-1/syntaxin-1 com-
plex, the SNARE motif H3 of syntaxin-1 is locked and can-
not participate in the formation of SNARE complex,
resulting in the incomplete vesicle fusion [105, 113]. The
results in vitro seem to contradict the physiological results
in vivo; however, the contradiction is resolved with the
analysis of the function of the regulatory factor Munc13-1
[116, 117]. The recombination experiment in vitro showed
that Munc13-1 could change Munc18-1/syntaxin-1 complex
from “closed” state to “open” state, thereby forming the
SNARE complex [117–119]. Therefore, Munc18-1 initiates
the assembly of SNARE complex and ultimately achieves
the fusion of vesicles [106, 107, 120].

3.3. Synaptotagmin-1. The speed of information transmission
by the nervous system can be accounted by millisecond and
depends on calcium signals [57]. In the presynaptic
membrane region, a calcium receptor that can respond to cal-
cium signal called Synaptotagmin-1 is present [121–123].
Synaptotagmin-1 is anchored to synaptic vesicles by its N-
terminal transmembrane domain [124]. The cytoplasmic
region of Synaptotagmin-1 contains two C2 domains, which
are called C2A and C2B [123, 124]. C2A binds three calcium
ions, whereas C2B binds two calcium ions [122, 125, 126].

In response to calcium ions, the two C2 domains of
Synaptotagmin-1 bind to negatively charged biofilms and
shorten the distance between synaptic vesicles and the presyn-
aptic membrane [124, 125]. Thus, they reduce the energy bar-
rier to be overcome and ultimately mediate the fusion of
synaptic vesicles and the release of neurotransmitters by pre-
synaptic membrane [57]. The C2B domain of Synaptotagmin-
1 has two specialized regions that are rich in basic amino acids
[127, 128]. One region is called the polybasic stretch, which
consists of two amino acid sites, namely, K326 and K327
[129]. The other region is called R398-399 [130], which
consists of two positively charged amino acids, namely, R398
and R399. These two regions bind phosphatidylinositol-4, 5-
diphosphate (PIP2) and SNARE complexes enriched in the
presynaptic membrane, respectively, which are particularly
important for the function of Synaptotagmin-1 [129, 130].
They work together to close the distance between vesicles and
the presynaptic membrane, stabilize vesicles anchoring or initi-
ating in the presynaptic active region, and prevent the further
assembly of SNARE complexes [128, 131].

At this point, Ca2+ in the C2 domain binds to the
pocket’s negatively charged amino acid residues and targets
the membrane to generate a same-charge repulsion, thus
inhibiting the fusion process of synaptic secretion [131].
After Ca2+ influx, Ca2+ binds the pocket of the C2A domain
and C2B domain and thereby shields the negative charge and
results in a net positive charge [125, 132]. This positive
charge and the positive charge of the highly conserved
amino acid residues on each pocket act like an instantaneous
electrostatic switch, pulling vesicles closer to the negatively
charged presynaptic membrane [133]. Meanwhile, the inser-
tion of pocket hydrophobic amino acid residues in the C2
domain causes lipid disorder, changes the membrane curva-
ture, and deforms the membrane [134], which is conducive
to the transformation of the trans-SNARE complex to the
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cis-SNARE complex and ultimately promotes membrane
fusion and neurotransmitter release [135–138].

3.4. Munc13-1. Munc13-1 contains three C2 domains,
namely, C2A, C2B, and C2C domains [139]. The C2A
domain can interact with the upstream of the Rab3-
interacting molecules (RIMs) [140]. RIMs are a class of
Rab3 effectors with high molecular weight and exist as scaf-
fold proteins of the active zone in the presynaptic membrane
[135, 141]. The C2B domain is the only one of the three C2
domains in Munc13-1 that can bind Ca2+ and PIP2 [142].
The C2B domain of Munc13-1 can be used as a potential cal-
cium receptor. A C1 domain, which can bind diacylglycerol
(DAG), is present at the N-terminal of the C2B domain
[143–145]. The combination of C1 and C2B domains enables
Munc13-1 to bind phospholipid molecules in the presynap-
tic membrane [146]. The C2C domain at the C-terminal
does not bind Ca2+ and negatively charged phospholipid
molecules in the presence of Ca2+ [144]. However, it can
bind to the fatty acid chain inside the phospholipid bilayer
due to the existence of hydrophobic amino acids in its
periphery so that the C2C domain can nonselectively have
affinities to the membrane [147]. A calmodulin-binding
motif (CaMb) also exists near the N-terminal of the C1
domain [148, 149], which is believed to be strongly corre-
lated with the function of Munc13-1 in calcium-regulated
neurotransmitter secretion [150–154].

