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Chronic hepatitis B virus (HBV) infection remains a major health burden worldwide for
which there is still no effective curative treatment. Interferon (IFN) consists of a group of
cytokines with antiviral activity and immunoregulatory and antitumor effects, that play
crucial roles in both innate and adaptive immune responses. IFN-a and its pegylated form
have been used for over thirty years to treat chronic hepatitis B (CHB) with advantages of
finite treatment duration and sustained virologic response, however, the efficacy is limited
and side effects are common. Here, we summarize the status and unique advantages of
IFN therapy against CHB, review the mechanisms of IFN-a action and factors affecting IFN
response, and discuss the possible improvement of IFN-based therapy and the rationale
of combinations with other antiviral agents in seeking an HBV cure.
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INTRODUCTION

Hepatitis B virus (HBV) leads to acute and chronic liver diseases that cause over 780000 deaths
yearly worldwide and, currently, there are still more than 250 million chronically infected
individuals (1). Chronic hepatitis B (CHB) can progress to cirrhosis in up to 40% of untreated
patients, and there is an associated risk of decompensated cirrhosis and hepatocellular carcinoma
(HCC) (2). There are two main antiviral therapies: nucleos(t)ide analogs (NAs) and pegylated
interferon (IFN) a (PEG-IFN-a). NAs effectively control HBV replication but functional cure is
rare. PEG-IFN has a limited treatment course and the responders to IFN therapy may maintain a
virologic response after drug withdrawal, but its efficacy is still not satisfactory.

IFNs, a group of cytokines firstly described in 1957, are crucial modulators of the immune
response against various viruses as well as carcinoma. IFNs are grouped into three types: I (a, b, ϵ, k,
w), II (g), and III (l), based on the types of IFN receptors through which they signal. In humans,
IFN-a can be further categorized into 13 different IFN-a subtypes, which all signal through a shared
type I IFN heterodimeric receptor complex comprising two IFN-a receptor subunits (IFNAR1 and
IFNAR2), and these IFNAR receptor subunits are present on nearly all nucleated cells (3). The IFN-
IFNAR complex then activates the JAK-STAT pathway, resulting in the expression of dozens of
interferon-simulating genes (ISGs), that function as downstream effectors to control viral
replication and regulate immune responses. Here, we summarize the status of IFN-a-based
therapy in CHB patients, review the mechanisms of IFN action and factors affecting
responsiveness, and discuss the possible improvements in IFN therapy leading toward an HBV cure.
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ADVANTAGES AND MECHANISMS OF
IFN-a TREATMENT AGAINST CHB

For CHB patients, standard PEG-IFN monotherapy is
administered once weekly as a subcutaneous injection for 48
weeks, with advantages of finite treatment duration and
sustained virologic response. PEG-IFN resulted in a sustained
loss of hepatitis B e antigen (HBeAg) and nondetectable hepatitis
in 30% of patients (4). In HBeAg-negative CHB, combination
NAs plus PEG-IFN for 48 weeks is safe and could result in
greater treatment efficacy than NAs monotherapy (5–7). For
patients who achieve virologic suppression with NAs, such as
entecavir (ETV), switching to a finite course of PEG-IFN
significantly increases rates of HBsAg seroclearance to 20% of
those with baseline HBsAg < 1500 IU/ml (8). In contrast, HBsAg
seroclearance during NAs monotherapy is low (0-3% after
1 year) (9). Once the HBV genome was inactivated (“inactivate
carriers”), HBsAg seroclearance occurred in 40% of those
receiving PEG-IFN therapy (10, 11). In addition, treatment by
PEG-IFN has been suggested to be associated with a lower
incidence of HCC than NAs treatment in chronic HBV
infection (12).

IFN-a treatment can induce an antiviral state in hepatocytes
by regulating gene expression and protein translation, which
exert non-cytolytic antiviral effects in several stages of the HBV
life cycle.

