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ABSTRACT: The release of bromine-free hydrocarbons and gases
is a major challenge faced in the thermal recycling of e-waste due to
the corrosive effects of produced HBr. Metal oxides such as Fe2O3
(hematite) are excellent debrominating agents, and they are
copyrolyzed along with tetrabromophenol (TBP), a lesser used
brominated flame retardant that is a constituent of printed circuit
boards in electronic equipment. The pyrolytic (N2) and oxidative
(O2) decomposition of TBP with Fe2O3 has been previously
investigated with thermogravimetric analysis (TGA) at four
different heating rates of 5, 10, 15, and 20 °C/min, and the mass
loss data between room temperature and 800 °C were reported.
The objective of our paper is to study the effectiveness of machine
learning (ML) techniques to reproduce these TGA data so that the use of the instrument can be eliminated to enhance the potential
of online monitoring of copyrolysis in e-waste treatment. This will reduce experimental and human errors as well as improve process
time significantly. TGA data are both nonlinear and multidimensional, and hence, nonlinear regression techniques such as random
forest (RF) and gradient boosting regression (GBR) showed the highest prediction accuracies of 0.999 and lowest prediction errors
among all the ML models employed in this work. The large data sets allowed us to explore three different scenarios of model training
and validation, where the number of training samples were varied from 10,000 to 40,000 for both TBP and TBP + hematite samples
under N2 (pyrolysis) and O2 (combustion) environments. The novelty of our study is that ML techniques have not been employed
for the copyrolysis of these compounds, while the significance is the excellent potential of enhanced online monitoring of e-waste
treatment and extension to other characterization techniques such as spectroscopy and chromatography. Lastly, e-waste recycling
could greatly benefit from ML applications since it has the potential to reduce total and operational costs and improve overall
process time and efficiency, thereby encouraging more treatment plants to adopt these techniques, resulting in reducing the
increasing environmental footprint of e-waste.

1. INTRODUCTION
With the advancement of technology, the increase in the amount
of electronic and electrical waste (cumulatively called e-waste) is
tremendous and imminent. During the period from 2014 to
2019, the e-waste generated annually increased by ∼23% to 55 t
(Mt) and is further projected to increase by an alarming ∼40%
to 75 Mt in the next 7 years.1−3 The primary constituents of e-
waste are printed circuit boards (PCBs), which consist of both
metallic and nonmetallic fractions (NMFs). The metallic
constituents such as Au, Ag, Cu, Al, Fe, Ni, and Pb are
recovered using leaching techniques through strong inorganic
acids, but the efficiency of this process is dependent on the
fineness (size of the metallic species) of the e-wastes.4−7 Other
limitations of this extraction are that it is slow, generates toxic
effluents, consumes a lot of concentrated acids, and is expensive.
Brominated flame retardants (BFRs) along with resins and
ceramics constitute the nonmetallic part of PCBs, where the

BFRs release brominated benzo-dioxins, benzofurans, and most
notably toxic hydrogen bromide (HBr) as byproducts during
their thermal recycling process due to favorable reaction
conditions.8 These toxic compounds contaminate the environ-
ment and are hazardous to human health.9 The Environmental
Protection Agency (EPA) of the United States estimated that
only ∼15% of e-waste is recycled while the rest collects in
landfills, which also eventually contaminate subsurface water
through the formation of harmful compounds. Thus, in line with
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the Envision 2030 sustainable development goals of the United
Nations (UN), novel techniques are required to be developed to
capture these toxic emissions that are emitted during the thermal
treatment of e-waste, especially from BFRs.
BFRs aid in delaying or preventing explosions in electronics

and electrical equipment when they are subjected to stresses
above their design threshold during their lifetime. Their
composition makes their thermal treatment complex, leading
to aromatic condensation and in the process, releasing HBr,
which is thought to arise from 50% of the bromine content in
BFRs.10 The toxicity of HBr is well-known, and it has potential
to back-brominate (act as a Br-source for the backward reaction)
aliphatic and olefinic hydrocarbons formed during thermal
recycling as well as corrode equipment.11 In order to capture
HBr and other harmful brominated compounds formed from
the pyrolysis of BFRs, a number of different metal oxides have
been employed as copyrolytic reactants with BFRs in past
research works such as alumina (Al2O3),

10 calcium hydroxide
(Ca(OH)2),

12 hematite (Fe2O3),
1,13 copper oxide (CuO),14

lanthanum oxide (La2O3),
14 antimony (Sb2O3),

15 and frank-
lainite (ZnFe2O4).

16 The effect of these oxides in reducing the
HBr yield in the pyrolytic products is quite evident from these
works. Pyrolysis alone just distributes the bromine within the
pyrolysis products, and hence, a metal oxide is required for
bromine removal. Though a specific % removal of bromine from
the PCBs was not reported when alumina was used in its
copyrolysis in the work by Ali et al.,10 it was inferred that alumina
was less efficient as a debrominating agent as compared to other
metal oxides. Wu et al.15 investigated the bromine removal-
effectiveness from high impact polystyrene containing BFRs by
copyrolyzing with antimony trioxide (Sb2O3). Interestingly,
they found that pyrolysis with Sb2O3 alone did not have an effect
on reducing the Br content in the products. The most effective
oxides for removal and capture of bromine from BFRs were
reported to be Ca(OH)2 and iron oxides (Fe2O3), showing 100
and >80% removal, respectively.1,13,17 The advantage of
hematite was seen in the work by Liu et al.,18 where they
reported that iron particles decreased the energy barriers and
enhanced the formation of Br-free gases during the pyrolysis of
Fe-added WPCBs. In the work by Ma et al.,17 Fe/zeolite
catalysts exhibited a combined catalytic cracking activity as well
as excellent debromination performance when used with
brominated acrylonitrile−butadiene−styrene (Br-ABS), which
is an important resin (an amorphous polymer with fatigue-
resistant, rigidity, and hardness properties) constituent of NMF.
The ability to switch between different oxidation states in
transition metals such as Fe makes it an excellent Lewis acid,
thereby assisting in the HBr dissociation and C−Br scission.
These mechanisms are prevalent in brominated aliphatics,
aromatics, and olefins arising from the remaining 50% of BFR
bromine content and subsequently enable the bromine capture
and removal from the PCBs. The high debrominating efficiency
of Fe is also established from the work byMa andKamo,19 where
they noticed an increase of unsubstituted phenols and lower
concentration of brominated hydrocarbons in the pyrolytic oil
from the NMFs portion of PCBs.
Typical model compounds of BFRs include 2,4,6-tribromo-

phenol (TBP) and tetrabromobisphenol-A (TBBA) since they
contain a number of brominated phenolic species and
aromatics.20 A plethora of works in literature have focused on
the copyrolysis of TBBAwith variousmetal oxides,21−25 but very
few have focused on TBP.1,13We would like to highlight a recent
work by us, where thermogravimetric analysis (TGA) of TBBA

combined with Ca(OH)2 was investigated and various machine
learning (ML) techniques were applied to reproduce the TGA
data.26 This work was an extension of a previous work also by Ali
et al.,12 where TGA data were obtained for samples of both pure
TBBA and TBBA combined with Ca(OH)2. Furthermore, these
samples were also subjected to pyrolysis under both N2 and O2
environments, where the objective was to explore the
debromination capability of Ca(OH)2 from the pyrolytic
products of TBBA. TGA is an excellent fingerprinting method
to study the behavior of complex samples at different
temperatures ranging from 25 to 900 °C, depending on the
instrument and the research objectives. The major advantage of
thermal analysis is that they allow the variation of parameters
such as heating rate (HR), temperature, chemical environment
(carried out under inert N2 or O2 for combustion reaction), and
pressure in order to evaluate their effects on the sample. Though
the inferences from TGA provided useful insights such as
melting points, phase changes, metal halide formation, stages of
decomposition, and valuable information on the nature of
interaction between the BFRs and the metal oxides, the
production of the mass loss curves itself takes lots of time and
is prone to human and instrument errors.16,27 ML methods
provide a solution for this by directly reproducing the TGA data
in much less time using the already existing experimental data.
Predicting the TGA data for new input conditions such as HRs,
time spent by the sample inside the chamber, heat supplied by
the TGA instrument at different times, and temperatures of the
sample and the chamber at different times is achieved by
establishing linear and nonlinear relationships between these
inputs and the output mass loss data. In our previous work,26 we
compared the prediction ability of random forest (RF) and
support vector (SVR) regression techniques as with ordinary
least-squares (OLS)-based multiple linear regression (MLR) for
reproducing the TGA data of TBBA copyrolyzed with Ca(OH)2
under both oxygen and nitrogen environments. These
techniques are elaborated in the ML Methods Section for
readers’ reference. The RF technique showed the best
performance for both the O2 and N2 conditions, where all the
ML models were trained and predicted using the TGA data at 4
different HRs of 5, 10, 15, and 20 °C/min. The RF regression
method outperformed the otherMLmodels when the TGA data
at lower HRs were used for training while predicting on the data
at higher HRs. Prediction accuracies for the RF and SVRmodels
reached as high as 0.9999 and 0.9973 for the combined TBBA
and Ca(OH)2 samples, whereas linear regression displayed
much lower R2 values of <0.9. In this work, we will interchange
the use of prediction accuracies with R2 values frequently and
note that both expressions point to the same intended meaning
of the model performance.
ML techniques, such as RF and gradient boosting regression

(GBR), are ensemble-based decision trees that work on
supervised algorithms. Supervised learning algorithms use
labeled data sets to train the ML models with the correct
outputs corresponding to the respective inputs. This way, it is
easier for the model to recognize patterns in the data compared
to unsupervised learning. Their main advantage in the
application toward multivariate (with more than one variable
feature/attribute) TGA data is that they are able to effectively
capture nonlinearity in the data. RF selects multiple subdata
points at random from the original data set and trains separate
decision trees on each of these data sets, and the final prediction
is an average of the individual predictions. The randomness in
the selection of input features and observations makes the RF
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algorithm robust and versatile and reduces overfitting. GBR
differs from the RF in the way the trees are trained, that is, the
GBR algorithm trains the trees one after the other sequentially,
while in RF, all the trees are trained in parallel. GBR can solve a
number of objective functions that are differentiable, which
makes it very adaptable. SVR is another supervised learning
technique that can be used for both classification and regression
of multivariate and complex data sets. Its main advantage is the
use of a kernel trick (a mathematical function) to transfer the
data to a higher dimension to capture the nonlinearity in the
input features.28 In general, decision tree-based techniques
require minimal tuning of hyperparameters as compared to SVR
or artificial neural networks (ANN). Though SVR requires an
extra hyperparameter to tune during model training, it addresses
the limitations of ANN such as nonrepeatability of the
predictions and converging to local minima.29 Although we
could not find any application of GBR to e-waste treatment and
bromine capture, it has been applied successfully in other areas
of chemical, process, and environmental engineering, and the
results were compared with RF and SVR methods. GBR and RF
both showed excellent prediction accuracies of >0.97 for the
compressive strength of phase change materials (PCMs)
integrated with cement composites in the work by Marani and
Nehdi.30 RF, SVR, and GBR predicted solar and wind energies
from various farms in Spain with equal accuracies in the study by
Torres-Barrań et al.31 Interestingly, they found it hard to
conclude the best performing model since it depended on the
farm type as well as the training and testing data sets. In a real-
time study, GBR showed superior performance for predicting
the yields of oil from plastic pyrolysis when compared with RF,
ANN, and linear regression and applied on live plastic samples
from the Rhine river.32 In the real-time dynamic temperature
prediction of asphalt pavement by Wang et al.,33 SVR showed
better performance than GBR. In order to find the optimal
extraction conditions of TBBA−dibromopropyl ether (DBP),
which is another BFR constituent, using an organic solvent in an
ultrasound instrument, Wan et al.,34 employed SVR. From all
these works and our previous work on e-waste treatment, we can
see the utility of RF, GBR, and SVR as excellent ML approaches
for predicting multivariate data in different academic and
industry/real-time scenarios. Moreover, Mousa et al.13 utilized
TBP for exploring the debromination ability of hematite by
copyrolyzing them between 150 and 500 °C, but did not utilize
TGA to examine the feed or products postpyrolysis. They
suggested that TBP was rarely investigated as a model
compound for BFR but noticed that the products of pyrolysis
were devoid of brominated hydrocarbons, thus reiterating the
utility of hematite as a strong debrominating agent.
In some other works, TGA has been primarily used to obtain