The most important core domain of Munc13-1 protein is
the central MUN domain [155]. The MUN domain, as a key
functional element of Munc13, plays an important role in syn-
aptic secretion [155]. MUN domain is also present in BAP3,
CAPS, and other proteins in most eukaryotes [156]; it is struc-
turally similar to other CATCHR family members that play
roles in different transport steps [157, 158]. These CATCHR
proteins form a series of aligned α-helical bundles with flexible
hinge regions that bind vesicles to the fusion sites, suggesting
that Munc13 can participate in the process of vesicle binding
through the MUN domain [158, 159]. In addition, the MUN
domain of Munc13-1 interacts weakly with SNARE com-
plexes, Munc18-1, and SNARE motif of syntaxin-1, which
are essential for Munc13-1 function [116, 155, 160–163].

Munc13-1 is also involved in the opening of the
syntaxin-1 protein closed by Munc18-1 [117, 119] and can
significantly accelerate the transformation of syntaxin-1
from Munc18-1/syntaxin-1 complex to SNARE complex
depending on the “NF” pocket catalytic active center in
MUN domain [118]. Recent studies showed the interaction
between VAMP2/Synaptobrevin-2 and Munc13-1 MUN
domain and analyzed the crystal structure of this complex
[164]. This quaternary complex cooperates to start the
assembly and membrane fusion process of the SNARE com-
plex [161, 165, 166]. These studies revealed the function and
molecular mechanism of Munc13-1 in SNARE complex
assembly and synaptic vesicle priming, thereby providing a
strong theoretical basis for understanding the molecular
mechanism of neural signal transduction [165, 167].

3.5. CAPS-1. Mammals express two CAPS isoforms, namely,
CAPS-1 and CAPS-2, which are in neurons and endocrine

cells [168]. CAPS is a multidomain protein that contains
the following: the C2 domain, which is involved in CAPS
dimerization [169, 170]; pleckstrin homologous (PH)
domain, which is characterized as a PIP2-binding domain
to mediate CAPS interaction with the plasma membrane
[171–176]; DAMH domain, which exhibits sequence homol-
ogy to the Munc13 MUN domain and is required for CAPS
binding to SNAREs [156, 158, 171, 177–179]; and dense core
vesicle binding domain (DCVBD), which appears to be
important for CAPS’ association with DCVs [172, 180].

Both CAPS-1 andMunc13-1 contain key regions that bind
to PIP2 clusters on the plasma membrane, but unlike
Munc13-1, CAPS-1 binds PIP2 through the PH domain in a
calcium-independent manner [171, 173]. CAPS and Munc13
are both the promoters of DCVs and SVs exocytosis, and their
functions are nonredundant [181–184], whereas the molecu-
lar mechanism underlying the regulation of exocytosis secre-
tion in time and space has not been clarified.

Interestingly, a study showed that natural CAPS-2 splic-
ing isomer, which has C2-PH domains and misses DAMH
and DCV binding domains, can rescue the exocytosis of
chromaffin cells and neurons lacking CAPS-1 and CAPS-2
[185]. This activity increases the possibility that the initia-
tion of DCVs in the early development stage of chromatin
cells can be realized through the C2-PH domain, whereas
the initiation function of CAPS needs the participation of
other domains in more mature cells [185]. A subsequent
study about the successful crystal structure analysis of the
DAMH domain offers the possibility of further understand-
ing the function of CAPS-1, thereby revealing the dual role
of CAPS-1 in SNARE complex formation [186], as follows:
(1) CAPS-1 DAMH domain interacts with Munc13-1
MUN, and the interaction hinders Munc13-1 activity to
open Munc18-1/SNARE, which further leads to the assem-
bly of the SNARE complex failure. (2) After syntaxin-1 is
activated, CAPS-1 stabilizes the active state of syntaxin-1
through the interaction between the DAMH domain with
the syntaxin-1/SNAP25 complex, thereby accelerating the
assembly of the SNARE complex and finally promoting syn-
aptic exocytosis [178].

Therefore, based on these studies, a model in which
CAPS and Munc13 jointly regulate vesicle secretion was
proposed (Figure 2) [186]: in the resting state, CAPS-1 is
first located on the cytoplasmic membrane through the
calcium-independent interaction between PH and PIP2.
Munc13-1 cannot bind to Munc18-1/syntaxin-1 complex
due to the interaction of PH–PIP2 and DAMH–MUN
[173, 186]. Thus, the anchored DCVs and SVs cannot enter
the vesicle priming stage. Under the action of intracellular
calcium level, CAPS-1 and Munc13-1 can promote vesicle
recruitment to the PIP2-rich cytoplasmic membrane in a
calcium-dependent manner. At this time, some Munc13-1
successfully escape the binding and inhibition of CAPS-1
protein; then, Munc13-1 can bind to Munc18-1/syntaxin-1
complex and catalyze the opening of syntaxin-1. When
syntaxin-1 protein is open and SNAP-25 exists, CAPS-1
binds to syntaxin-1/SNAP-25 complex to further stabilize
the open state of syntaxin-1 and promotes binding with
Synaptobrevin-2 to form the SNARE complex [178]. With
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the influx of extracellular calcium, the increase of intracellu-
lar calcium level will activate phospholipase PLCη2 that
leads to PIP2 hydrolysis and DAG formation [181].