First, HBV replicates its DNA genome through reverse
transcription of its viral pregenomic RNA (pgRNA), and
pgRNA is exported into the cytoplasm. In this process, the
expression of APOBEC3 cytidine deaminases can be strongly
enhanced by IFN-a simulation to induce extensive G-to-A
hypermutations and block HBV DNA replication (13, 14).
MX2, which is induced by IFN-a reduces HBV RNA levels by
downregulating synthesis of viral RNA (15). IFN-a can also
induce TRIM22, which binds to the HBV core promoter region
to inhibit its transcription (16). In addition, IFN-a simulates
ISG20, which binds to the HBV RNA terminal redundant region
to degrade pgRNA (17, 18). IFN-a can also induce MyD88 to
accelerate the degradation of pgRNA and promote the
expression of MxA to impede HBV RNA nuclear export (19).
Of note, HBV infection itself does not induce a significant ISG-
mediated response in the liver. Liver biopsy samples from
patients with HBV infection do not have higher levels of ISG
expressions than those from patients without HBV infection
(20). Moreover, recent in vitro studies suggested that HBV does
not affect the pattern of ISG expressions induced by polyinosinic:
polycytidylic acid (poly I:C) and Sendai virus (21). From this
perspective, exogenous IFN-a may play unique roles in
activating endogenous antiviral immune responses against HBV.

Second, once HBV delivers its 3.2kb rcDNA genome into the
nuclei of hepatocyte, rcDNA can be repaired into the fully
double-stranded covalently closed circular DNA (cccDNA)
(22), which serves as the template for transcription of all viral
mRNA. The HBV cccDNA is organized as a minichromosome in
the nuclei of infected hepatocytes with various host and viral
proteins, such as histone proteins and HBx (23, 24), and the
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intrahepatic cccDNA pool is not homogenous but exists as a
heterogeneous population of viral minichromosomes (25).
Accumulating evidence suggests that cccDNA transcriptional
activity is regulated by epigenetic mechanisms (26, 27). HBx
binds to the cccDNA and modifies the epigenetic landscape of
cccDNA. The cccDNA without HBx expression transcribes
significantly less pgRNA (28). Administration of IFN-a
resulted in cccDNA-bound histone hypoacetylation as well as
active recruitment to the cccDNA of transcriptional
corepressors, which included reduction of acetylated histone
H3 lysine 9 (H3K9) and 27 (H3K27) and increase in HDAC1
and Sirt1 in cccDNA minichromosomes. IFN-a treatment also
reduced the binding of the STAT1 and STAT2 transcription
factors to active cccDNA (29, 30). These modifications are
associated with reduced transcription of pgRNA and
subgenomic RNAs from the cccDNA minichromosome. In
addition to regulating cccDNA transcription, recent studies
suggested that IFN may induce degradation of cccDNA by
inducing APOBEC3A and ISG20 (31, 32). However, it remains
unclear how efficient such a mechanism is in the liver and
whether cccDNAs in distinct epigenetic states are similar or
differ in their sensitivity to IFN and IFN-induced antiviral
factors. It is more certain that IFN-a affects cccDNA
epigenetic modifications and represses cccDNA transcription,
which in turn reduces the replenishment of the cccDNA pool.
From this perspective, IFN-a can indirectly lead to subsequent
reduction of the cccDNA pool (33). In addition, IFN-a treatment
reduces the expression levels of HBx, which has been
demonstrated to promote the degradation of the SMC5/6
complex to enhance HBV replication (34, 35), and thus can
restore SMC5/6 expression, resulting in sustained cccDNA
silence in HBV-infected human liver chimeric mice (36).

HBV-related protein translation and HBV virion secretion
are two other processes that can be inhibited by certain ISGs. In
the Huh-7 cell-based HBV transfection model (the double-
stranded RNA (dsRNA)-dependent protein kinase) was
induced by IFN-a treatment and then, reduced the replication-
competent viral capsids, whereas the HBV transcripts, including
pgRNA, were not affected (37). In addition, the IFN-inducible
factor BST-2/tetherin was able to restrict HBV virion secretion.
Knockdown of tetherin attenuated the IFN-a-mediated
reduction of HBV virion release (38).