the kinetic and thermodynamic parameters for a number of
thermo-chemical processes but rarely used for predicting the
mass-loss curves themselves.16,35 Altarawneh et al.16 also used
density function theory combined with kinetic models for
calculating the activation and reaction energies of the conversion
of ZnO and franklinite to the corresponding bromide. Active
regions of temperatures where the copyrolysis of the zinc oxide
with BFRs was postulated to occur as well as the product profiles
were also predicted using these models. However, ML
approaches would require much less computational effort and
provide excellent predictions. Furthermore, the mass loss curves
for the reactant mixture were not reproduced in this work.
Predicting TGA data poses significant challenges due to its
multivariate nature, and except in our previous work on TBBA,26

this area has not been explored in the past for e-waste recycling.
Ali et al.35 obtained thermo-kinetic parameters from the TGA
data of TBP combined with hematite using model-fitting and
iso-conversional methods (model-free determination of kinetic
parameters, that is, without the assumption of a reaction
pathway), which are effective but time-consuming. In our
current work, we intend to reproduce these TGA data at 4
different HRs of 5, 10, 15, and 20 °C/min under N2 and O2
conditions using nonlinear ML approaches such as RF, GBR,
and SVR. Furthermore, these will be compared with MLR for
establishing a baseline prediction accuracy. The significance of
our work is that it will help eliminate the use offline measuring
instruments such as TGA, which are generally time-consuming
and prone to errors. Our work will lower the process time,
significantly reduce human and sampling errors, and successfully
be extended to spectroscopy and chromatography as well. This
can further help in identifying the optimal conditions for
copyrolysis of BFRs with metal oxides with applications in e-
waste treatment. The novelty of our work is addressing the
literature gap of the lack of predictive models for the TGA data
of TBP and hematite combinations. Our versatile and robust
models will be applicable across different HRs and dual chemical
environments.
The aim and scope of our contribution in this work is three-

fold: (i) to predict the mass loss data obtained experimentally
through TGA at different HRs based on four ML approaches;
(ii) to identify the best-predicting ML model for the TGA data
of both TBP andTBP + hematite samples at different HRs under
both N2 and O2 environments; and (iii) to test the sensitivity of
the best-predicting regression technique to variation in the
number of training points. This was achieved by training theML
algorithms at 2 or 3 sets of HRs and predicting at the remaining
HRs. The ultimate objective is to develop a robust algorithm to
generate mass loss curves online before and after the pyrolysis of
BFRs in PCBs and minimize the use of physical, offline TGA
characterization. Details of the training and validation data sets
for the ML models are described in the next section.

2. ML METHODS, DATA SET SPLITTING,
PERFORMANCE METRICS, AND WORKFLOW
2.1. Inputs and Outputs Used for the ML Models. For

training purposes, the input variables, also known as explanatory
variables/regressors/predictors, to the ML models were: (i)
temperature of the TGA chamber, (ii) temperature of the
sample, (iii) time spent by the sample inside the chamber, (iv)
heat flow inside the chamber, and (v) the HRs (5, 10, 15, and 20
°C/min). The masses of the samples remaining in the TGA
chamber at each time were used as the outputs. The outputs are
also called response variables.
2.2. Available Data Sets and Their Description. From

our previous work,1 we obtained TGA data for TBP separately
and the combination of TBP and Fe2O3 samples at 4 different
HRs of 5, 10, 15, and 20 °C/min under inert pyrolysis (N2) and
combustion (O2) conditions. The number of observations for
samples of TBP alone and TBP + hematite combined is
summarized in Table 1. It is to be noted that the number of data
points were same under both pyrolysis and combustion
environments, and hence the same table is applicable for both.
Figure 1a,b shows plots of the entire TGA data for a sample of

TBP separately and TBP + hematite combined, respectively.
We can see that there was only a single decomposition stage in

the pure TBP sample (Figure 1b) over all temperatures until 800
°C, whereas at least 2 stages could be seen for the samples of
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TBP mixed with hematite (Figure 1a). There were no major
events until ∼100 °C for either sample, but devolatilization of
TBP was postulated to occur in the first stage of significant mass
decrease. For more accurate determinations of mass losses,
differential thermogravimetric (DTG) curves are plotted in Ali
et al.35 for these samples since DTG curves are derivatives of the
parent TGA curves and amplify the regions of decrease in mass
losses so that it is easier to identify the effects of major thermal
events. The total mass loss is >99%, andMousa et al.13 attributed
this to the absence of ash content and other solid residue (Figure
1b). Osman et al.36 found a high mass loss of >85% when
polyethylene terephthalate (PET) was subjected to TGA and
attributed this to a high volatile matter content. On the other
hand, the adding hematite to TBP resulted in residual material
that could not be vaporized, as shown in Figure 1a, and this
increased with increasing HR. This was due to the formation of
FeBr2 as a result of brominated species from the pyrolysis of TBP
reacting with hematite. We also noticed that the onset

temperature of thermal degradation for all HRs was slightly
higher by ∼30 °C for TBP as compared to hematite-added TBP,
and this becomes clearer from the derivative TGA curves as
reported in Ali et al.,1,35 from where our data were taken for ML
training and prediction. Al-Harahsheh37 also noticed a similar
onset degradation behavior for the TGA of TBBA combined
with electric arc furnace dust. Moreover, they also noticed that
an increased TBBP content resulted in an increase in mass loss,
and although in our work, we did not vary the ratio of TBP and
hematite combination, it still explains why there was higher mass
loss for TBP as compared to hematite-added TBP samples. It
was also noticed that increasing the HR from 5 to 20 °C/min
increased the onset temperature as well as the final temperature
of complete degradation for both TBP (Figure 1b) and TBP +
hematite (Figure 1a) samples. As seen from these curves, the gap
between the curves at the lowest and highest HRs widened to
∼10−40 °C as the thermal degradation progressed. Similar
observations were also reported for TGA of PET and TBBA
samples in other works as well.36,37

For the combined TBP + hematite samples, the first and
second regions of major mass losses can be identified as 100−
180 °C (a smaller region) and 280−410 °C (a larger region) for
5 °C/min HR. Interestingly, as described previously, these peak
regions shifted by 5−10 °C for every 5 °C/min increase in the
HR, as seen in Figure 1a. Overall, these peaks shifted by ∼30 °C
to the right (higher side) as theHRs increased by 4 times, as seen
in Figure 1a. The first region corresponded to the melting point
of pure TBP (∼95.5 °C), where the hematite is known to react
with this melted form of BFRs before they evaporate.1,12,13,37

Breakage of C−Br bonds and cross-linking reactions facilitate
this phase of the reaction.11 The second region of mass-loss from
the copyrolysis of TBP and hematite was postulated to be a
result of three occurrences: (i) removal of oxygen from
oxygenated species in the reaction mixture at these higher
temperatures, according to Jayashree et al.38 A number of
oxygenated species such as esters, dialcohols, and phenols were
also previously observed by Mousa et al.13 in the condensed
products when TBP was copyrolyzed with Fe2O3 in the
temperature range of 150−500 °C. (ii) Char oxidation since
the char was formed only when hematite was used and not for
TBP alone.35 This char consisted of FeBr3, carbon ash and other
inorganic compounds produced due to reactions of the emitted
gases from TBP pyrolysis with Fe2O3. Compared to pyrolysis
under the N2 environment, the char produced under
combustion conditions is 10% wt lesser and also varied with
different HRs according to Ali et al.35 (iii) Last, a sure possibility
was the release of HBr since it was reported to occur only at 400
°C for copyrolysis of BFRs,37 and 400 °C falls right in between
this peak range. Thus, we can conclude that although HRs do
not influence the reaction chemistry specifically, they do cause
the onset temperatures of different thermal events to be delayed
by 20−30 °C, showing as a peak shift to the right in the TGA
curves.
2.3. Data Splitting and Workflow Adopted. There has

been no consensus for the optimal splitting of the original data
set into calibration (also called training) and validation (also
called testing) sets when employing ML methods. It is well-
known that the calibration set is used for constructing the
regression model, and the validation set is used for testing the
ML model on “new” and “unseen” input data and test the
accuracy of predictions. For a large data set, Larsen andGoutte39

and Dubbs40 suggested a split of 90:10 for training/validation
while Afendras and Markatou41 recommended a 50:50 split. On

Table 1. Number of Data Points at Each HR for the Samples
Used for TGA under both N2 and O2 Environments

HR (°C/min) sample number of observations

5 TBP 13,900
TBP + hematite 18,545

10 TBP 6852
TBP + hematite 9350

15 TBP 4596
TBP + hematite 6812

20 TBP 3430
TBP + hematite 4638

Figure 1.Mass loss curves from TGA obtained for (a) TBP + hematite
and (b) TBP alone under pyrolysis (N2) conditions at all four HRs.
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the other hand, a few other works suggested to train the ML
models on lower than half of the data points and validate with
the remaining observations.42−45 An interesting work by
Joseph45 found the optimal calibration/validation ratio to be
dependent on the number of parameters in the ML model as

numberofparameters : 1. This was developed through a
closed-form solution, but the clear limitation here was that it
was applicable only to linear models.
The two types of scenarios adopted for the prediction of TGA

data in our work are depicted in Figure 2. In this figure, R2 and

RMSEP are the coefficient of determination and root mean
squared error (RMSE) of prediction and their calculations are
described in the next section (Section 2.4). Keeping in mind the
discussion in the previous paragraph, we chose to apply an 80:20
split for the calibration/validation data sets with random
sampling (data points chosen at random) for our ML models.
This was also the industry standard and was chosen due to the
large size of our data set.26 As can be seen in Figure 2, we applied
an 80:20 split for calibrating and validating the models in
scenario 1, where theMLmodels were trained by using the TGA
data at each HR for both TBP and TBP + hematite samples.
However, in scenario 2, two sets of investigations were
conducted: (i) the entire data points in the lower HRs
considering two sets at a time (5, 10 °C/min) initially and
then considering three sets at a time (5, 10, and 15 °C/min)
were used as calibration sets for training the ML models and the
performance was tested on the data points from the remaining
HRs two at a time (15, 20 °C/min) and 20 °C/min alone for the
calibration set corresponding to three HRs at a time. Essentially,
the validation set here was 15 and 20 °C/min combined for the
former and only 20 °C/min for the latter; (ii) the entire data
points in the higher HRs consider two at a time (15 and 20 °C/
min) and three at a time (10, 15, and 20 °C/min) were used as
the calibration set for model construction, while the validation
data set consisted of the remainingHRs of 5 and 10 °C/min for 2
at a time and 5 °C/min for 3 at a time calibration, respectively. In
this way, 16 separate models were built in both scenarios
considering both pyrolysis (N2) and combustion (O2)
conditions for both TBP and TBP + hematite samples.