Subsequently, the hydrolysis of PIP2 will lead to the
decrease of CAPS-1 activity, and the increase of DAG level
will stabilize the function of Munc13-1 protein [181, 182].
Some key fusion proteins, including complexin-1 and Syn-
aptotagmin-1, may also promote the formation of the
SNARE complex together with CAPS-1 and Munc13-1 so
that vesicle membrane fusion can occur quickly and effec-
tively [97, 187]. Although this model needs to be further
improved and clarified, it demonstrates a strong sequence
and coordination between CAPS-1 and Munc13-1 in the
formation of SNARE complexes; it also shows that the
calcium-dependent spatial distribution of PIP2 and DAG
changes the distribution of CAPS-1 and Munc13-1 in the
presynaptic membrane and modulates their activity [186].

In addition to the proteins described above, there are a
large number of Ca2+ channels in presynaptic nerve termi-
nals to regulate the concentration of Ca2+ in neurons
([Ca2+]i), which play important roles in the release of neuro-
transmitters [188–190]. There are many types of Ca2+ chan-
nels with different molecular compositions and properties
[188], which are mainly P/Q-type and N-type channels
(referred to as Cav2.1 and Cav2.2) responsible for initiating
synaptic transmission at fast conventional synapses [189,
191, 192]. These Ca2+ channels coexist in the same presyn-
aptic nerve terminals and have a synergistic relationship to
promote transmitter release [193]. The inhibition of the

activity of any type of Ca2+ channel will reduce the release
of presynaptic transmitter. The plasma membrane SNARE
proteins (syntaxin-1 and SNAP-25) and synaptotagmin-1
can specifically interact with the channels in a Ca2+-depen-
dent manner by binding to the synaptic protein interaction
(synprint) sites of CaV2.1 and CaV2.2 channels [194–196].
This interaction regulates channel function and thus con-
trols synaptic transmission [197].

4. Neurotransmitters and Synaptic Function in
Neurodegenerative Diseases

Synapses are the functional part of the connection between
neurons and the key part of the physiological function of
neurons [8, 198]. They are not in a static state in the body
and undergo relatively lasting dynamic changes called syn-
aptic plasticity under the stimulation of neuronal activity
or other factors [8, 31, 199]. Changes in synaptic plasticity
are the main mechanisms of the CNS growth, development,
learning, and memory [8, 199]. Degenerative alterations
include loss of synapses, branch atrophy, and cell death in
different types of cells, such as cholinergic, glutamatergic,
noradrenergic, and inhibitory neurons [200]. In clinical
patients or animal models, structural degeneration, such as
reduction in neurons, generally does not appear until the
middle-late stage, and cognitive impairment in the early
stage of the disease is more likely to be caused by abnormal
synaptic function in specific brain regions (prefrontal cortex
and hippocampus) [201].

Munc13

CAPS

SNAP-25Synaptobrevin-2

Munc18-1 Syntaxin-1

Ca2+

Ca2+ channel

Intracellular Ca 2+

Ca2+ Influx

Docking FusionPriming
A B C D

Munc13

CAPS

SNAP-25Synaptobrevin-2

Munc18-1 Syntaxin-1

Figure 2: The working model of CAPS–Munc13 in vesicle exocytosis. (A) In the resting state, CAPS-1 is first located on the cytoplasmic
membrane; Munc13-1 cannot bind to Munc18-1/syntaxin-1 complex, resulting in the anchored DCVs and the inability of SVs to enter
the vesicle priming stage. (B) Under the action of intracellular Ca2+, Munc13-1 protein that successfully escapes the inhibition of CAPS-1 can
bind to Munc18-1/syntaxin-1 complex and catalyze the opening of syntaxin-1. (C) When the syntaxin-1 protein is open and SNAP-25 exists,
CAPS-1 binds to syntaxin-1/SNAP-25 complex to further stabilize the open state of syntaxin-1 then promotes binding with Synaptobrevin-2
to form the SNARE complex. (D) With the influx of extracellular Ca2+, vesicle membrane fusion can occur quickly and effectively; then, the
release of neurotransmitters occurs.
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In fact, many studies showed that the oligomeric Aβ
protein, a characteristic pathological marker of Alzheimer's
disease (AD) [202], has strong synaptic toxicity, which
specifically reduces synaptic density, damages long-term
synaptic enhancement, facilitates long-term synaptic weak-
ening, and suppresses brain learning and memory function
[203–205]. The generation or disturbance of neural activity
is largely determined by the state of excitation-inhibition
balance, which is closely related to the release and circula-
tion of neurotransmitters in the neural circuit [206].