Beyond the scope of a single cell, cell-to-cell transmission of
viral resistance is also a mechanism for amplifying IFN-a-
induced antiviral response. IFN-a can induce the transfer of
resistance to HBV from nonpermissive liver nonparenchymal
cells (LNPCs) to hepatocytes via exosomes (39–41). Exosomes
from IFN-a-treated LNPCs are rich in molecules with antiviral
activity. Further studies suggest that macrophage exosomes
depend on T cell immunoglobulin and mucin receptor 1
(TIM-1), a hepatitis A virus receptor, to enter hepatocytes for
delivering IFN induced anti-HBV activity. Hepatocytes could
utilize two primary virus infection endocytic routes (clathrin-
mediated endocytosis (CME) and micropinocytosis) and
lysobisphosphatidic acid (LBPA) to permit exosome entry and
uncoating (42).
September 2021 | Volume 12 | Article 733364
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In addition to the direct anti-HBV effects, IFNs shape the
landscape of the immune system to coordinate various immune
cells. IFNs activated macrophages, natural killer cells, dendritic
cells (DCs), and T cells. All these activated immune cells secrete a
variety of cytokines, such as IL-1b, IL-6, TNF-a, and IFN-g.
Among them, IL-6, IL-12, and IL-15 by DCs were partially
induced by IFN-a/b and then modulated B and T cell
differentiation (Th1 polarization) and activation (43). IFN-I
signaling in plasmacytoid dendritic cells (pDCs) led to altered
CD69 and sphingosine-1-phosphate 4 (S1P4) receptor
expression, which, in turn, affected pDCs retention in lymph
nodes (44). IFN-a/b also enhance the antigen presenting
capacity of the APC by increasing MHC class II, CD86, and
CD40 expression. Moreover, IFN-a/b help neutrophil survival
and strengthen phagocytosis of macrophage and neutrophil.
HBV-specific CD8+ T cell are then propagated into the liver,
and destructed the infected hepatocytes by perforin-granzymes
or surface death receptors such as FAS/FASL, or both (45). This
is called “cytopathic mechanism”.

Notably, HBV infection in immunocompetent adults is
usually self-limited and transient. Over 90% of adults achieve
viral control with strong, polyclonal, and multi-specific adaptive
immune responses, such as specific CD8+ and CD4+ T cells,
against HBV components (46). During acute HBV infection,
most hepatocytes were reported to be infected by HBV.
Assuming most infected hepatocytes are destroyed through the
cytopathic mechanism, patients will have severe liver trauma,
which is rarely seen in the clinic. Thus, “non-cytopathic
mechanism” has been proposed to explain this (47). It is
believed that non-cytopathic mechanisms allow infected
hepatocytes to purge HBV replicative intermediates from the
cytoplasm and cccDNA from the nucleus without being killed.
Some clues support this notion. First, HBsAg-specific class I-
restricted cytotoxic T lymphocytes (CTLs) profoundly suppress
hepatocellular HBV gene expression in HBV transgenic mice by
a noncytolytic process. This regulatory effect of the CTLs is
initially mediated by IFN-a/b, IFN-g, and TNF-a, which greatly
exceeds their cytopathic effects in magnitude and duration (47,
48). Second, in acutely infected chimpanzees, HBV DNA was
shown to largely disappear from the liver and the blood long
before the peak of T cell infiltration (49). When knocking out one
of these key components (T cell, NK cell, Fas, IFN-g, IFN-a/b,
and TNF-a) in the mouse model, hydrodynamically injected
HBV-expressing plasmid persisted for at least 60 days, indicating
that each of these effectors contributes to eliminate HBV
components (50). In addition, proinflammatory cytokines such
as IL-6, IL-1b, IL-4, and TGF-b, which could be induced by IFN
show antiviral effects in different stages of HBV replication (51).
Nonetheless, the non-cytopathic mechanism has not been
adequately revealed because of the complexity of the liver
immune microenvironment and the lack of an appropriate
animal model.

In IFN-mediated control and clearance of HBV infection, it is
still uncertain to what extent the direct anti-HBV effects and
indirect immunomodulatory effects contribute to the IFN-a-
mediated antiviral action. In the HBV-infected humanized uPA/
Frontiers in Immunology | www.frontiersin.org 3
SCID mice model, PEG-IFN-a treatment can induce sustained
responsiveness in HBV-infected hepatocytes and trigger
substantial HBV antigen decline without the involvement of
immune cell response (52). Notably, a poor restoration of
immune cell functions was observed in the early phases of IFN
treatment (53), but changes in the inflammatory environment in
the liver take a long time to develop and cytotoxic CD8+ T cells
can be more readily expanded in the blood of treatment
responders than nonresponders, indicating the importance of
immune cells in HBV control and supporting a role of IFN-based
therapy in restoration of the immune system.