Details about data tidying, arrangement, and cleaning are
provided in the Supporting Information. Furthermore, detailed
information on the software tools used for model building and
testing is also provided in the Supporting Information.
2.4. Random Forest Regression and Its Hyperpara-

meter Tuning. Random forest methods have been applied in a
number of subregions of chemical engineering such as
quantitative structural−property relationships for predictions
of viscosity46 and CO2 solubility in deep eutectic solvents,47

composition of particulate matter,48 infrared spectroscopy,49 gas
chromatography-based classification of tobacco,50 prediction of
air−water interfacial tension in surface-active agents,51 bio-
sorption for dyes,52 and bioreactor operations.53 In these works,
the performance of RF has been compared against other ML
methods such as SVR, ANN, and linear regression, and it was
seen that RF outperformed its counterparts comprehensively.
Further details of the RF algorithm are provided in the
Supporting Information. A schematic of the different trees,
their nodes, branches, and the information flow to obtain the
final prediction in the RF method is shown in Figure S2.

2.4.1. Advantages of RF Regression.
• The primary advantage is that there is no need for data

transformation of the inputs during training of the model.
• Correlations present in input features do not affect the

accuracy of predictions. This is due to the randomness in
selecting the features and data points from the original
data set and the final selection eliminates redundant
information. This has been indicated in our previous work
as well.26

• Random selection of input data points with replacement
and averaging out the tree predictions also decouples the
errors in predictions.

• Production of stable predictions and less overfitting
tendency as compared to neural networks (ANN).
Overfitting is avoided by resampling the subdata sets
repeatedly and averaging the predictions of all the
individual trees at the end.

• Requirement of lesser hyperparameters, training time,
memory, storage space, and computational power than
ANN.

• Another benefit of RF algorithm is its ability to handle
multidimensional/multivariate data sets very well.

• Excellent handling of nonlinear relationships between
inputs and outputs from complex data sets such as TGA,
spectroscopy, and chromatography makes it a suitable
approach for our work.

2.4.2. Hyperparameter Tuning of the RF Model. The two
main parameters to be tuned and optimized for the RFmodel are
“n_estimators” and “max_depth”. “n_estimators” relates to the
total number of random and independent trees that make up the
model, while “max_depth” is the number of horizontal levels that
each tree is divided into, which is quite self-explanatory. A
couple of examples of the same tree with “max_depth” of 2 and 3
are provided in Figures S3 and S4, respectively, in the
Supporting Information. These trees were part of the RF
algorithm modeled on the TGA data from pyrolysis conditions
of TBP + hematite sample at HRs of 5 and 10 °C/min combined
for scenario 2 (Figure 2). Each box in the tree is a node, and we
can infer that with each increasing horizontal level of the tree, the
number of nodes also increases exponentially in the order of 2n.
For example, the number of nodes (boxes) in Figure S3 is 7,
which can be calculated as 20 + 21 + 22, while that in Figure S4 is

Figure 2. Schematic of the workflow adopted in this work for the use of
different ML techniques to predict TGA data for TBP + hematite
samples.
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15, which is in turn calculated as 20 + 21 + 22 + 23. Hence, for a
“max_depth” of n, the number of nodes in that tree will be 20 + 21
+ 22 + ... + 2n−1 + 2n. Thus, it can be stated that “max_depth” is a
measure of the depth of the RF model. On the other hand,
“n_estimators” indicates how wide the algorithm and can be
visualized as the breadth of the model.
Both temperature and time were used as the inputs for the

decision making in the nodes, as seen in Figures S3 and S4. The
mean squared error (MSE) is the square of the RMSE which has
been defined in Section 2.7 of MLMethods titled “Performance
Metrics”. This value decreases as we go down the horizontal
levels, while “values” represents the predicted weights of the
remaining mass of the sample in the TGA at that node. The final
predicted value will be the average of all the values of the nodes
in the bottom-most level of the trees. The “samples” represent
the number of data points that fall within this condition for HRs

considered in this training set. The variation of the prediction
accuracies with the number of trees and the depth of the trees as
they are varied from 1 to 100 and 1 to 7 respectively, is shown in
Figure 3. It can be seen that the prediction accuracies increased
sharply and then slowed down only with “max_depth”, while
they did not depend hugely on the “n_estimators”. The nodes are
the decision points, and the next tree could predict the final mass
based on time alone or temperature alone or a combination of
heat flow in the chamber or any combination of these input
variables. Obviously themore the number of trees, the higher the
training time needed, and this is further multiplied with an
increase in the “max_depth”. Moreover, we could clearly see that
the influence of the “n_estimators” was much lesser than that of
“max_depth” from Figure 3, and hence values of 10 and 7 were
chosen for former and latter parameters, respectively, in both the
scenarios. Though the curve starts to flatten out from

Figure 3. Prediction accuracy vs “max_depth” and “n_estimators” for the pyrolysis data set of TBP + hematite for RF regression with TGA data at 5 and
10 °C/min used for training.
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“max_depth” values of 3, the maximum prediction accuracies
were always obtained at 7, and hence, we chose this for model
building.
2.5. Gradient Boosting Regression and Its Hyper-

parameter Tuning. 2.5.1. Overview and Applications. GBR
is another ensemble learning technique which operates on weak
learners one at a time in order to improve on the previous
learners in the model.54 Each decision tree is built and trained
one at a time, and these trees do not go beyond a “max_depth” of
3. However, in random forests, there is no restriction on this
parameter since all the trees are independently built and grown
fully. This reduces the bias, and the final error of prediction is

decreased by reducing the variance. In GBR, the shallower
decision trees, which are also called weak learners, result in low
variance but higher bias than RF. Hence, the boosting algorithm
in GBR decreases the error by reducing the bias. Smaller trees
are sufficient in GBR since their construction considers the
already built trees before the current one. Unlike bootstrap
sampling that is used in the RF approach, the trees are built on a
modified version of the original data set. Overfitting is tackled in
GBR by correcting the errors of the previous trees while in RF,
the predictions are averaged out. In both these cases, the
overfitting tendency of the individual trees is greatly avoided.
However, the number of trees needs to be chosen with caution

Figure 4. Prediction accuracy vs “max_depth” and “n_estimators” for the pyrolysis data set of TBP + hematite for GBR model with TGA data at 5 and
10 °C/min used as calibration set for training. This is for scenario 2, where the validation set was combined at 15 and 20 °C/min, on which the model
was tested on.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07228
ACS Omega 2023, 8, 43254−43270

43260

https://pubs.acs.org/doi/10.1021/acsomega.3c07228?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07228?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07228?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07228?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


so that an overemphasis on outliers can be avoided. Unlike in RF
where random subsets are chosen from the original data set and
trained with independent trees, in GBR, the main full data set is
supplied to the first tree and subsequent trees work on the
residuals of this tree.
As mentioned in the introduction, GBR has been used in

different sectors of environmental, chemical engineering and
biomass disciplines such as compressive strength prediction of
PCMs,30 forecasting energy consumptions for residential
buildings,55 prediction of renewable energy values in wind
farms,31 oil yield prediction from plastic pyrolysis,32 bio-oil
yields from hydrothermal liquefaction of algae,56 and even
mechanical applications such as estimating the onset of cracks
due to fatigue in the design of pavements.57 It is to be noted that
certain variants of GBR technique such as CatBoost, XGBoost,
and LightGBM have been used recently by other researchers but
the number of parameters to be optimized in their algorithms are
far more than GBR. The limitation of GBR is that it takes more
time to train the model, and adding more hyperparameters will
only increase the training time further and hence was avoided in
this work. Another well-known disadvantage of GBR is that it
does not work well with noisy data. However, the TGA data in
our work were devoid of any noise, and hence GBR was well-
suited. Further details about the objective function and
equations involved in formulating the GBR model are given in
the Supporting Information document. Figure S5 also shows the
tree-framework of GBR depicting the flow of information from
the input data set to the predictions.

2.5.2. Advantages.
• Ability to capture nonlinearity in the data sets efficiently.
• Local minima are avoided by the gradient descent

algorithms adopted by GBR. Gradient descent is a
powerful algorithm that helps the cost function (or
objective function) of the GBR to reach its minimum
point through a series of steps so that the predicted value
is as close as possible to the actual experimental value.

• As in the case of RF, no data transformation is required.
• Overfitting is greatly reduced by progressive error

correction in the trees.
• Extremely adaptable and versatile algorithm as GBR can

optimize on a variety of loss functions in addition to that
given in eq S4.

2.5.3. Hyperparameter Tuning. The tuning parameters for
GBR are the same as those for the RF algorithm. Figure 4 shows
the variation of prediction accuracy with “n_estimators” and
“max_depth” (for TBP + hematite in scenario 2 using the TGA
data at HRs of 5 and 10 °C/min combined as the calibration
set), the only difference being that GBR performance depended
more on “n_estimators” than on “max_depth”. This made sense
because the GBR algorithm trains one tree at a time rather than
all the trees parallelly, and adding more trees would affect the
performance to higher degrees. On the other hand, “max_depth”
affects the performance of RF model to a higher degree since the
effect of “n_estimators” is nullified by training all the trees
simultaneously. It should be kept in mind that the TGA data at
HRs of 15 and 20 °C/min were used as the validation set for
model prediction using the tuned hyperparameters. However,
after ∼20 trees, the prediction accuracy flattens out close to 1
and this tells us that too many trees above the optimal value are
also a problem, and we should be careful in choosing the number
of trees.Moreover, the training time also increases when a higher
number of trees are chosen for GBR due to the sequential order

in which they are trained. Hence, we choose 20 for
“n_estimators” and 3 for “max_depth”. There is a third parameter
called “learning rate” that is defined in eq S6 in the Supporting
Information, and this parameter is randomly initialized. Since
the aim of theMLmethod is to find the global minima and avoid
local minima, a lower value of learning rate (0.01) is chosen so
that irregular terrain of the cost function path is tackled. The
learning rate is essentially used in the gradient descent algorithm
and represents the step size for finding the minima in the cost
function. Furthermore, we employed stochastic gradient descent
algorithm, where the gradient is calculated using each data point
separately as opposed to the whole data set for batch gradient
descent algorithm.58 Choosing one observation at a time at
random avoids selecting redundant samples and helps reach the
global minima at a faster rate. Batch gradient descent is much
slower since the whole data set is used to compute the gradient,
which might result in data overload as well.
2.6. Support Vector Regression. 2.6.1. Applications of

SVR. SVM is another ML method that is based on supervised
learning and was first introduced as a classification technique by
Vapnik.59 Over the past 2 decades, SVM has gained immense
popularity in different areas of chemical engineering such as
catalysis of alkylation reactions60 and olefin conversions,61

predictions of natural gas hydrate temperatures,62 concen-
trations of chemical oxygen demand in aerobic granular reactors
for wastewater treatment,63 and pressure drops in slurry flows,64

as well as drug discovery through compound identification.65

The potential of SVR to predict complex, nonlinear, and
multidimensional data obtained from characterization instru-
ments such as TGA26 and infrared spectrometers61 have also
been explored by our coauthors with applications in e-waste
treatment and acid-catalyzed olefin oligomerization.