Therefore, exploring changes in the neurotransmitter
system is critical to the elucidation of the biochemical mech-
anisms of normal aging and age-related neurological/psychi-
atric disorders such as Parkinson’s disease (PD), AD,
presenile deafness, and depression (Tables 1 and 2). Several
types of transmitters are released from the presynaptic
neuron in the CNS, such as glutamate, GABA, and dopa-
mine [207], whereas the neurotransmitters released from
neuromuscular connectors are acetylcholine [208, 209]. Syn-
aptic changes in the CNS are often the main manifestations
and thus turn into important targets in the clinical therapy
of neurodegenerative diseases. Presently, pharmacological
interventions of cholinergic and glutamatergic neurotrans-
mission, including cholinesterase inhibitors and N-Methyl-
D-Aspartate (NMDA) receptors antagonist, are the only
FDA-approved medications for AD but are unable to signif-
icantly improve cognitive dysfunction [210]. Similarly, treat-
ments of PD are symptomatic, and levodopa is the typical
pharmacologic approach, but with limited modifying effects
as well [211]. As a consequence, it is of great theoretical and
practical value to study the synaptogenesis and pathological
changes in the CNS to further elucidate neurodegenerative
diseases [212].

4.1. Glutamate. Glutamate (Glu) is the most important excit-
atory neurotransmitter in mammalian CNS [213]. Glu
serves multiple functions in the brain, and such functions
are mediated by Glu receptors [214, 215]. The activation of
Glu receptors is involved in rapid excitatory synaptic trans-
mission and regulates neurotransmitter release, synaptic
plasticity, long-term synaptic enhancement, long-term syn-
aptic inhibition, and other normal physiological functions
in the CNS [213, 216]. However, high Glu concentration in
the intercellular space can produce toxicity to neurons and
lead to neuronal degeneration, senescence, and death [217].

The excitatory toxicity of glutamate is closely related to the
occurrence and development of many neurodegenerative dis-
eases and is the important mechanism of the death of nerve
cells in neurodegenerative diseases [217, 218]. Glu receptors
play two main roles in neurodegenerative diseases [214, 215,
218, 219]. One role is to participate in normal synaptic trans-
mission and serve a neuroprotective function when synaptic
activity is enhanced [214, 215]. Another role is the excitatory
toxicity mediated by ionic Glu receptors [217, 218].

Excitatory toxicity refers to the neurotoxic effects of the
overdose of excitatory amino acids (EAA) and involves two
mechanisms [220]. One mechanism is mediated by the over-
excitation of NMDA receptors, which can occur over hours
to days and is characterized by sustained Ca2+ influx and

delayed injury of nerve cells [221]. Mitochondrial function
can therefore be lost due to large influx of Ca2+ and the rapid
accumulation of Ca2+ in mitochondria [222]. The activity of
nitric oxide synthase can also increase, so that NO synthase
can increase the toxicity of nerve cells [223]. In most patho-
logical cases, delayed injury of nerve cells caused by Ca2+

influx and mediated by NMDA receptor overexcitation dom-
inates excitatory toxicity [205, 221]. The other mechanism is
mediated by hyperactivation of α-Amino-3-Hydroxy-5-
Methyl-4-Isoxazolepropionic Acid (AMPA) and KA receptors
[224], which can occur within hours and are characterized by
Na+ influx, passive influx of Cl- and water, and acute osmotic
swelling of nerve cells [225]. The normal structure of the glu-
tamatergic system and the function of Glu transporters and
reuptake of Glu were altered in the brain tissues of AD patients
[226]. In addition, β amyloid precursor protein (APP) and tau
protein can inhibit extracellular Glu uptake, which leads to
increased extracellular Glu levels, resulting in excitotoxic
effects [227–229].

In PD patients and experimental animal models, there is
a large increase in Glu neurons projecting from the dorsal
subthalamic nucleus to the substantia nigra striatum [230,
231]. These studies confirm that the overactivation of Glu
receptors on dopamine neurons is one of the causes of
excitatory toxic cell death [232, 233]. Meanwhile, Glu uptake
disorder also aggravates Glu receptor hyperactivation that
leads to excessive calcium influx, which ultimately further
leads to nerve cell death and a series of acute or chronic
neurodegenerative diseases (such as stroke and AD) [234].

Several drugs are developed for diseases caused by Glu,
such as ginsenoside Rb3, which can reduce the increase of
Ca2+ in neurons possibly by inhibiting calcium influx
induced by NMDA receptors and alleviating calcium over-
load, thereby preventing hypoxic injury caused by cerebral
ischemia [235–237]. Huperzine A can inhibit the NMDA-
induced toxicity of the cerebral cortex and synaptic plasma
membrane [238–240]. In addition, memantine is an antago-
nist of NMDA receptors and antagonizes excitatory amino
acid toxicity to neurons [241–243].