One study indicated that the absolute number of CD8+ T cells
were strikingly reduced, including CMV-specific CD8 T cells,
while CD56bright NK cells were potently expanded in a cohort of
HBeAg negative patients receiving PEG-IFN-a therapy.
Depleting CD8+ T cells may limit the efficacy of PEG-IFN-a,
on the other hand, CD56bright NK cells could enhance anti-HBV
efficacy (54). More understanding of the mechanisms of IFN-a
action will assist in the improvement of antiviral efficacy.
FACTORS THAT INFLUENCE
IFN RESPONSE

HBV has been called a ‘stealth’ virus since it does not induce a
significant IFN response in the liver. Besides, sustained off-
treatment response to exogenous IFN-a therapy can be
achieved only in a minority of CHB patients. Both host and
viral factors influence the IFN response during HBV infection
and IFN-a therapy (Table 1), some of which could be used as
predictors to improve the cost-effectiveness of IFN-a therapy.
VIRAL FACTORS

Low HBV viral and antigen load is important predictor favoring
IFN therapy. The viral load could influence both innate and
adaptive immune response pathways, which impairs the
response to IFN. In untreated CHB patients, intrahepatic gene
expression profiling showed a strong downregulation of the
antiviral effector, interferon stimulated genes, and pathogen
recognition receptor pathway compared with non-infected
controls (92). Although it remains controversial whether the
host could detect the virion and express innate and IFN genes
during HBV infection (20, 21, 93–97), HBV has developed
strategies to counteract the innate and IFN system. HBV
particles readily inhibit host innate immune responses upon
virion/cell interaction (98, 99). HBV polymerase (Pol) and HBx
could block multiple critical innate immune response pathways
in hepatocytes, including RIG-I, STING, TRIM22, and IRF (64,
65, 100). HBsAg could inhibit the induction of IFN-a and
proinflammatory cytokines such as IL-12, and HBeAg could
target and suppress activation of the TLR and related signaling
pathway (61, 62, 72). In addition, prolonged exposure of T cells
to high quantities of HBV-related antigen, especially HBsAg, is
September 2021 | Volume 12 | Article 733364
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the most likely reason for defective T-cell function in CHB
patients (101). The decline of viral load is beneficial for the
antigen removal, which allows T cells to rest from antigenic
stimulation and might be necessary for reconstitution of
functional T-cell responses (102, 103). Moreover, higher HBV
replication levels lead to a lower sensitivity of HBV to IFN-a in
PHH culture models (55), corresponding to the clinical
observation that higher viral load is associated with poor
response to IFN-a. In this regard, IFN-based therapy may
contribute to the restoration of the immune system by directly
suppressing antigen production in infected hepatocytes, in
addition to its immunomodulatory effect. On the other hand,
the magnitude of HBV-specific CD8+ T cell response is
primarily regulated by the initial antigen expression level, and
a recent study using the HBV hydrodynamic transduction model
suggests that IFN-I signaling may negatively regulated HBV-
specific CD8+ T cell responses by reducing early HBV antigen
expression (104). Notably, although HBV per se does not activate
IFN-I signaling during natural HBV infection, recent studies in
chimpanzees and humanized mouse models indicate that IFN-I
signaling induced by HCV infection could contribute to HBV
control (105, 106).

HBV genotype has been shown to influence the therapeutic
response to IFN-a therapy. In HBeAg-positive patients, the SVR
was significantly better in genotypes A and B patients than for
genotypes C and D that were treated with standard IFN-a (7). In
HBeAg-positive Asian populations, HBV genotype B patients are
more responsive to IFN-based therapy, whether PEG-IFN-a or
standard IFN-a therapy, whereas genotype C patients have a
higher likelihood of response to PEG-IFN-a compared to
standard IFN-a (107). In HBeAg-negative patients, PEG-IFN-a
was less effective in genotypes D and E with an SVR of around
20%. It should be noted that the prevalence of HBV genotypes
varies geographically. Although genotypes A to J have been
found (108), genotypes A, B, and C are most prevalent in
North America (109). Genotypes B and C are the dominant
types in East Asia (110). The above clinical statistical conclusions
may be influenced by other factors, such as race, lifestyle, and,
Frontiers in Immunology | www.frontiersin.org 4
even, infected period. For instance, genotype A2 was mostly
adult acquired whereas genotypes B and C were transmitted at
birth or in very early childhood in a large proportion of Asian
patients. The differential IFN response observed among these
patients might be in part a reflection of transmission-related
immune tolerance or host genetic polymorphisms, rather than
the viral genotypes. Nonetheless, HBV genotyping is useful in
patients being considered for IFN-a therapy (111). Since HBV
population in the host usually consists of remarkable genetic
heterogeneity and persists in the form of quasispecies, a number
of studies have indicated that HBV mutations at baseline might
affect IFN response (112, 113).
HOST FACTORS