2.6.2. Kernel Trick. Though the initial algorithm of SVR was
catered toward data classification, regression and parameter
estimation functions can also be performed by tuning the
objective function (eq S8) and the constraints (eq S9)
accordingly. If the data in the calibration set is nonlinear in
nature, a kernel trick transforms the data to a higher dimension,
where it becomes linear. Following this, an optimal hyperplane
performs the regression or classification function according to
the objective function definition.28,66,67 Further details about the
discriminant function, minimization of the weight term, the
added constraints, and the regularization parameter are given in
the Supporting Information . In eq S7, Ø(xi) refers to the kernel
function that can be either linear, polynomial, sigmoid, or radial
basis function (RBF). Some previous works have indicated that
RBF and polynomial kernels are able to capture the nonlinearity
in the data much better than linear or sigmoid.68,69 Out of RBF
and polynomial kernels, RBF has been shown to give the best
results in the works of different researchers such as prediction of
CO concentrations in urban areas70 and monitoring of product
concentrations in propylene oligomerization.61 RBF has also
been shown to perform well over a range of varied data sets
depicting the physical and chemical properties of gasoline,
diesel, ethanol, macromolecules in crude oil, and resins using
vibrational spectroscopy.28 Furthermore, there is no limit to the
range of a polynomial kernel, whereas the RBF kernel falls
between 0 and 1. Moreover, the tuning of a polynomial kernel
requires two parameters, whereas RBF kernel requires only a
single parameter to be tuned, called the width, σ (eq S10 in
Supporting Information document). All of these factors
prompted us to choose the RBF kernel for the SVR model in
our work to compare with GBR and RF regression. In this way,
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the best possible outcomes from eachMLmodel were compared
to arrive at the best-performing method.
Since the number of variables/columns in the TGA data set is

less, the training time is also less when compared to a spectral
data set from infrared spectroscopy. Dimension reduction
techniques such as principal component analysis (PCA) would
be needed to reduce redundant information from a FTIR data
set.61 The RBF kernel given by eq S10 provides information on
the similarity or dissimilarity of the samples in the original data
set. The value of the kernel is closer to 1 if the samples are similar
and is closer to 0 and vice versa. The kernel width, after tuning,
determines whether the relationship between the inputs and
outputs is linear or nonlinear.61 Nonlinear data will lower the
value of σ and vice versa. The tuning process is described in
Supporting Information, and the regularization parameter and
kernel width values obtained for scenarios 1 and 2 are provided
in Section 2.6.4.

2.6.3. Advantages of SVR.
• Robust to outliers in the data.
• Much better than principal component regression and

partial least-squares regression (PLSR) techniques in
establishing nonlinear relationships between inputs and
outputs.28

• Gradient descent algorithm used in the SVR approach is
similar to the mountaineering problem, where it produces
a stable error gradient and converges to global
minima.29,71 Moreover, stochastic gradient helps the
algorithm to jump out of the local minima and reach the
global minima.

• A perfect balance is achieved between the complexity of
the SVR model and the minimization of the discriminant
function (eq S7) through structural risk minimization
principle (SRM). This principle essentially utilized a
regularization parameter (described in the following
section) to reduce the gap between prediction errors in
the calibration and validation data sets. This reduces
overfitting, which is further explained in Section 2.8.
Balabin and Lomakina28 suggested that empirical risk
minimization (ERM) onwhich ANNs are based are not as
robust as SRM. This makes SVRs more advantageous
than ANNs. ERM is basically parameter selection.

2.6.4. Tuned Hyperparameters in SVR. Table 2 provides the
values of the hyperparameters, namely, the regularization
parameter (C) and kernel width (σ). As mentioned in the
Supporting Information, the role of C (eq S8) is to magnify the
penalty of errors in the model predictions and increase the
tolerance of the model toward outliers. It helps in maximizing

the margin and balancing this with minimizing the error, which
is the overall goal of SVR itself. It helps us to achieve a trade-off
between model complexity and error in both the calibration and
validation data sets. We also notice that the kernel width values
are <5, which meant that the degree of nonlinearity between the
inputs and outputs is very high in the data set. The values of
regularization parameter tell us that the predictions did not
deviate too much from the experimental test values of the
validation data set since the penalty for the error was low. This
also meant that the SVR model exhibited low overfitting
tendencies.
2.7. MLR and PLSR. We have compared the results of the

nonlinear regression methods with a couple of linear regression
techniques such as OLS-based MLR and PLSR. Linear
regression is one of the simplest ML techniques where the
regression line is straight, and the model residuals (prediction
errors) are calculated based on the vertical distance from this
regression line. Hence, curved regions such as those exhibited
during thermal events in TGA (Figure 1a,b) would not be
predicted well. MLRs mean that there are multiple inputs
trained on a single output variable. Although it is not able to
handle nonlinear relationships well, MLR has been applied in
the prediction of selectivities and conversion rates in micro-
fluidic hydrocarbon oxidation72 as well as to predict oil yields
from plastic pyrolysis.32 PLSR is an improvement over the MLR
since it has the ability to handle correlations between the input
variables themselves. PLSR is based on the principle of
maximizing the covariance between the scores of the matrices
obtained upon applying PCA on the original data set. The only
parameter that needed to be chosen in PLSR was the number of
latent variables, which was chosen as 3 in our work. Three latent
variables explained ∼96% of the variance in the output variable
(mass remaining) for both TBP and TBP + hematite samples
under bothN2 andO2 environments. The single major drawback
of PLSR is that it is still a linear regression technique that is
unable to handle nonlinear relationships between inputs and
outputs, and this overrides its ability to handle multiple
correlations within the inputs. The theory of PLSR is well-
established in literature,73−76 and hence, a detailed description is
not provided here. Lastly, there was no parameter to be tuned for
the MLR method.
2.8.Model EvaluationMetrics.Two statistical parameters,

namely, RMSE and coefficient of determination (R2), were used
to measure the model performances in our work for the
reproduction of TGA data at different HRs. The RMSE is given
in eq 1 andR2 is given by eq 2, respectively. There are many ways
to calculate R2, and one of the ways is to obtain a direct linear
bivariate correlation between the experimental values in the
testing data set and the corresponding predicted values. R2 also
represents the explained variance, which is the variance of
experimental data points (SST in eq 2) minus sum of squared
residuals of the predicted model (SSE in eq 2). Ultimately, the
higher the value of R2, the higher the prediction accuracy of the
model. Second, the RMSE is the square root of the MSE, which
is the sum of all the residuals (errors) divided by n − k − 1,
where n and k are the number of data points (rows in the data
set) and input variables (number of columns in the data set
except the output variable), respectively. It is to be noted that as
the number of data points increases, n − k − 1 will be very close
to n − 1 or n, which is the case in our work.

Table 2. Values of the Regularization Parameter and RBF
Kernel Width in SVR Models for Scenarios 1 and 2a

scenario # HR (°C/min) σ C

1 5 2 4
10 4 5
15 3 8
20 1 3

2 5 and 10 3.5 6
15 and 20 2.5 6
5, 10, 15 3 5
10, 15, 20 5 3

aThe HRs for scenario 2 indicates the calibration set, i.e., on which
the SVR model was trained.
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where yi* and yi are the model-predicted and experimental
values, respectively. ymean is the mean of all the data points in that
output variable.
RMSE is generally defined for both the calibration and

validation data sets. The RMSE for the calibration data set is
referred to as RMSEC (error of calibration), and for the
validation data set, it is called RMSEP (error of prediction). If a
model is said to be ideally predicted, these two measures should
be equal. However, this does not hold true for real-world data
sets. The lower the gap between RMSEP and RMSEC, the
higher the generalizability, versatility, and adaptability of the
model to newer and “unseen” data sets.77 In this case, the
overfitting tendency would be lower. RMSEP usually tends to be
higher than RMSEC since the former measures the error in
newer data sets, which tend to be predicted with lower accuracy.
On the other hand, the higher the gap between RMSEP and
RMSEC, the higher the overfitting tendency of the model. Both
these values will be reported in this work in the Results and
Discussion section.

3. RESULTS AND DISCUSSION
3.1. Results for Scenario 1 under Pyrolysis Conditions.

Table 3 provides the R2 values of all three nonlinear ML models
(RF, GBR, and SVR) for the prediction of TGA data in pyrolysis
conditions under a nitrogen environment for both TBP and TBP
+ hematite samples at all four HRs employed in this work. It is
reiterated that a comparison with linear regression and PLSR has
also has also been made so as to establish a baseline for the
prediction accuracies. Note that these displayed values are for
the validation data set. The hyperparameters (“n_estimators”
and “max_depth”) for RF and GBR models were chosen as (10
and 7) and (20 and 3), respectively, as reasoned in the ML
methods section (2.4 and 2.5) previously. Furthermore, the
corresponding RMSEP values of the differentMLmodels at all 4

HRs for TBP and TBP + hematite samples are provided in
Figure 5a,b, respectively.

It is very clear from Table 3 that RF and GBR showed the best
performance among all of the ML techniques employed in this
work. Exceptional prediction accuracies of >0.99 were obtained
for the TGA data of both TBP and TBP + hematite samples at all
HRs. It is important to note that the training and testing
accuracies for the calibration and validation data sets of the all
the ML models were similar up to the third decimal for both
TBP and TBP + hematite samples, signifying the generalizability
of the ML models for TGA data. For TBP alone, both RF and
GBR gave the highest R2 of 0.999 for all HRs individually. This
same prediction accuracy was shown for the overall model as

Table 3. Comparison of the R2 Values Indicating Predictive Performances of All the ML Methods Applied to Train and Test the
TGA Data for Pyrolysis of TBP, and Its Combination with Hematite at the four HRs Useda

sample HR (°C/min) RF GBR SVR linear PLSRb

TBP 5 0.999 0.999 0.909 0.549 0.544
10 0.999 0.999 0.923 0.578 0.577
15 0.999 0.999 0.928 0.620 0.623
20 0.999 0.999 0.922 0.629 0.622
all 4 combined 0.999 0.999 0.917 0.581 0.583

TBP + hematite 5 0.999 0.998 0.916 0.521 0.520
10 0.983 0.972 0.828 0.600 0.601
15 0.996 0.990 0.843 0.376 0.376
20 0.999 0.995 0.944 0.642 0.642
all 4 combined 0.995 0.989 0.888 0.586 0.584

aThese values are for the validation sets. bPLSR is partial least-squares regression.

Figure 5.Comparison of the RMSEP values of all MLmodels at all four
HRs applied on the TGA data for the pyrolysis of (a) TBP samples and
(b) TBP + hematite samples. Each data point was predicted three times,
and hence, the respective standard errors are shown as error bars for
each point.
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well, which was constructed using the data set combining all four
HRs. For this master data set, the model was trained with 80:20
split for th calibration/validation sets. The R2 values of testing
for these overall models combining all 4 HRs are indicated in
bold and are highlighted in green in Table 3. For the TBP +
hematite samples, RF showed a prediction accuracy of 0.999 for
5 and 20 °C/min but the R2 values of the other two HRs still
remained >0.983. This was slightly higher than the R2 values
shown by GBR models on TBP + hematite samples when the
third decimal was considered. For 5 and 20 °C/min, GBR
showed R2 values of 0.998 and 0.995, respectively, which were
much higher than SVR and linear regression models. Though
the performances of GBR and RF were the same for TBP, RF
clearly outperformed GBR for TBP + hematite samples. Overall,
both the individual models on the HRs and their combined
models indicated a superior performance of RF regression over
all the other MLmethods employed in this work. We also notice
that when hematite was added to TBP, the prediction accuracy
of the best performing ML models such as RF, GBR, and SVR
slightly decreased. This can be attributed to the complexity in
composition introduced by Fe2O3 and its interactions with TBP.
This is clearly reflected in the TGA mass loss curves for TBP +
hematite in Figure 1a, where multiple thermal events were seen
as opposed to a single decomposition event in Figure 1b for TBP
alone. This was confirmed in the previous works on the
copyrolysis of TBP and hematite, which led to a complex
mixture of products such as aldehydes, alcohols, esters, aliphatic
alkanes, aliphatic alkenes, substituted aromatics, and phenolic
derivatives. On the other hand, pyrolysis of pure TBP consisted
of only 1,3,5-tribromo benzene and 2,4-dibromophenol, which
indicated the removal of −OH and 1 Br atom from TBP,
respectively. Similar prediction results using ML techniques for
TGA data were obtained in another work by our coauthors Ali et
al.,26 when Ca(OH)2 was copyrolyzed with TBBA, which is
another model compound for BFRs consisting of 2 units of TBP.
Though the performance of SVR was lower than those of RF