4.2. GABA. γ-Aminobutyric acid (GABA) is the most widely
distributed inhibitory neurotransmitter in the CNS [244]. It
is formed by the removal of carboxyl group of Glu in the
brain under the action of glutamic acid decarboxylase
(GAD) [245]. GABA participates in a variety of metabolic
activities and has high physiological activity [244]. Immuno-
logical studies show that the highest concentration of GABA
is found in the substantia nigra, and at least 70% of the
afferents to substantia nigra dopaminergic neurons are
GABAergic [246]. The cognitive impairment caused by ner-
vous system diseases, such as severe depression and epilepsy,
is directly related to the increase or decrease of GABA trans-
mission [246, 247]. Changes in brain GABA content and
receptor function are crucial for many factors of learning
and memory [244, 247]. On the one hand, when the content
of GABA in the brain is reduced or the receptor function is
impaired, it can induce neurological diseases related to
cognitive impairment, and appropriate supplementation
and repair of GABA function can improve the cognitive
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impairment [246, 247]. On the other hand, if the excitatory
neurons are overexcited, then they will produce excitatory
toxicity, which will eventually lead to abnormal activity of
the neural network and lead to cognitive deficits [220].
When GABA is activated, it can inhibit the neurotoxic effect
caused by Glu abnormal excitation and improve the learning
and memory function decline caused by neural abnormali-
ties [207, 248].

GABA receptors are divided into three types, namely,
GABAA receptors, GABAB receptors, and GABAC receptors
[247]. Different types of GABA receptors distributed in dif-
ferent brain regions have different mechanisms underlying
learning and memory [249]; however, they all have inhibi-
tory effects [247]. Their receptor antagonists can improve
the inhibitory effect of learning and memory, which may
be due to the promotion of the release of excitatory

Table 1: A list of neurotransmitters types [307, 308]. The types of neurotransmitters, including choline, monoamines, and amino acids and
their distribution and functions were shown. PD: Parkinson's disease; AD: Alzheimer's disease; HD: Huntington's disease; ALS: amyotrophic
lateral sclerosis; FAD: frontotemporal dementia; VaD: vascular dementia.

Neurotransmitters

Types Distribution Function Diseases

Choline
Acetylcholine

(ACh)

Motor neuron
Affect central function

extensively

PD, AD, HD,
ALS, FTD,
and others

Tertiary neurons emitted by
thalamic afterload, brain stem

reticular ascending exciter system

Mainly excitatory and related
to learning and memory

AD, HD,
ALS, and
others

Monoamines

Dopamine (DA)
The substantia-striatum, limbic
system, and nodal-fundal part

An important transmitter of
the vertical exoskeleton

PD, AD, HD,
ALS, FTD,
and others

Norepinephrine
(NE)

Mainly located in the lower brain
stem

Excitatory and inhibitory
functions are different in
different parts of the body

PD, AD, and
others

Serotonin
(5-HT)

Concentrated in the raphe nucleus
Associated with sleep,
wakefulness, and mood

PD, AD, HD,
ALS, FTD,
and others

Amino acids

γ-Aminobutyric
acid (GABA)

Superficial layer of the cortex,
cerebellar cortex

Inhibitory transmitter
AD, VaD, and

others

Glycine Spinal inhibitory neurons Inhibitory transmitter
PD, AD,
FAD, and
others

Glutamate
Sensory afferent nerve and cerebral

cortex
Excitatory transmitter

PD, AD, HD,
FAD, and
others

Others
Opioids, brain-gut peptides, NO, and CO can all serve as central neurotransmitters

or modulators.

PD, AD, HD,
ALS, FTD,
and others

Table 2: A list of neurotransmitter release processes [19]. The neurotransmitters in the release process, including tethering and docking,
priming, and fusion and their definition and functions have been summarized in this table.

Release processes

Definition Regulatory proteins

Tethering
and

docking

The process of vesicle localization on the target
membrane. Generally, the distance between the vesicle
membrane and the target membrane is about 75~150 nm

in tethered state and 5~10 nm in docked state.

SNAREs
GTP-binding protein

Priming

The process of transforming synaptic vesicles into a state
with the ability to fuse with the presynaptic membrane of

the active zone, which is a rate limiting step in Ca2
+-dependent exocytosis.

SNAREs, Munc13, Rim, Munc18, CAPS,
Snapin, Complexin, Rab3a, Doc2, Syntaphilin

Tomosyn, SV2, NSF, SNAPs

Fusion
Vesicle membrane fuse with presynaptic membrane and
release neurotransmitters to synaptic cleft triggered by

Ca2+ in milliseconds.
SNAREs, Synaptotagmins
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neurotransmitters in the synapses [250]. The neurotransmit-
ters reach a coordinated and balanced state. GABA works in
the adult brain primarily by acting on GABAA and GABAB
receptors [251].

GABAA receptors can be activated by a high concentra-
tion of GABA and are a kind of ligand-gated Cl- channel
receptor that induces synaptic inhibitory response [252].
They affect the rhythmic activity generated in the neural
network. The application of GABAA receptor antagonist
Bicuculline (Bic) can improve the spatial learning and mem-
ory disorders caused by propofol (Pro) [250]. GABAB recep-
tors are metabolic G protein-coupled receptors (GPCRs)
that regulate synaptic transmission and are involved in mul-
tiple brain functions, such as recognition, learning, memory,
and anxiety [253, 254]. Experimental studies showed that
baclofen, a GABAB receptor agonist, could affect the acquisi-
tion and consolidation of learning and memory [255–257].
CGP35348, a GABAB receptor antagonist, can improve this
situation, because CGP35348 inhibits the inhibitory post-
synaptic electrical potential (IPSP) and enhances the activa-
tion of GABA receptors [248], thereby promoting memory
formation [258]. The GABAC receptors are similar to the
GABAA receptors but are insensitive to Bic and baclofen
[259, 260]. The GABAC receptor antagonist TPMPA can
block the inhibitory effect of GABA at lower doses on learn-
ing and memory [261].