A series of host factors have been identified as independent
predictors of response to IFN therapy including younger age,
female gender in HBeAg-negative CHB patients, and high serum
alanine transaminase (ALT) levels (≥2-5 upper limit of normal)
in both HBeAg-negative and positive patients (56, 76). Although
high serum ALT levels may indicate active immune status and
eradication of HBV, the mechanism behind its association with
response to IFN is worth exploring.

Host genetics is an important aspect affecting the responsiveness
to treatments. Interleukin (IL)28Bpolymorphismswere reported to
be associated with IFN-a treatment response in CHB patients. The
relationship between IL28B polymorphisms and response to PEG-
IFN-a therapy has also been investigated. Among HBeAg-positive
patients, three different single nucleotide polymorphisms (SNP) in
IL28B were investigated separately: rs8099917, rs12980275, and
rs8099917 (94–96). The polymorphisms in rs8099917 showed no
difference in response to PEG-IFN-a, while rs12980275 and
rs8099917 polymorphisms showed a difference in HBeAg
seroconversion rate. Among HBeAg-negative patients, one study
enrolled 101patients treatedwith PEG-IFN-a therapy for amedian
of 23 months (79). Most patients were middle-aged men with
HBV genotype D, average serum HBV DNA 6.0 log cp/mL, ALT
TABLE 1 | Viral and host factors that affect IFN response during HBV infection and IFN therapy.

Viral and host factors Role in modulating IFN response Ref

Viral Factors Viral load Lower viral load and antigen levels associate with higher responsiveness to IFN-a therapy (55, 56)
Genotype and mutants Gt A and B associates with better response to IFN treatment than gt D and C, respectively (57–60)

Precore and core promoter mutants limits the probability of response to IFN in HBeAg-positive CHB
Viral Counteractions HBsAg Inhibits with TLRs signaling and IFN-a induction in pDCs, and interfers with immune cell functions. (61–63)

Pol Inhibits RIG-I/TLR3/STING-IRF-IFN-I and IFN-I-JAK/STAT signaling in hepatocytes (64–66)
HBx Inhibits RIG-I/MAVS signaling (67–69)
HBc Inhibits IFN-inducible MxA and IFITM1 (70, 71)
HBeAg Inhibits TLR2 and TIR intracellular form and IFN signaling (72–74)
HBSP Inhibits IFN-I signaling (75)

Host Factors ALT Higher baseline ALT levels are predictive of better IFN responsiveness (56, 76)
Age and gender Younger age and female are predictive of better IFN responsiveness (77, 78)
Genetic polymorphisms SNPs of IL28B(IFN-l3), STAT4 and UBE2L3 could be associated with IFN response (79–87)
Liver stage and intrinsic sensitivity
to IFN

Staging of liver fibrosis, presence of liver steatosis may affect the IFN response (55, 78)

Anti-IFN antibodies May associate with non-response to IFN-a therapy (88–91)
September 2021 | Volume 12 | Artic
HBSP, hepatitis B spliced protein; IFITM1, interferon induced transmembrane protein 1; MxA, myxovirus resistance protein; RIG-I, retinoic acid-inducible gene I; TIR, Toll/IL-1 receptor;
STING, stimulator of interferon genes; IRF, interferon regulatory factor; MAVS, mitochondrial antiviral-signaling protein.
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136 IU/L, and 42% with cirrhosis. The proportion of patients with
CC, CT, and TT genotypes for IL28B rs12979860 were 47%, 42%,
and 11%, respectively. The rate of serumHBsAg clearance was 29%
inCC compared to 13% in non-CC. The C allele of rs12979860 was
associated with a higher rate of response in HBeAg-negative
patients with genotype D of HBV treated with PEG-IFN-a.
However, the power of IL28B polymorphisms to predict the
outcomes of IFN therapy remains limited because of various
SNPs, patients’ conditions, and duration of treatment.