and GBR, it was still much higher than the linear regression
techniques such as MLR and PLSR. The performances of these
linear regression techniques were poor, with R2 values of ∼0.59
for both TBP and TBP + hematite samples at all HRs (Table 3).
This was because of the nonlinearity in the TGA data that can be
clearly seen in the mass loss curves in Figure 1a,b for TBP and
TBP + hematite, respectively. This implied that linear regression
techniques could not capture nonlinearity in the TGA data
effectively. It was also very interesting to note that the
performances shown by both MLR and PLSR were almost
identical in terms ofR2 and this is reflected further in Figure 5a,b,
which depict the RMSEP values across all ML methods for both
types of samples used in this work. The trend of the
performances of all the ML models is clear from the RMSEP
values, as there is a gradual rise in the lines for all HRs for both
types of samples, as seen in Figure 5. This translates to the fact
that as we move from RF and GBR regression trees to the linear
MLR and PLSR models, the prediction errors increase
significantly from <1 to ∼25 in TBP samples and <1 to ∼14
in TBP + hematite samples. Moreover, the errors shown by SVR
and linear regression models at all HRs were higher for the TBP
samples (Figure 5a) while those for the regression trees were
opposite, showing marginally higher prediction errors for the
hematite-added TBP samples (Figure 5b). Overall, it was clear
that RF outperformed all the other MLmodels at all HRs for the
TGA data on both types of samples obtained under a N2
environment. The order of performance for scenario 1 where

the ML models were trained with TGA data at both individual
and combined HRs consisting of 80% data points in the
calibration set and remaining 20% data points in the validation
set under pyrolysis (N2) conditions was as follows: RF > GBR >
SVR > MLR ∼ PLSR. This was confirmed based on both the
performance metrics used in this work, that is, R2 and RMSE.
3.2. Results for Scenario 2 under Pyrolysis Conditions:

Effect of Varying the Number of Data Points for Model
Training. As given in Figure 2, we have implemented all of the
ML models consisting of nonlinear and linear regression on the
TGA data of TBP and TBP + hematite separately for scenario 2.
This was different from scenario 1 in the number of data points
used for ML model training and validation, as follows:

(i) In scenario 2a, the MLmodels were trained using 2 sets of
HRs (for example, 5 and 10 °C/min with ∼28,000 and
∼21,000 observations for TBP + hematite and TBP,
respectively) and predicted on 15 and 20 °C/min with
∼11,000 and∼8000 observations for TBP + hematite and
TBP, respectively. Following this, the calibration set was
changed to 15 and 20 °C/min and predicted on 5 and 10
°C/min for both sets of samples as well. In summary, the
calibration and validation sets are interchanged between 5
and 10 and 15 and 20 °C/min to evaluate the prediction
ability of the model in different situations. Table 1
provides the number of observations of TGA data
available for each sample at each of the 4 HRs.

(ii) In scenario 2b, theMLmodels were trained using 3 sets of
HRs (for example, 5, 10, and 15 °C/min with ∼34,000
and ∼24,000 observations for TBP + hematite and TBP,
respectively), while predicting on 20 °C/min. Here, there
were ∼5000 and ∼3500 observations in the validation set
for TBP + hematite and TBP samples, respectively.
Similar to scenario 2a, this was also repeated with data
from 10, 15, and 20 °C/minHRs as the calibration set and
5 °C/min as the validation set. Here, there were 19,000
and 14,000 observations in the validation set for TBP +
hematite and TBP samples, respectively. This ensured
that the whole range of samples were covered for training
and testing, and theMLmodels were tested for robustness
by varying the calibration and validation data sets with the
ultimate objective of making the ML models more
versatile and generalizable.

3.2.1. Overall Best Predicting Method. The plots of R2 and
RMSEP for both TBP and TBP + hematite samples for scenario
2a and scenario 2b are provided in Figure 6 (TBP) and Figure 7
(TBP + hematite), respectively. In these figures, the HRs
correspond to the validation data sets on which the model was
predicted on. For example, the green line (scenario 2a�HR 15,
20 °C/min) corresponds to the R2 and RMSEP values when the
models were trained using 5 and 10 °C/min and tested on 15
and 20 °C/min HRs.
A number of interesting observations can be made from these

results. First of all, it is confirmed that RF was the best predicting
model, with GBR being a close second in most of the cases.
However, there was one exception in scenario 2a, for whichGBR
marginally outperformed RF by 0.02 units in R2 for both TBP
(Figure 6a) and TBP + hematite (Figure 7a) samples. The GBR
showed a slightly better prediction accuracy and lower error
when both 5 and 10 and 15 and 20 °C/minHRs were used as the
validation sets in scenario 2a. The overall trend in the
performance of the ML models corroborated with the results
shown in Section 3.1 for scenario 1. It can be clearly seen from
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Figures 6 and 7 that as the R2 values decrease from the decision
trees to the linear regression models, the RMSEP values
correspondingly increase. Furthermore, the prediction errors of
SVR in scenario 2b increased by 8-fold and 6-fold for both TBP
(Figure 6b) and TBP + hematite (Figure 7b) samples,
respectively, in comparison to RF and GBR techniques. The
RMSEP values of the linear regressionmodels (MLR and PLSR)
were 13−14-fold and 9−10-fold higher than those of RF and
GBR for TBP (Figure 6b) and TBP + hematite (Figure 7b)
samples, respectively, in scenario 2b.
Hence, for both scenarios 2a and 2b, the order of performance

in terms of highest to lowest R2 and lowest to highest RMSEP
was RF ∼ GBR > SVR > MLR ∼ PLSR with prediction
accuracies of RF and GBR reaching 0.999 for both types of
samples. Moreover, scenario 2a showed slightly worse results
than scenario 1 for RF and GBR, in terms of lower R2 and higher
prediction errors (RMSEP). However, scenario 2b showed
equal or better performance as compared to scenario 1. These
observations were specifically due to the lower number of
training data points in the calibration set for the ML models in
scenario 2a as compared to scenario 2b and scenario 1. Further
comparison of scenario 2a and 2b is provided in Section 3.2.3.

3.2.2. Influence of Hematite Addition to TBP on the
Performance of ML Methods. In Section 3.1 for scenario 1, we
saw that the prediction accuracy slightly decreased for TBP +
hematite samples compared to that of TBP alone. This was
attributed to the interactions between TBP and hematite,
leading to a mixture of products, and this further affected the
TGA curve at different temperatures. A direct result of this

interaction is the nonlinearity in the TGA curve, which arises
due to the two major thermal events, as detailed in Section 2.2.
The spread of these events over a range of temperatures (100−
180 and 280−410 °C) and the minor shifts in these temperature
ranges as the HRs varied might have affected the performances
of the ML models. Though this difference was lesser in scenario
1, this was more prominent in scenario 2a, especially when the
models were predicted on 15 and 20 °C/min (green line in
Figures 6 and 7). However, this did not have any effect for
scenario 2b, where 3 HRs were used as the calibration set and
predicted on 1 set. In fact, scenario 2b showed better
performance than scenario 1 for TBP + hematite samples for
all of the ML models. RF and GBR showed highest R2 values of
0.999, whileMLR and PLSR showedR2 values of 0.7 for scenario
2b. In scenario 1, the R2 values for the overall linear regression
model were lesser by 0.11 units (Table 3). Even the RMSEP
values of scenario 2b for all models on TBP + hematite were less
than scenario 1 by 1 or 2 units. It was also clear that the
performance of the ML models in scenario 2b was better for
TBP + hematite than for TBP alone.
On the other hand, it was very interesting to note that the

range of prediction errors (difference in RMSEP values between
linear regression and RF models) was doubled for TBP as
compared to that of TBP + hematite samples (Figures 6b and 7b,
respectively). This was also true for scenario 1, where the
RMSEP values for SVR and linear regression models for TBP

Figure 6. Comparison of (a) R2 and (b) RMSEP values of all ML
models on samples of TBP for scenario 2 with varying number of
training data points. Scenario 2a corresponds to training on two sets of
HRs and predicting on the other 2 sets, while scenario 2b corresponds
to training on three sets of HRs and predicting on the remaining single
set.

Figure 7. Comparison of: (a) R2 and (b) RMSEP values of all ML
models on samples of TBP + hematite for scenario 2 with varying
number of training data points. Scenario 2a corresponds to training on
two sets of HRs and predicting on the other 2 sets while scenario 2b
corresponds to training on three sets of HRs and predicting on the
remaining single set.
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were much higher than that of TBP + hematite samples. This
trend was also reflected in the R2 values as the linear regression
showed a steep decrease to 0.55 for TBP but only reduced to 0.7
for the TBP + hematite samples in both scenarios (Figures 6a
and 7a). This meant that though the performances for RF and
GBR were only slightly affected on the negative side by adding
hematite to the TBP samples, the performances of SVR and
linear regression improved for TBP + hematite. This implied
that the ML models could be used successfully for TBP +
hematite samples and were also adaptive to a varied number of
training points, apart from showing high prediction accuracies.
All this was in-line with the central objective of this paper,
implying that the use of the offline-TGA instrument could be
reduced and eventually eliminated through applying ML
approaches, leading to faster process times and lesser human
and experimental errors.

3.2.3. Comparison of Scenario 2a Versus 2b: Influence of
Number of Training Points. It can be clearly seen from Figures
7b and 6b that the green and orange lines are above the violet
and blue lines for all ML models. As indicated in the figures, the
former (green and orange) lines represent the RMSEP values of
scenario 2a, where the ML models were trained using TGA data
at two HRs and predicted on the remaining 2 HRs. The latter
(violet and blue) lines correspond to scenario 2b, where the ML
models were trained using 3 HRs and predicted on 1 HR data.
The larger the number of data points in the calibration set used
for model training, the lower the prediction error (RMSEP) and
higher the prediction accuracy (R2). The prediction accuracies
shown by RF and GBR for TBP + hematite samples were not
overly dependent on the sample sizes, as they showed R2 values
of >0.99 in scenarios 2b and 2a except for the case where data at
15 and 20 °C/min were used for prediction (green line in Figure
7a). Though RF and GBR showed the best performance for
scenario 2a on 15 and 20 °C/min as the validation set (green line
in Figure 7a), the R2 value dipped below 0.8 for TBP + hematite.
On the other hand, the prediction accuracies for TBP samples in
scenario 2a were lower than in 2b (Figure 6a) but still remained
>0.92 for the best-performing RF and GBR methods. For the
linear regression and SVR models in TBP, it was difficult to
clearly distinguish between the performances of scenarios 2a and
2b since the R2 and RMSEP values were very close to each other
(Figure 6a,b). The performances of the linear regression and
SVRmodels in TBP + hematite gave a clear picture that scenario
2b was better than scenario 2a. In summary, it can be stated that
all theMLmodels in scenario 2b outperformed those in scenario
2a for both types of samples, indicating that the number of
calibration data points can be a major factor in ML regression
model performance for TGA data in e-waste treatment.
3.3. Advantages, Limitations, and Challenges in the

ML Approach. Through the methods described in scenario 1
and scenario 2, the full range of our models were tested for their
prediction ability on various data sets of lower and higher HRs.
An 80:20 split was used in scenario 1 when the entire data set in
each HR was considered for calibration and validation. In
scenario 2, the number of calibration data points were varied and
the ML models were applied to predict on different “unseen”
data sets. The performances of the linear and nonlinear
regression models were compared in the following ways: (i) in
scenario 1, the performances of the ML models were compared
among themselves for each type of sample as well as between
TBP and TBP + hematite; (ii) in scenario 2, the performances of
the ML models were compared with each other for different
calibration and validation sets considering 2 and 3HRs together;

and (iii) the performances of all the ML models were compared
between scenarios 1 and 2 and also within scenario 2a and 2b so
that the total effect of the number of data points used for training
the ML models is seen.
Our results show that the decision tree-based models such as