Although the research on the influence of GABA on
cognition has achieved certain success and has guided the
treatment of clinical cognitive disorders, the specific
mechanism underlying the influence of GABA signal on
learning and memory has not been fully elucidated and
needs further discussion.

4.3. Dopamine. Another neurotransmitter associated with
disease is dopamine (DA) [262]. DA regulates various
physiological functions of the CNS [263, 264]. The dysregu-
lation of DA system affects the progression of PD, schizo-
phrenia, Tourette syndrome, attention deficit hyperactivity
syndrome, and pituitary tumor [265]. PD is a slow progres-
sive neurodegenerative disease that affects middle-aged and
elderly population [266], and the main pathological change
is the progressive death of dopaminergic neurons in the sub-
stantia nigra (SN), which eventually leads to the severe loss
of DA in the striatum [267, 268]. The formation of Lewy body
is one of the main pathological changes of PD [269]. A close
connection exists between the DA system and α-synuclein,
which is the main component of Lewy body [227, 269].

In the process of DA metabolism, the activity of DA-
induced intermediates can be inhibited by combining with
α-synuclein that selectively induces the formation of α-synu-
clein fibrils and increases fibrillary aggregation [270]. Simi-
larly, the abnormal aggregation of α-synuclein leads to the
imbalance of normal anabolism of DA, the increase of intra-
cellular toxic-free DA, and the blocking of the vesicle trans-
port of DA [270]. This vicious cycle is formed, thereby
intensifying the occurrence of cell death and disease.

Molecules involved in maintaining DA homeostasis have
successively become drug targets due to the central role of
DA in the pathogenesis of PD. The metabolism of DA

in vivo is carried out by monoamine oxidase-B (MAO-B)
and catechol-O-methyltransferase (COMT) [271–273]. The
inhibitors of these enzymes can reduce the degradation of
DA and thus play roles in PD treatment.

In detail, the MAO-B inhibitor selegiline has become one
of the main drugs in the treatment of PD and is currently
approved for use in treatment in China [274]. Recently, rasa-
giline, a new MAO-B inhibitor, has been approved by the
Advisory Committee of the European Medicines Evaluation
Agency [274]. DA receptor agonists can bypass the denatur-
ing neurons, directly stimulate the postsynaptic DA recep-
tors, slow down the synthesis of DA, reduce the generation
of free radicals, and protect the remaining substantia nigra
neurons [275]. Currently, PD treatment is still limited to
symptomatic treatment, and the drug target is mostly the
production of DA, such as L-DOPa, DA receptor agonists,
and the DA-related metabolism enzymes mentioned above
[276]. In recent years, both traditional Chinese medicine and
acupuncture have achieved good results in the treatment of
PD in animal models [277]. They can relieve the motor symp-
toms of animals with PD and reduce the loss of DAergic neu-
rons in the substantia nigra [277]. These treatments may
provide a new therapeutic strategy for PD patients [277, 278].

4.4. Acetylcholine. Cholinergic synapses are ubiquitous in the
human CNS [279]. Their high density in the thalamus, stri-
atum, limbic system, and neocortex suggests that cholinergic
transmission may be critical for memory, learning, attention,
and other higher brain functions [208]. The cholinergic
system plays an important role in global brain homeostasis
and plasticity [280]. Acetylcholine (ACh), the first neuro-
transmitter to be identified [281], is used by all cholinergic
neurons and has a critical important role in the peripheral
and CNS [282]. ACh is synthesized from choline and
acetyl-coenzyme A (acetyl-CoA) via the enzyme choline ace-
tyltransferase (ChAT) and then transferred by vesicular ace-
tylcholine transporter (VAChT) [283, 284]. When cholinergic
neurons depolarize, ACh is released from synaptic vesicles into
the synaptic cleft, where it can activate nicotinic receptors
(N-receptors) and muscarinic receptors (M-receptors) [208].
ACh in the synaptic cleats is rapidly inactivated by acetylcho-
linesterase (AChE), thereby releasing choline and acetate
[285]. Stimulation of N-receptors present on the membranes
of presynaptic neurons in CNS increases the concentration
of presynaptic Ca2+ [286, 287], whichmay promote the release
of many neurotransmitters, such as ACh, Glu, GABA, DA,
serotonin, and norepinephrine [287, 288]. Thus, ACh can
influence the strength and fidelity of various synapses and
modulate overall CNS neurotransmission [288].