Given that STAT4 is an important part of the JAK-STAT
pathway, SNPs in STAT4 could also be candidates that
predict the outcome of IFN-a therapy. Multiple genomic
loci, rs7574865, rs4274624, rs11889341, rs10168266, and
rs8179673, were shown to be associated with the risk of HBV
infections or predictors of PEG-IFN-a therapy (80). For
instance, in HBeAg-positive patients, the rs7574865 GG
genotype was significantly associated with a reduced sustained
virologic response (SVR, defined as HBeAg seroconversion and
HBV DNA level < 1000 cp/ml) compared with the GT/TT
genotype in patients receiving PEG-IFN-a (18.0% versus
41.2%, P = 9.74×10-5) or IFN-a (21.1% versus 37.2%, P = 0.01)
therapy (81). However, meta-analysis cannot validate the
correlation between STAT4 rs7574865 and HBV susceptibility
or natural clearance (82, 83). To sum up, transferring these
genomic approaches to clinical practice to improve pretreatment
patient selection is still challenging.

The occurrence of endogenous anti-IFN antibodies is another
factor that may be associated with non-response to IFN-a
therapy. During IFN therapy, IFN neutralizing antibodies
appeared in the serum of 7%~39% CHB patients (88–90).
Anti-IFN antibodies lowered the levels of serum IFN
bioactivity and may reduce downstream IFN signaling
pathways. For patients relapsing during or after IFN treatment,
the appearance of anti-IFN antibodies is likely to occur prior to
or at the same time as serum HBV DNA loss (88). However, a
study retrospectively suggested that the presence of anti-IFN
antibodies was not associated with non-response to PEG-IFN-a
therapy in CHB patients (91). In this regard, more studies are
required to identify the role of anti-IFN antibodies in the process
of HBV chronic infection. In addition, since IFN-a can be
divided into different subtypes, it would be interesting to know
whether the anti-IFN-a antibodies have subtype bias.

Several cell culture systems have been used to study HBV and
IFN interaction. For liver cell culture models, there are mainly
four types of systems: hepatoma cell lines (such as HepG2 and
Huh7) and related strains (such as HepG2-NTCP and
HepAD38), bi-potent liver progenitor cell line (HepaRG),
primary human hepatocytes (PHH) (114), and induced human
hepatocyte-like cells (such as HepLPCs and iHeps) (115–117).
Notably, the responses of IFN differ a lot among these models.
Among them, PHH is still regarded as the gold standard for
hepatic in vitro culture models and is more sensitive to IFN-a
than most hepatoma cell lines such as HepG2 or HepG2-NTCP.
The expression of ISGs after IFN-a stimulation is partially
incompetent in hepatoma cell lines. ISGs including GBP5,
GBP1, WARS, and CXCL10, which have been reported to be
Frontiers in Immunology | www.frontiersin.org 5
associated with the IFN-a response in patients (118, 119), are
either absent or weakly expressed in HepG2-NTCP cells treated
by IFN-a (55).
STRATEGIES TO IMPROVE THE
EFFICACY OF IFN-BASED THERAPY

Given the unique advantages of but relatively low response rates
to IFN therapy, there is an urgent need to improve its
efficacy (Figure 1).

Massive and persistent transcription of cccDNA contribute to
the inhibition of both innate and adaptive immune responses of
IFN. This may explain why the decrease in HBV viremia is not
seen earlier than 3-4 weeks into IFN therapy and takes several
months to reach its maximum (120). Thus, reduction of the viral
load before IFN therapy, including HBV DNA and antigen,
could be beneficial. Earlier studies showed that concomitant
administration of PEG-IFN and NAs resulted in higher rates
of on-treatment virologic response but had no advantage on
post-therapy response compared with PEG-IFN monotherapy
(57). Nonetheless, the addition of PEG-IFN to ongoing NAs
therapy or switching from NAs therapy to PEG-IFN
monotherapy in virally suppressed patients has shown better
outcomes. A prospective study in CHB patients with HBV DNA
fully suppressed by long-term NAs treatment showed that the
addition of PEG-IFN for a maximum of 96 weeks led to HBsAg
loss and cessation of NAs treatment in 6 of 10 patients, with no
relapse for 12-18 months of follow up (121). A matched-pair
study in HBeAg-positive patients who did not achieve HBeAg
seroconversion after NA monotherapy showed that PEG-IFN
combined with NA for another 48 weeks achieved more HBeAg
seroconversion than continuing NA monotherapy (44% versus
6%) (122). In a randomized open-label trial, switching to a finite
course of PEG-IFN significantly increased rates of HBeAg
seroconversion and HBsAg loss among patients who achieved
virologic suppression with NA therapy (8). Such a treatment
concept can provide limited but reliable optimization in current
IFN therapy.