RF and GBR work best for TGA data, and they are also able to
predict the entire data for different HRs than the ones they were
trained on. This suggests that the constructed models in this
work are robust, versatile, and can be generalized for application
in TGA data sets in order to remove the use of offline measuring
instruments. The advantages of our adopted approach in this
work are that it (i) is much quicker generation of mass loss
curves for different HRs than from the TGA instrument itself
(∼1/20th of the time taken for collecting experimental data),
(ii) has the potential for online monitoring of the copyrolysis of
BFRs (in PCBs present in e-waste) with various metal oxides for
the efficient removal and capture of bromine, (iii) will reduce the
environmental impact of e-waste and reduce the toxic emissions
of HBr, (iv) uses less physical equipment, which reduces
instrumental and human errors, (v) has adaptability of the best-
predicting ML models to large data sets of sizes >10,000 data
points and ability to deal with multidimensional and nonlinear
data, and (vi) has the adaptability of the best-predicting ML
models to different chemical environments such as inert N2 and
combustion conditions with O2. Section 3.4 reports the
prediction accuracies of the RF and GBR models along with
other techniques for the TGA data obtained under the O2
conditions. It could be seen that the performances of these
models were as good as the N2 conditions, and this showed the
versatility of the models to different chemical environments as
well. This work has indeed shown the potential to be extended to
complex, nonlinear data from other characterization techniques
such as spectroscopy and chromatography. The best-predicting
ML models in this work are based on decision trees and require
some hyperparameters to be tuned. However, the advantage is
that this takes very less time (<15 s) and only requires
parameters to be tuned. SVR requires an additional parameter
and did not perform as well as RF and GBR.
However, there are certain limitations and challenges

associated with the ML approach for data prediction. First of
all, the process of data arrangement and tidying is the most
crucial part of the entire process. The detailed process of tidying
and the functions used in Python are given in the Supporting
Information. Data from the laboratory equipment are never
perfect. It almost always contains noise, which needs to be
filtered out during the preprocessing step. Next, the raw data
from the instrument are messy and can contain missing values.
These must be corrected by “tidying” the data, which essentially
involves identifying the dependent (output) and independent
(input) variables, ensuring that each column is a unique
identifier, each row is a different trial, and the rows in the input
column correctly match with those in the output variables. In
essence, a tidy data set means that every row is an observation,
every column is a unique variable, and every cell has a single
value. All this was done completely using Python in our work
and is detailed in the Supporting Information document.
The next limitation is the dependence of the performances of

the ML models on the number of data points used for training.
The simple rule is that the more the data points, the better. The
data points correspond to the number of samples or
observations (rows) in the data set. TGA consists of numerous
data points since the HR is much smaller than the range of
temperatures explored. The higher the number of training points
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in the calibration set, the better the ML model is equipped to
predict the output for a new data set. We could see that RF and
GBR showed excellent prediction accuracies of >0.99 and even
reached 0.999 for both types of samples. The number of data
points used for training was seen as amajor challenge in the work
by Siddiquee et al.72 for predicting product selectivity for
hydrocarbon oxidation. They had only 10 observations in total,
which they split into calibration and validation sets equally and
also varied the data points for training similar to what we did
here. Their objective was not only predicting product selectivity
but also comparing the relative importance of a number of input
variables that influenced the output. In general, it is
recommended to have a minimum of 1000 data points to train
the ML model.34,69,78−80 Anything below that is seen as a major
limitation and will not give accurate results, or the results cannot
be trusted.
Another limitation of our work is the absence of real-time

testing of the best-predicting RF and GBRmodels, which will be
carried out in future. It will be a challenge to build a sensor that
will be integrated with the pyrolysis process in e-waste treatment
and will give the mass loss curves at different HRs. Real-time
testing also involves generating the TGA data online as the HR
and the chemical environment (N2 or O2 conditions) are
specified within the temperature range. Our work has provided
high confidence that this will be possible and will be successfully
carried out in the near future. A further challenge here will be the
interpretation of the mass loss curves and regions of thermal
degradation without human intervention. At this point, chemical
analysis and interpretation are not possible without a chemical
engineer or an expert in TGA analysis. However, a mapping
framework can be built using anotherML approach, in which the
mass loss temperatures and the corresponding chemical
interpretations are fed as inputs and outputs, respectively.
Choosing which ML models are suitable for a particular data

set is also another challenge in our approach. This requires
extensive literature review, knowledge of the ML models and
their principles of working, and sufficient trial and error as well.
The types of ML models that best suit a particular data set are
chosen based on the number of data points available, the type of
instrument, the expected nonlinearity that may be present in the
data, and the number of input and output variables. Ultimately,
we go with models that are easy to develop and implement,
robust, versatile, and efficient, have a history of being successful,
are able to establish nonlinear relationships, and take less time to
train.Models that are able to deal with nonlinear data also model
linear data very well, but the reverse is not true. Lastly, though
we saw that the ML models performed very well for the TGA
data under both N2 and O2 conditions, the challenge will
significantly increase when there is a reacting medium in a real-
time scenario. This will complicate the mass loss data even
further, bringing more nonlinearity to the curves and making
prediction difficult. The only solution to this is higher number of
data points for calibrating the ML models, and this will improve
prediction accuracy.
3.4. ML Performance for TGA Data under Combustion

Conditions.The performances of the MLmodels when trained
on the TGA data of TBP and TBP + hematite samples obtained
under the O2 environment were observed to be very similar to
that of the N2 environment, as previously discussed. A detailed
discussion for combustion data prediction is not carried out here
due to similarity of the results with pyrolysis conditions.
However, the prediction accuracies of TBP + hematite samples
for scenario 1 and scenario 2a, 2b with all 5 MLmodels are given

in Table 4. Again, it can be seen that the order of performance of
the ML models was: RF > GBR > SVR > MLR = PLSR. When

compared to the N2 environment, the performances of SVR and
linear regression were slightly better for combustion conditions,
and no particular reason could be attributed to this since the
nature of the data was similar. An important inference from this
observation would be that the best-predicting ML models (RF
and GBR) were not only able to capture nonlinearity and
multidimensionality in the TGA data but could also handle
interactions between the sample and the chemical gaseous
environment under which TGA was performed. This was
because the combustion data were also predicted with high
accuracy by the decision tree-based models, which showed
excellent R2 values of 0.999 for scenario 1 and scenario 2 (Table
4). We also noticed that the prediction accuracies in scenarios 2a
were slightly lower than those in scenario 1, and this was purely
because of the lower number of training data points used in
scenario 2a than in scenario 1 (Table 1). Interestingly, scenario
2b showed equivalent prediction accuracies for the RF and GBR
models with scenario 1 under the O2 conditions, as was the case
under the N2 conditions. Lastly, the performances of the ML
models in scenario 2b were higher than in scenario 2a since the
models were calibrated using TGA data from three sets of HRs
in scenario 2b as opposed to 2 sets in scenario 2a (Table 4). In
conclusion, we can confidently say that our ML models built in
this work are versatile and robust and are generalizable for
“unseen” data sets.

4. CONCLUSIONS
In this work, nonlinear and linear regression ML techniques
were applied on the data from TGA obtained for the copyrolysis
of TBP and hematite (Fe2O3). The data were obtained at four
different HRs of 5, 10, 15, and 20 °C/min under both pyrolysis
and combustion environments. Out of all the ML techniques
employed, decision tree-based RF regression showed the best
performance for predicting the TGA data under different
scenarios, that is, when all the HRs were combined in the
calibration set as well as when the number of data points used for
training were varied. GBR was a close second in terms of the
prediction ability for the TGA data in all of the scenarios
explored in this work. R2 values reached as high as 0.999 for both
RF and GBR models, which meant they could be successfully
used to replace the TGA instrument itself. Another key finding
was that the TGA data for the TBP + hematite samples were
predicted with slightly higher accuracy than those for TBP
samples alone. This showed the ability of RF and GBR in
capturing nonlinearity of the data effectively. SVR performed

Table 4.R2 Values of all MLModels for All Scenarios for TGA
Data Prediction of TBP + Hematite Samples under
Combustion Conditions

scenario #
HR

(°C/min) RF GBR SVR MLR PLSR

scenario 1 5 0.999 0.996 0.932 0.621 0.621
10 0.995 0.994 0.943 0.593 0.593
15 0.996 0.993 0.944 0.593 0.593
20 0.999 0.995 0.951 0.602 0.602

scenario 2a 5, 10 0.991 0.993 0.912 0.576 0.576
15, 20 0.982 0.982 0.889 0.555 0.555

scenario 2b 5 0.999 0.999 0.892 0.543 0.543
20 0.999 0.998 0.902 0.571 0.571
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much better than the linear regression models but could not
reach the level of RF or GBR. The performance of RF was
strongly established under both pyrolysis and combustion
environments, thus confirming the versatility and robustness of
the ML models under various conditions. Our work has shown
immense potential for onlinemonitoring of the pyrolysis process
in e-waste treatment and recycling. Furthermore, the general-
izability of the ML models could be extended to other types of
characterization techniques such as infrared spectroscopy and
chromatography. OurMLmodels have shown that the nonlinear
and complex relationships in the data from these techniques can
be predicted very well. Moreover, the removal of offline
measuring instruments facilitated by the ML models could be
useful in predicting product concentrations in a number of
chemical processes such as biomass conversions, catalytical
conversions of hydrocarbons and in sludge treatment. Online
predictions quicken the process and also reduce human and
instrument errors.

■ ASSOCIATED CONTENT
Data Availability Statement
In order to access all the predicted and experimental data along
with the python codes for all the nonlinear and linear ML
regressionmodels applied on the TGA data for construction and
validation, the readers are directed toward the Supporting
Information document, where we have provided the link to the
GitHub repository that hosts all the input, output data and codes
for tidying, hyperparameter tuning and prediction.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.3c07228.

Data cleaning description, software used for the
regression models which also contains the link to the
public repository (GitHub) for access to the codes and
the predicted TGA data for all the ML techniques used in
this work, and theory of RF, GBR, and SVR along with
details of their hyperparameter tuning (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Kaushik Sivaramakrishnan − Department of Chemical and
Petroleum Engineering, United Arab Emirates University, Al-
Ain 15551, United Arab Emirates; orcid.org/0000-0002-
6590-3265; Email: kausiva@uaeu.ac.ae

Authors
Labeeb Ali − Department of Chemical and Petroleum

Engineering, United Arab Emirates University, Al-Ain 15551,
United Arab Emirates

Mohamed Shafi Kuttiyathil − Department of Chemical and
Petroleum Engineering, United Arab Emirates University, Al-
Ain 15551, United Arab Emirates; orcid.org/0000-0001-
5624-3907

Vignesh Chandrasekaran − Department of Computer Science,
University of British Columbia, Vancouver V6T 1Z4, Canada

OdayH. Ahmed− Department of Physics, College of Education,
Al-Iraqia University, Baghdad 10071, Iraq

Mohammad Al-Harahsheh − Chemical Engineering
Department, Jordan University of Science and Technology,
Irbid 22110, Jordan

Mohammednoor Altarawneh − Department of Chemical and
Petroleum Engineering, United Arab Emirates University, Al-

Ain 15551, United Arab Emirates; orcid.org/0000-0002-
2832-3886

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.3c07228

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This study has been supported by the following grants: (i)
Startup Grant from United Arab Emirates University
(UAEU)�grant number 12N104, (ii) 2019 Abu Dhabi
Award for Research Excellence (AARE)�(by ASPIRE, part of
the Advanced Technology Research Council (ATRC, Abu
Dhabi, United Arab Emirates), grant number: 21N225-
AARE2019�ADEK�103).