In addition, the cholinergic and glutamatergic systems
seem to be interrelated, because the role of ACh in learning
and memory seems to be related to the regulation of
glutamatergic neurotransmission [221, 289]. Many N-receptor
agonists were found, such as nicotine, DMPP (1,1-dimethyl-4-
phenylpiperazinium), and cystine [289, 290]. Agonist sensitivity
is highly influenced by N-receptor subunit composition [290].
Additionally, curare is the best known antagonist for N-
receptors that cannot block CNS nicotinic receptors [291].
M-receptors are widely present in the parasympathetic

9Oxidative Medicine and Cellular Longevity



postganglion fiber-dominated effector cells [208, 292]. When
ACh binds to such receptors, it produces a series of para-
sympathetic terminal excitatory effects [292]. These receptors
can also bind to muscarine to produce a similar effect [293,
294]. Atropine, a blocker of these M-receptors, can compete
with ACh for M-receptors in the postsynaptic membrane of
parasympathetic nerve postganglionic fibers [295], thereby
antagonizing muscarinic symptoms and the CNS caused by
the excessive acetylcholine stimulation of the postsynaptic
membrane. Cholinergic neurotransmission has been implica-
ted in a number of disease states [280, 282]. Defects in cho-
linergic transmission may affect all aspects of cognition and
behavior, including cortical and hippocampal processing of
information [296], which was found not only in AD but also
in PD, Down syndrome, and ALS [297, 298]. In addition,
Huntington’s disease seems to be related to the decrease of
ChAT activity [297, 298].

Selective injury of cholinergic neurons in the basal fore-
brains of AD rodent models is reportedly related to
increased deposition of Aβ and levels of hyperphosphory-
lated tau in the hippocampus and cortex [299]. The animal
experiments showed that cholinergic depletion promoted
Aβ deposition and tau pathology, therefore leading to cogni-
tive impairment [300]. The main therapeutic strategy for AD
is to restore cholinergic function through the use of com-
pounds that block the enzymes that break down ACh [301,
302]. Cholinesterase inhibitors (ChEI) are generally consid-

ered as the symptomatic treatments for AD [303]. They are
a class of drugs that can bind with ChE and inhibit ChE
activity [285]; they are also known as anticholinesterase
drugs [285, 303]. Their role is to release the ACh accumu-
lated by cholinergic nerve terminals, thereby showing
enhanced M-like and N-like effects and activating choliner-
gic receptors [304]; they are the so-called quasicholinergic
drugs [303]. In addition, rivastigmine, donepezil, and galan-
tamine are currently available FDA-approved ChEI drugs
used for AD treatment [305]. These drugs have positive
effects for only a short period of time (about 1 year to 3
years) and cannot alter disease progression [306].

5. Outlook

The synapse is the key structure of the connection among
neurons in a neural network and has multiple important
physiological functions [6, 7]. Synaptic secretion is involved
in several important cellular activities, such as neurotrans-
mitter release, hormone secretion, and natural immunity
[8, 309]. The molecular basis of synaptic secretion has fasci-
nated scientists for decades. There are hundreds of proteins
involved in regulation, and new ones are still being discov-
ered [57, 310]. Neural communication relies on the tight
regulation of synaptic vesicle fusion at nerve endings, which
results in neurotransmitter release with strict time and quan-
tum precision [16, 17]. In the resting state, synaptic vesicle
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Figure 3: Proposed mechanisms of action of antiepileptic drugs (AEDs) at excitatory and inhibitory synapse. Clinically approved AEDs
display a spectrum of mechanisms of action with effects on both inhibitory (left-hand side) and excitatory (right-hand side) nerve
terminals. Several synaptic targets of drugs are illustrated, including voltage-gated ion channels (e.g., Na+, K+, and Ca2+), the α 2δ subunit
of the voltage-gated Ca2+ channel, vesicular proteins (e.g., SV2A), GABA transporters (GAT-1), GABA receptors, and AMPA receptors.
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fusion is inhibited [19, 311]. When action potentials mediate
Ca2+ influx to nerve endings, vesicle fusion is induced follow-
ing the rapid release of neurotransmitters at the millisecond
level [311]. These processes are subject to strict regulatory
controls that prevent excessive neurotransmitter release and
ensure high-fidelity neuronal communication that otherwise
leads to disruption of neurotransmission [19, 57, 138, 312].

The coordination of these precise events requires a series
of presynaptic proteins [19, 313]. SNARE proteins provide
the core fusion mechanism for the energy required for syn-
aptic vesicles to fuse with the plasma membrane [57, 91,
310]. Other biological molecules, such as Synaptotagmin,

Munc18, Munc13, CAPS, RIM, Rab, and Complexin, are
involved in the regulation of synaptic vesicle secretion in
physiological environments [111, 120, 158, 187, 314]. Given
this complexity, defects in this mechanism expectedly lead to
a range of neurological disorders [2]. There are various neu-
rotransmitters in information communication, including
excitatory neurotransmitters and inhibitory neurotransmit-
ters, which play unique roles and jointly regulate neuronal
growth and development, synaptogenesis, and synaptic sig-
nal transmission [244, 315].