Criteria identifying CHB patients who are suitable for IFN
therapy is another critical aspect of optimization. Simple and
clear guidance is needed to select specific groups of patients. At
present, the natural history of CHB has been schematically
divided into several phases, mainly focusing on the presence of
HBeAg, HBsAg, HBV DNA levels, ALT values, and eventually
the presence or absence of liver inflammation. Among them,
baseline high ALT and low HBV DNA are the IFN pretreatment
predictors of IFN response. Other than these classical
biomarkers, novel host factors may potentially help to predict
IFN treatment efficacy. For example, baseline quantitative anti-
HBc titer has been shown to be a predictor of Peg-IFN efficacy in
HBeAg-positive CHB patients (123). In another study, a
simplified scoring model composed of miR-210, miR-22, and
ALT was used to predict the virologic response of IFN therapy in
CHB (124). Environmental factors and individual differences
could cause a severe bias towards the accuracy of prediction.
September 2021 | Volume 12 | Article 733364
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FIGURE 1 | Predictors and strategies for improvement of the efficacy of IFN-based therapy for chronic hepatitis B.
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Moreover, some commonly used biomarkers, such as HBV DNA
and ALT, are time-dependent and the immune states of CHB
patients can hardly be reflected in a single test. For those falling
into an indeterminate gray area, an explicit decision is difficult.
In recent years, several studies indicate that some novel viral
parameters have a statistical relationship with the response of
IFN therapy, including serum HBV RNA (125, 126), hepatitis B
core-related antigen (HBcrAg) (127), and spliced HBV variants
(75), which are worthy of further studies in larger cohorts.

Optimization of IFN itself may, as well, be beneficial for
improving therapeutic effects (128, 129). PEG-IFN-a2 is one of
the most successful modified protein drugs to date. Grafting
IFN-a with PEG attenuates renal filtration, and thus, decreases
the rate of IFN clearance from serum. Compared with IFN-a2,
PEG-IFN-a2 not only reduces the number of injections but also
slightly improves the patient compliance and response rates
(130). It is worth noting that poly amino acids are a group of
unstructured repetitive segments of hydrophilic amino acids
whose biophysical properties are similar to PEG including PAS
polypeptides and elastin-like polypeptide. They have been widely
considered as potential alternatives to PEG for IFN modification
because of their excellent biodegradability and relatively simple
preparation procedures compared with pegylation (131, 132).
Apart from half-life extension, another modification aspect is the
reduction of severe side-effects of IFN-a by targeting hepatocytes
precisely because IFN-a acts on almost all human nucleated cells
evoking a complex reaction pattern when administered
systemically. Novel delivery methods that can improve
targeting are of particular interest. One strategy is utilizing the
metabolic characteristics of the liver by linking moieties with
liver tropism to IFN-a. For instance, high-density lipoproteins
(HDLs) are generated in the liver and remove cholesterol from
Frontiers in Immunology | www.frontiersin.org 6
peripheral tissues for delivery to hepatocytes. Anchoring IFN-a
to ApoA-I, the main protein component of HDLs, promoted
targeting to the liver, and therefore, showed increased
immunostimulatory properties and lower hematological
toxicity (133). In addition, orally administrable low molecular
weight agent which can mimic IFN activity has been shown to
suppress HBV replication and reduce cccDNA levels (134).