■ REFERENCES
(1) Ali, L.; Shafi Kuttiyathil, M.; Altarawneh, M. Oxidative and
Pyrolytic Decomposition of an Evaporated Stream of 2,4,6-
Tribromophenol over Hematite: A Prevailing Scenario during Thermal
Recycling of e-Waste. Waste Manage. 2022, 154, 283−292.
(2) Zhao, L.; Lu, Y.; Zhu, H.; Cheng, Z.; Wang, Y.; Chen, H.; Yao, Y.;
Zhang, J.; Li, X.; Sun, Z.; Zhang, C.; Sun, H. E-Waste Dismantling-
Related Occupational and Routine Exposure to Melamine and Its
Derivatives: Estimating Exposure via Dust Ingestion and Hand-to-
Mouth Contact. Environ. Int. 2022, 165, 107299.
(3) Forti, V.; Baldé, C. P.; Kuehr, R.; Bel, G. The Global E-Waste

Monitor 2020: Bonn/Geneva/Rotterdam, 2020.
(4) Sahle-Demessie, E.; Mezgebe, B.; Dietrich, J.; Shan, Y.; Harmon,
S.; Lee, C. C.Material Recovery from ElectronicWaste Using Pyrolysis:
Emissions Measurements and Risk Assessment. J. Environ. Chem. Eng.
2021, 9 (1), 104943.
(5) Tian, X.; Xie, J.; Hu, L.; Xiao, H.; Liu, Y. Waste LEDs in China:
Generation Estimation and Potential Recycling Benefits. Resour.
Conserv. Recycl. 2022, 187, 106640.
(6) Hsu, E.; Durning, C. J.; West, A. C.; Park, A.-H. A. Enhanced
Extraction of Copper from Electronic Waste via Induced Morpho-
logical Changes Using Supercritical CO2. Resour. Conserv. Recycl. 2021,
168, 105296.
(7) Ghimire, H.; Ariya, P. A. E-Wastes: Bridging the Knowledge Gaps
in Global Production Budgets, Composition, Recycling and Sustain-
ability Implications. Sustain. Chem. 2020, 1 (2), 154−182.
(8) Altarawneh, M. Temperature-Dependent Profiles of Dioxin-like
Toxicants from Combustion of Brominated Flame Retardants. J.
Hazard. Mater. 2022, 422, 126879.
(9) Rene, E. R.; Sethurajan, M.; Kumar Ponnusamy, V.; Kumar, G.;
Bao Dung, T. N.; Brindhadevi, K.; Pugazhendhi, A. Electronic Waste
Generation, Recycling and Resource Recovery: Technological
Perspectives and Trends. J. Hazard. Mater. 2021, 416, 125664.
(10) Ali, L.; A.Mousa, H.; Al-Harahsheh,M.; Al-Zuhair, S.; Abu-Jdayil,
B.; Al-Marzouqi, M.; Altarawneh, M. Removal of Bromine from the
Non-Metallic Fraction in Printed Circuit Board via Its Co-Pyrolysis
with Alumina. Waste Manage. 2022, 137, 283−293.
(11) Altarawneh, M.; Saeed, A.; Al-Harahsheh, M.; Dlugogorski, B. Z.
Thermal Decomposition of Brominated Flame Retardants (BFRs):
Products and Mechanisms. Prog. Energy Combust. Sci. 2019, 70, 212−
259.
(12) Ali, L.; Kuttiyathil, M. S.; Ahmed, O. H.; Altarawneh, M.
Separation of Bromine and Hydrocarbons from Polymeric Constitu-
ents in E-Waste through Thermal Treatment with Calcium Hydroxide.
Sep. Purif. Technol. 2023, 307, 122836.
(13) Mousa, N. A.; Ali, L.; Kuttiyathil, M. S.; Mousa, H. A.;
Altarawneh, M. Exploring the Potential of Hematite as a Debromina-
tion Agent for 2,4,6-Tribromophenol. Chem. Eng. J. Adv. 2022, 11,
100334.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07228
ACS Omega 2023, 8, 43254−43270

43268

https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c07228/suppl_file/ao3c07228_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c07228/suppl_file/ao3c07228_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07228?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c07228/suppl_file/ao3c07228_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kaushik+Sivaramakrishnan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6590-3265
https://orcid.org/0000-0002-6590-3265
mailto:kausiva@uaeu.ac.ae
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Labeeb+Ali"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohamed+Shafi+Kuttiyathil"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5624-3907
https://orcid.org/0000-0001-5624-3907
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vignesh+Chandrasekaran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oday+H.+Ahmed"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohammad+Al-Harahsheh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohammednoor+Altarawneh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2832-3886
https://orcid.org/0000-0002-2832-3886
https://pubs.acs.org/doi/10.1021/acsomega.3c07228?ref=pdf
https://doi.org/10.1016/j.wasman.2022.10.017
https://doi.org/10.1016/j.wasman.2022.10.017
https://doi.org/10.1016/j.wasman.2022.10.017
https://doi.org/10.1016/j.wasman.2022.10.017
https://doi.org/10.1016/j.envint.2022.107299
https://doi.org/10.1016/j.envint.2022.107299
https://doi.org/10.1016/j.envint.2022.107299
https://doi.org/10.1016/j.envint.2022.107299
https://doi.org/10.1016/j.jece.2020.104943
https://doi.org/10.1016/j.jece.2020.104943
https://doi.org/10.1016/j.resconrec.2022.106640
https://doi.org/10.1016/j.resconrec.2022.106640
https://doi.org/10.1016/j.resconrec.2020.105296
https://doi.org/10.1016/j.resconrec.2020.105296
https://doi.org/10.1016/j.resconrec.2020.105296
https://doi.org/10.3390/suschem1020012
https://doi.org/10.3390/suschem1020012
https://doi.org/10.3390/suschem1020012
https://doi.org/10.1016/j.jhazmat.2021.126879
https://doi.org/10.1016/j.jhazmat.2021.126879
https://doi.org/10.1016/j.jhazmat.2021.125664
https://doi.org/10.1016/j.jhazmat.2021.125664
https://doi.org/10.1016/j.jhazmat.2021.125664
https://doi.org/10.1016/J.WASMAN.2021.11.025
https://doi.org/10.1016/J.WASMAN.2021.11.025
https://doi.org/10.1016/J.WASMAN.2021.11.025
https://doi.org/10.1016/j.pecs.2018.10.004
https://doi.org/10.1016/j.pecs.2018.10.004
https://doi.org/10.1016/j.seppur.2022.122836
https://doi.org/10.1016/j.seppur.2022.122836
https://doi.org/10.1016/j.ceja.2022.100334
https://doi.org/10.1016/j.ceja.2022.100334
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(14) Terakado, O.; Ohhashi, R.; Hirasawa, M. Bromine Fixation by
Metal Oxide in Pyrolysis of Printed Circuit Board Containing
Brominated Flame Retardant. J. Anal. Appl. Pyrolysis 2013, 103, 216−
221.
(15) Wu, H.; Shen, Y.; Harada, N.; An, Q.; Yoshikawa, K. Production
of Pyrolysis Oil with Low Bromine and Antimony Contents from
Plastic Material Containing Brominated Flame Retardants and
Antimony Trioxide. Energy Environ. Res. 2014, 4 (3), 105.
(16) Altarawneh, M.; Ahmed, O. H.; Al-Harahsheh, M.; Jiang, Z.-T.;
Dlugogorski, B. Z. A Kinetic Model for Halogenation of the Zinc
Content in Franklinite. Appl. Surf. Sci. 2021, 562, 150105.
(17) Ma, C.; Yu, J.; Chen, T.; Yan, Q.; Song, Z.; Wang, B.; Sun, L.
Influence of Fe Based ZSM-5 Catalysts on the Vapor Intermediates
from the Pyrolysis of Brominated Acrylonitrile-Butadiene-Styrene
Copolymer (Br-ABS). Fuel 2018, 230, 390−396.
(18) Liu, J.; Wang, H.; Zhang, W.; Wang, T.; Mei, M.; Chen, S.; Li, J.
Mechanistic Insights into Catalysis of In-Situ Iron on Pyrolysis ofWaste
Printed Circuit Boards: Comparative Study of Kinetics, Products, and
Reaction Mechanism. J. Hazard. Mater. 2022, 431, 128612.
(19) Ma, C.; Kamo, T. Enhanced Debromination by Fe Particles
during the Catalytic Pyrolysis of Non-Metallic Fractions of Printed
Circuit Boards over ZSM-5 and Ni/SiO2-Al2O3 Catalyst. J. Anal. Appl.
Pyrolysis 2019, 138, 170−177.
(20) Chang, J.; Pan, W.; Liu, X.; Xue, Q.; Fu, J.; Zhang, A. The
Formation of PBDFs from the Ortho-Disubstituted Phenol Precursors:
A Comprehensive Theoretical Study on the PBDD/Fs Formation from
2,4,6-Tribromophenol. Sci. Total Environ. 2020, 713, 136657.
(21) Oleszek, S.; Grabda, M.; Shibata, E.; Nakamura, T. Study of the
Reactions between Tetrabromobisphenol A and PbO and Fe2O3 in
Inert and Oxidizing Atmospheres by Various Thermal Methods.
Thermochim. Acta 2013, 566, 218−225.
(22) Terakado, O.; Ohhashi, R.; Hirasawa, M. Thermal Degradation
Study of Tetrabromobisphenol A under the Presence Metal Oxide:
Comparison of Bromine Fixation Ability. J. Anal. Appl. Pyrolysis 2011,
91 (2), 303−309.
(23) Rzyman, M.; Grabda, M.; Oleszek-Kudlak, S.; Shibata, E.;
Nakamura, T. Studies on Bromination and Evaporation of Antimony
Oxide during Thermal Treatment of Tetrabromobisphenol A
(TBBPA). J. Anal. Appl. Pyrolysis 2010, 88 (1), 14−21.
(24) Grabda, M.; Oleszek-Kudlak, S.; Rzyman, M.; Shibata, E.;
Nakamura, T. Studies on Bromination and Evaporation of Zinc Oxide
during Thermal Treatment with TBBPA. Environ. Sci. Technol. 2009, 43
(4), 1205−1210.
(25) Terakado, O.; Ohhashi, R.; Hirasawa, M. Bromine Fixation by
Metal Oxide in Pyrolysis of Printed Circuit Board Containing
Brominated Flame Retardant. J. Anal. Appl. Pyrolysis 2013, 103, 216−
221.
(26) Ali, L.; Sivaramakrishnan, K.; Kuttiyathil, M. S.; Chandrasekaran,
V.; Ahmed, O. H.; Al-Harahsheh, M.; Altarawneh, M. Prediction of
Thermogravimetric Data in BromineCaptured fromBrominated Flame
Retardants (BFRs) in e-Waste Treatment Using Machine Learning
Approaches. J. Chem. Inf. Model. 2023, 63 (8), 2305−2320.
(27) Ahmed, O. H.; Altarawneh, M.; Al-Harahsheh, M.; Jiang, Z.-T.;
Dlugogorski, B. Z. Recycling of Zincite (ZnO) via Uptake of Hydrogen
Halides. Phys. Chem. Chem. Phys. 2018, 20 (2), 1221−1230.
(28) Balabin, R. M.; Lomakina, E. I. Support Vector Machine
Regression (SVR/LS-SVM)�an Alternative to Neural Networks
(ANN) for Analytical Chemistry? Comparison of Nonlinear Methods
on near Infrared (NIR) Spectroscopy Data. Analyst 2011, 136, 1703.
(29) Pierna, J. A. F.; Baeten, V.; Renier, A. M.; Cogdill, R. P.;
Dardenne, P. Combination of Support Vector Machines (SVM) and
near-Infrared (NIR) Imaging Spectroscopy for the Detection of Meat
and Bone Meal (MBM) in Compound Feeds. J. Chemom. 2004, 18,
341−349.
(30) Marani, A.; Nehdi, M. L. Machine Learning Prediction of
Compressive Strength for Phase Change Materials Integrated
Cementitious Composites. Constr. Build. Mater. 2020, 265, 120286.