Whether due to genetics, drug abuse, aging process, viral
infection, or other reasons, the abnormal communication

Table 3: A summary of FDA approved-drugs related to neurotransmitter transmission [256, 262, 276, 285, 302]. The drug name, action
mechanisms, application in diseases, and the approval year by the FDA are listed.

Drug name Mechanism Application FDA approval year

Glutamate

Memantine NMDA receptor antagonist AD 2003

Acamprosate NMDA receptor agonist The treatment of alcohol dependence 2004

Perampanel AMPA receptor antagonist Epilepsy 2012

GABA

Propofol (Pro) GABAA receptor agonist Induction and maintenance of general anesthesia 1989

Baclofen GABAB receptor agonist
Treats muscle spasms caused by certain conditions (such

as multiple sclerosis, spinal cord injury/disease)
2010

Gabapentin Modulates the action of GAD Epilepsy 1993

Topiramate GABAA receptor agonist Epilepsy 2009

Dopamine

Selegiline MAO-B inhibitor PD 2006

Rasagiline MAO-B inhibitor PD 2006

Quetiapine Dopamine receptor antagonist AD 1997

Naltrexon/
bupropion

Opioid receptor antagonist, dopamine
agonist, and NE reuptake inhibitor

Obesity 2014

Clozapine
Dopamine receptor/5-HT2A receptor

antagonist
Antipsychotic drugs, mainly for acute and chronic

schizophrenia
1990

Risperidone
Dopamine receptor/5-HT2A receptor

antagonist
Schizophrenia 2009

Olanzapine
Dopamine receptor/5-HT2A receptor

antagonist
Schizophrenia 2009

Aripiprazole
Dopamine receptor/5-HT1A receptor

antagonist
Schizophrenia and bipolar disorder 2015

Ziprasidone
Dopamine receptor/5-HT receptor

antagonist
Schizophrenia 2001

Rotigotine
Dopamine receptor/5-HT receptor/

adrenergic receptor agonist
PD 2007

Acetylcholine

Rivastigmine AChE inhibitor AD 2000

Huperzine A AChE inhibitor AD 1999

Donepezil AChE inhibitor AD 1996

Galantamine AChE inhibitor AD and age-associated memory impairment (AAMI) 2001

Neostigmine AChE inhibitor Myasthenia gravis (MG) 2003

Mestinon AChE inhibitor MG, obesity, dementia, epilepsy 1955

Atropine M-receptor antagonist Antispasmodic agents 2018

Nicotine N-receptor agonist
Reduces appetite, improves mood, and has some

antidepressant properties
1997
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between neurons may be common to several neuropsychiat-
ric diseases (such as schizophrenia, PD, autism, AD, HD,
and depression) [316–318]. Recent studies showed that syn-
aptogenesis disorders can lead to neurological dysfunction
[20, 36]; the important pathological changes in several
neurodegenerative diseases are the structural changes, the
reduction of the number of synapses, and the synaptic dys-
function [36, 203]. It is important to study and elucidate
the mechanisms of neurotransmitter release at the molecular
level, because understanding these basic mechanisms can
better clarify the etiology of neuropsychiatric diseases, which
is the key to further understanding the release effect of drugs
for disease treatment [318].

According to the successfully developed drugs for dis-
ease treatment, multiple drugs affecting neurotransmitter
transmission act on neurotransmitter receptors, especially
presynaptic neurotransmitter receptors (Figure 3 and
Table 3) [291, 292]. Some proteins with transport or enzyme
functions can also be used as drug targets [291, 303, 319].
Neurotransmitter release mechanisms appear to be relatively
poor drug targets, because SNARE proteins, Munc18, Syn-
aptotagmin, and others modulate neurotransmitter release
through protein–protein interactions that are difficult to
influence with small molecules [320, 321].

Nevertheless, synaptic vesicle protein 2A (SV2A), which
is involved in the regulation of neurotransmitter release and
vesicle circulation [322], is the action site of the new antiep-
ileptic drug levetiracetam [323, 324]. Currently, 15 anti-PD
drugs targeting α-synuclein are in the preclinical stage
[325]. Therefore, exploring the function and release mecha-
nism of neurotransmitters is of great significance in under-
standing the role of current drugs and stimulating the
development of new drugs.

6. Conclusion

Synapses transmit information through synaptic secretion to
realize cellular communication. The exocytosis process of
vesicles includes tethering, docking, priming, and fusion
and mediates the release of transmitters. Damage to any of
these steps can lead to functional disorders, further leading
to neurodegenerative diseases as well as neurodevelopmental
and psychiatric disorders. Important advances have been
made in functional models of Ca2+-triggered neurotransmit-
ter release mechanisms coregulated by SNARE proteins and
other regulatory factors. An in-depth understanding of
proteins and their regulatory mechanisms will contribute
to a better understanding of neuronal plasticity, as well
as diseases caused by cellular communication defects, and
have important strategic implications for the prevention
and treatment of related diseases and the development of
new drugs.
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