Increasing binding affinity between IFN-a and IFNAR has
proved to be an alternative direction to improve the IFN-a
biological efficacy. The key point is that a change in the affinity
for IFNAR translates differently among pleiotropic activities
induced by IFN-a, including antiproliferative, antiviral, and
immunomodulatory activities, which means higher therapeutic
effects and lower side effects compared with wild type IFN-a
(135). Patten and colleagues constructed the IFN-B9X series
consisting of 15 mutants by gene shuffling and point mutation
(136). All 15 mutants displayed increased antiviral potency
without obvious change in antiproliferative activity compared
with IFN-a2. A four-residue motif (FLFY) that overlapped with
the IFNAR1 binding site greatly improved the binding affinity
between IFN-B9X and IFNAR1 contributed significantly to this
phenotype (136). The pegylated form of IFN-B9X, which is
called IFN-R7025, has exhibited ~50-fold higher anti-HCV
activity compared to PEG-IFN-a2a, but only 2- to 10-fold
greater antiproliferative activity in vitro (137). However,
increasing binding affinity by gene shuffling or point mutation
may generate new potential T cell epitopes, which can eventually
hinder clinical transformation once it happens (138). IFN-b has
the highest binding affinities for both IFNAR1 and IFNAR2.
However, IFN-b is more toxic in patients, probably because of its
high antiproliferative activity (139), and thus might have a low
risk/benefit ratio. Among 13 human IFN-a subtypes, IFN-a2 is
September 2021 | Volume 12 | Article 733364
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most widely applied in clinical investigation and treatment.
However, there are studies revealing that other IFN-a subtypes
with higher binding affinity towards IFNAR1 may exert better
therapeutic effects in treating certain types of virus compared
with IFN-a2 (140). IFN-a subtype 14, one of the naturally
engineered variants, has been identified as the most potent
subtype against HBV. By comparing the regions between IFN-
a2 and IFN-a14 that account for the binding of IFN to IFNAR1,
a variant comprised of mutations D83E, T87I, Y90F, and R121K
(IFN-a2-EIFK), was constructed, which exhibited potent activity
in reducing HBs and HBeAg like IFN-a14. Moreover, a
concerted IFN-a and -g response in liver, which could be
efficiently elicited by IFN-a14, is associated with potent HBV
suppression (141).

In addition to type I IFN, type III IFNs, consisting of four
IFN-l subtypes (IFN-l1, IFN-l2, IFN-l3, and IFN-l4), has
been considered as an alternative in treatment of CHB (142).
IFN-III signals through a heterodimeric receptor composed of
IFN-l receptor-1 (IFNLR1) and interleukin-10 receptor subunit
beta (IL10RB) (143). IFNLR1 is expressed primarily on epithelial
cells, such as hepatocytes, and on select immune cells, including
pDCs and some B-lymphocytes, which may indicate better cell-
type specific activity (144, 145). One of the most impactful
findings about IFN-l is the strong association of IFN-l
polymorphisms with chronic HCV clearance during the acute
stage of infection and of achieving HCV cure with IFN-I-based
therapy in chronic infection (146). Unfortunately, the similar
association cannot be identified in HBV patients with high
confidence and good reproducibility among various studies
(147, 148). Although IFN-l can activate IFN signaling
pathways and lower HBV viral load, pegylated IFN-l1 was less
efficient than PEG-IFN-a2 24 weeks post-treatment because
fewer patients achieved HBeAg seroconversion (149).
PERSPECTIVE

All CHB patients are at risk of progression to cirrhosis and HCC.
Because of HBV cccDNA persistence and HBV DNA integration
into the host genome, it has not yet been possible to eradicate
HBV completely with available antiviral agents. Serum HBV
Frontiers in Immunology | www.frontiersin.org 7
DNA and HBsAg loss and sustained intrahepatic cccDNA
silencing could significantly reduce the risk of the above
hepatic diseases, which can be achieved in a few CHB patients
receiving IFN therapy. Given that chronic HBV infection leads to
immune injury and tolerance, IFN therapy, as an immune-based
approach, has unique mechanistic advantages, compared with
NAs, in antiviral immune modulation and may disrupt immune
tolerant states. Despite a variety of direct-acting antiviral agents
(DAA) targeting various steps of the HBV life cycle are
underway, such as HBV entry inhibitor, viral gene expression
inhibitor, capsid assembly modifiers, it seems that none of them
alone will effectively cure CHB patients in the foreseeable future
(150–152). A combination of IFN with these new DAAs may
have synergistic effects in CHB. Thus, as discussed above, IFN
therapy needs more novel and reliable biomarkers to improve
clinical management, and novel combination strategies, and
optimization of IFN itself, such as new IFN subtypes and
delivery methods, are anticipated to substantially increase the
efficacy of treatment for chronic hepatitis B.
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