(31) Torres-Barrán, A.; Alonso, C.; Dorronsoro, J. R. Regression Tree
Ensembles for Wind Energy and Solar Radiation Prediction. Neuro-
computing 2019, 326−327, 151−160.
(32) Belden, E. R.; Rando, M.; Ferrara, O. G.; Himebaugh, E. T.;
Skangos, C. A.; Kazantzis, N. K.; Paffenroth, R. C.; Timko, M. T.
Machine Learning Predictions of Oil Yields Obtained by Plastic
Pyrolysis and Application to Thermodynamic Analysis. ACS Eng. Au
2023, 3 (2), 91−101.
(33) Wang, X.; Pan, P.; Li, J. Real-Time Measurement on Dynamic
Temperature Variation of Asphalt Pavement Using Machine Learning.
Measurement 2023, 207, 112413.
(34) Wan, Y.; Zeng, Q.; Shi, P.; Yoon, Y.-J.; Tay, C. Y.; Lee, J.-M.
Machine Learning-Assisted Optimization of TBBPA-Bis-(2,3-Dibro-
mopropyl Ether) Extraction Process from ABS Polymer. Chemosphere
2022, 287, 132128.
(35) Ali, L.; Kuttiyathil, M. S.; Al-Harahsheh, M.; Altarawneh, M.
Kinetic Parameters Underlying Hematite-Assisted Decomposition of
Tribromophenol. Arab. J. Chem. 2023, 16 (3), 104540.
(36) Osman, A. I.; Farrell, C.; Al-Muhtaseb, A. H.; Al-Fatesh, A. S.;
Harrison, J.; Rooney, D. W. Pyrolysis Kinetic Modelling of Abundant
PlasticWaste (PET) and in-Situ EmissionMonitoring. Environ. Sci. Eur.
2020, 32 (1), 112.
(37) Al-Harahsheh, M.; Altarawneh, M.; Aljarrah, M.; Rummanah, F.;
Abdel-Latif, K. Bromine Fixing Ability of Electric Arc Furnace Dust
during Thermal Degradation of Tetrabromobisphenol: Experimental
and Thermodynamic Analysis Study. J. Anal. Appl. Pyrolysis 2018, 134,
503−509.
(38) Jayashree, M.; Parthibavarman, M.; Prabhakaran, S. Hydro-
thermal-Induced α-Fe2O3/Graphene Nanocomposite with Ultrahigh
Capacitance for Stabilized and Enhanced Supercapacitor Electrodes.
Ionics 2019, 25 (7), 3309−3319.
(39) Larsen, J.; Goutte, C. On Optimal Data Split for Generalization
Estimation and Model Selection. Neural Networks for Signal Processing-
Proceedings of the IEEE Workshop, 1999; pp 225−234.
(40) Dubbs, A. Test Set Sizing Via Random Matrix Theory. 2021,
arXiv:2112.05977v4.
(41) Afendras, G.;Markatou,M.Optimality of Training/Test Size and
Resampling Effectiveness in Cross-Validation. J. Stat. Plann. Inference
2019, 199, 286−301.
(42) Nguyen, Q. H.; Ly, H.-B.; Ho, L. S.; Al-Ansari, N.; Van Le, H.;
Tran, V. Q.; Prakash, I.; Pham, B. T. Influence of Data Splitting on
Performance of Machine Learning Models in Prediction of Shear
Strength of Soil. Math. Probl Eng. 2021, 2021, 1−15.
(43) Pham, B. T.; Prakash, I.; Jaafari, A.; Bui, D. T. Spatial Prediction
of Rainfall-Induced Landslides Using Aggregating One-Dependence
Estimators Classifier. J. Indian Soc. Rem. Sens. 2018, 46 (9), 1457−1470.
(44) Dobbin, K. K.; Simon, R. M. Optimally Splitting Cases for
Training and Testing High Dimensional Classifiers. BMC Med. Genom.
2011, 4 (1), 31−38.
(45) Joseph, V. R. Optimal Ratio for Data Splitting. Stat. Anal. Data

Min. 2022, 15 (4), 531−538.
(46) Rajappan, R.; Shingade, P. D.; Natarajan, R.; Jayaraman, V. K.
Quantitative Structure-Property Relationship (QSPR) Prediction of
Liquid Viscosities of Pure Organic Compounds Employing Random
Forest Regression. Ind. Eng. Chem. Res. 2009, 48 (21), 9708−9712.
(47)Wang, J.; Song, Z.; Chen, L.; Xu, T.; Deng, L.; Qi, Z. Prediction of
CO2 Solubility in Deep Eutectic Solvents Using Random Forest Model
Based on COSMO-RS-Derived Descriptors. Green Chem. Eng. 2021, 2
(4), 431−440.
(48) Chen, J.; De Hoogh, K.; Gulliver, J.; Hoffmann, B.; Hertel, O.;
Ketzel, M.; Weinmayr, G.; Bauwelinck, M.; Van Donkelaar, A.;
Hvidtfeldt, U. A.; Atkinson, R.; Janssen, N. A. H.; Martin, R. V.; Samoli,
E.; Andersen, Z. J.; Oftedal, B. M.; Stafoggia, M.; Bellander, T.; Strak,
M.; Wolf, K.; Vienneau, D.; Brunekreef, B.; Hoek, G. Development of
Europe-Wide Models for Particle Elemental Composition Using
Supervised Linear Regression and Random Forest. Environ. Sci.
Technol. 2020, 54 (24), 15698−15709.
(49) Teh, S. K.; Zheng, W.; Lau, D. P.; Huang, Z. Spectroscopic
Diagnosis of Laryngeal Carcinoma Using Near-Infrared Raman

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07228
ACS Omega 2023, 8, 43254−43270

43269

https://doi.org/10.1016/j.jaap.2012.10.022
https://doi.org/10.1016/j.jaap.2012.10.022
https://doi.org/10.1016/j.jaap.2012.10.022
https://doi.org/10.5539/eer.v4n3p105
https://doi.org/10.5539/eer.v4n3p105
https://doi.org/10.5539/eer.v4n3p105
https://doi.org/10.5539/eer.v4n3p105
https://doi.org/10.1016/j.apsusc.2021.150105
https://doi.org/10.1016/j.apsusc.2021.150105
https://doi.org/10.1016/j.fuel.2018.05.077
https://doi.org/10.1016/j.fuel.2018.05.077
https://doi.org/10.1016/j.fuel.2018.05.077
https://doi.org/10.1016/j.jhazmat.2022.128612
https://doi.org/10.1016/j.jhazmat.2022.128612
https://doi.org/10.1016/j.jhazmat.2022.128612
https://doi.org/10.1016/j.jaap.2018.12.021
https://doi.org/10.1016/j.jaap.2018.12.021
https://doi.org/10.1016/j.jaap.2018.12.021
https://doi.org/10.1016/j.scitotenv.2020.136657
https://doi.org/10.1016/j.scitotenv.2020.136657
https://doi.org/10.1016/j.scitotenv.2020.136657
https://doi.org/10.1016/j.scitotenv.2020.136657
https://doi.org/10.1016/j.tca.2013.06.003
https://doi.org/10.1016/j.tca.2013.06.003
https://doi.org/10.1016/j.tca.2013.06.003
https://doi.org/10.1016/j.jaap.2011.03.006
https://doi.org/10.1016/j.jaap.2011.03.006
https://doi.org/10.1016/j.jaap.2011.03.006
https://doi.org/10.1016/j.jaap.2010.02.004
https://doi.org/10.1016/j.jaap.2010.02.004
https://doi.org/10.1016/j.jaap.2010.02.004
https://doi.org/10.1021/es802400y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es802400y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jaap.2012.10.022
https://doi.org/10.1016/j.jaap.2012.10.022
https://doi.org/10.1016/j.jaap.2012.10.022
https://doi.org/10.1021/acs.jcim.3c00183?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c00183?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c00183?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c00183?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C7CP06159E
https://doi.org/10.1039/C7CP06159E
https://doi.org/10.1039/c0an00387e
https://doi.org/10.1039/c0an00387e
https://doi.org/10.1039/c0an00387e
https://doi.org/10.1039/c0an00387e
https://doi.org/10.1002/cem.877
https://doi.org/10.1002/cem.877
https://doi.org/10.1002/cem.877
https://doi.org/10.1016/j.conbuildmat.2020.120286
https://doi.org/10.1016/j.conbuildmat.2020.120286
https://doi.org/10.1016/j.conbuildmat.2020.120286
https://doi.org/10.1016/J.NEUCOM.2017.05.104
https://doi.org/10.1016/J.NEUCOM.2017.05.104
https://doi.org/10.1021/acsengineeringau.2c00038?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsengineeringau.2c00038?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.measurement.2022.112413
https://doi.org/10.1016/j.measurement.2022.112413
https://doi.org/10.1016/j.chemosphere.2021.132128
https://doi.org/10.1016/j.chemosphere.2021.132128
https://doi.org/10.1016/j.arabjc.2023.104540
https://doi.org/10.1016/j.arabjc.2023.104540
https://doi.org/10.1186/s12302-020-00390-x
https://doi.org/10.1186/s12302-020-00390-x
https://doi.org/10.1016/j.jaap.2018.07.017
https://doi.org/10.1016/j.jaap.2018.07.017
https://doi.org/10.1016/j.jaap.2018.07.017
https://doi.org/10.1007/s11581-019-02859-z
https://doi.org/10.1007/s11581-019-02859-z
https://doi.org/10.1007/s11581-019-02859-z
https://doi.org/10.1016/j.jspi.2018.07.005
https://doi.org/10.1016/j.jspi.2018.07.005
https://doi.org/10.1155/2021/4832864
https://doi.org/10.1155/2021/4832864
https://doi.org/10.1155/2021/4832864
https://doi.org/10.1007/s12524-018-0791-1
https://doi.org/10.1007/s12524-018-0791-1
https://doi.org/10.1007/s12524-018-0791-1
https://doi.org/10.1186/1755-8794-4-31
https://doi.org/10.1186/1755-8794-4-31
https://doi.org/10.1002/SAM.11583
https://doi.org/10.1021/ie8018406?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie8018406?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie8018406?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.gce.2021.08.002
https://doi.org/10.1016/j.gce.2021.08.002
https://doi.org/10.1016/j.gce.2021.08.002
https://doi.org/10.1021/acs.est.0c06595?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c06595?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c06595?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/b811008e
https://doi.org/10.1039/b811008e
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Spectroscopy and Random Recursive Partitioning Ensemble Techni-
ques. Analyst 2009, 134 (6), 1232−1239.
(50) Lin, X.; Sun, L.; Li, Y.; Guo, Z.; Li, Y.; Zhong, K.; Wang, Q.; Lu,
X.; Yang, Y.; Xu, G. A Random Forest of Combined Features in the
Classification of Cut Tobacco Based on Gas Chromatography
Fingerprinting. Talanta 2010, 82 (4), 1571−1575.
(51) Ricardo, F.; Ruiz-Puentes, P.; Reyes, L. H.; Cruz, J. C.; Alvarez,
O.; Pradilla, D. Estimation and Prediction of the Air-Water Interfacial
Tension in Conventional and Peptide Surface-Active Agents by
Random Forest Regression. Chem. Eng. Sci. 2023, 265, 118208.
(52) De Miranda Ramos Soares, A. P.; De Oliveira Carvalho, F.; De
Farias Silva, C. E.; da Silva Gonçalves, A. H.; De Souza Abud, A. K.
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