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 Background: Autologous saphenous vein is the most common choice for coronary artery bypass grafting. This study was con-
ducted to identify and characterize differentially expressed genes (DEGs) induced by overexpressing DEPTOR 
in human saphenous vein endothelial cells (hsVECs) that might play roles in restenosis.

 Material/Methods: hsVECs isolated from the saphenous veins were transfected with DEPTOR overexpression vector and analyzed 
for mTOR expression. RNA was prepared from the cells and sequenced using high-throughput sequencing tech-
nology (RNA-Seq). The DEGs were analyzed based on enrichment scores in GO terms and KEGG pathways.

 Results: The cells had typical hsVEC morphology and characteristics based on the HE staining and immunohistochem-
ical and immunofluorescence assays. The expression of mTOR increased, and 102 genes were upregulated, 
and 409 genes were downregulated after DEPTOR overexpression. KEGG analysis showed that the DEGs were 
mainly enriched in 20 signal pathways, such as Focal adhesion and ECM-receptor interaction pathways. The 
DEGs were enriched in GO terms such as integrin binding and glycosaminoglycan binding. For cellular compo-
nents, GO analysis revealed that the DEGs were enriched in main axon, plasma membrane part, cell junction, 
and proteinaceous extracellular matrix. DEGs included many cytokines, such as bone morphogenetic protein-7, 
interleukin-8, interleukin-1b, and inhibin, which have important effects on vascular growth and inflammation.

 Conclusions: The overexpression of DEPTOR in hsVECs results in DEGs that are involved in cell proliferation and differenti-
ation, intercellular junction, and extracellular matrix receptor. These findings may provide valuable molecular 
information for improving venous permeability through manipulation of DEPTOR and related mTOR pathways.
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Background

Coronary artery bypass grafting (CABG) is a typical applica-
tion of arterial bypass grafting, and is mainly used to treat 
ischemic heart diseases [1]. Autologous saphenous vein is the 
most common choice for CABG [2]. However, restenosis rates 
at 1 year and 10 years after CABG have been reported to be 
15% and 50%, respectively [3]. Rapamycin is an inhibitor of 
mammalian target of rapamycin (mTOR). It inhibits cell pro-
liferation and is used to prevent restenosis[4–6]. mTOR has 
2 structurally and functionally different complexes – mTORC1 
and mTORC2 – and the latter is relatively insensitive to ra-
pamycin [7,8]. DEPTOR (domain-containing mTOR-interacting 
protein) is another common component of mTORC1 and m 
TORC2. DEPTOR also directly interacts with mTOR. It has been 
reported that the overexpression of DEPTOR downregulates 
the activity of mTORC1 and mTORC2 [9,10]. In addition, studies 
have reported that DEPTOR regulates the synthesis of fat [11]. 
Therefore, DEPTOR has great value in improving blood flow 
in the human saphenous vein. To better explore the molec-
ular roles of DEPTOR, high-throughput sequencing technique 
(RNA-Seq) was used to identify and characterize differentially 
expressed genes (DEGs) induced by DEPTOR. These findings 
may provide valuable molecular information and clues for im-
proving venous permeability through manipulation of DEPTOR 
and related mTOR pathways.

Material and Methods

Tissues and reagents

Human saphenous veins abandoned in CABG were obtained 
from the Surgery Department of the First Affiliated Hospital of 
Nanchang University. pcDNA3.1 was used to construct a DEPTOR 
expression vector pcDNA-DEPTOR. DMEM/F-12 (1: 1) (cat. no. 
1861453) and Opti-MEM (cat. no. 331985-062) were obtained 
from GIBICO, USA. Lipofectamine 3000 (cat. no. 18882752) 
was purchased from Invitrogen, USA. Human bFGF (cat. no. 
L10402031) and human EGF (cat. no. N10504031) were ob-
tained from Cyagen, USA. Mouse monoclonal antibody against 
GAPDH (1/2000, cat. no. TA-08), goat anti-mouse IgG (1/2000, 
cat. no. ZB-2305) and anti-rabbit IgG (1/2000, cat. no. ZB-2301) 
were purchased from Zsbio, Beijing, China. Rabbit polyclonal an-
tibody against mTOR (1/2000, cat. no. ab2732) was purchased 
from Abcam, USA. Rabbit antibodies against CD31 (1/2000, 
cat. no. BA2966), CD34 (1/2000, cat. no. PB0031) and vWF 
(1/2000, cat. no. bs-20428R) were purchased from BOSTER, 
Beijing, China. Conjugated goat anti-rabbit IgG Cy3 (1/2000, 
cat. no. CW0159S) was purchased from CWBIO, Wuhan, China. 
Rabbit anti-factor VII (1/1000, cat. no. bs-2974R) and HRP la-
beled anti-rabbit IgG (1/2000, cat. no. SV0002) were obtained 
from Bioss, Beijing, China.

Cell isolation and culture

hsVECs were isolated from the abandoned saphenous veins as 
described previously [12]. Six segments of 1 cm end segments 
of saphenous vein were taken from each of 3 patients and used 
together in the study. Briefly, a syringe with a lavage needle 
was inserted into one end of the vein. The venous cavity was 
washed repeatedly with PBS. Then, the washed vein was in-
jected with collagenase II (1 g/L) and incubated in a CO2 incu-
bator at 37°C for 15 min. The digest was collected and centri-
fuged at 4°C for 5 min. The cells were suspended and cultured 
in DMEM/F12 medium with 20% FBS, streptomycin and peni-
cillin mixture (cat. no. 1400, Solarbio, USA), hEGF(10µg/L), 1% 
insulin-transferrin-selenium (ITS) (cat. no. 41400-045, Gibco, 
USA), and hbFGF (3ng/mL) in a 5% CO2 incubator at 37°C.

HE staining

The tissue samples were fixed with formalin, embedded in 
paraffin, and sectioned into 4-µm-thick slices. The sections 
were baked, dewaxed, rehydrated, and stained with hema-
toxylin solution for 3 min. After differentiation with hydro-
chloric acid ethanol solution for 15 s, the slides were stained 
again for 15 s with eosin. The slides were viewed under a mi-
croscope after being sealed with neutral resin.

Immunohistochemistry

The cells were incubated with antibodies against factor VIII 
for 2 h at room temperature followed by incubation with ap-
propriate secondary antibodies for 1 h, and mounted with 
ProLong antifade reagent (Invitrogen). Diaminobenzidine (DAB) 
and hematoxylin chromogen (Dako, Glostrup, Denmark) meth-
od was used. The sections were subsequently examined by 
light microscopy.

Immunofluorescence

The cells were immobilized with 4% paraformaldehyde for 15 
min, cleared with 0.5%Triton X-100 at room temperature for 
20 min, and blocked with 5% BSA at 37°C for 30 min. The cells 
were stained with antibodies against CD31, CD34, or vWF at 
4°C overnight. Cy3 antibody was added drop-wise to cells and 
incubated at 37°C for 30 min. DAPI was used to stain the nu-
clei, and the slides were viewed under a fluorescence micro-
scope. The red fluorescence was from the proteins of interest, 
while the blue fluorescence was from the nucleus.

Transfection

hsVECs were grown to 90% confluence and transfected with 
pcDNA- DEPTOR using Lipofectamine 3000 according to the 
manufacturer’s instructions. pcDNA 3.1 was used as negative 
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control. Transfected cells were cultured in DMEM/F12 medi-
um with 20% FBS for 24 h and harvested for transfection ef-
ficiency assays.

Construction of Illumina sequencing library

Total RNA was isolated from the cells using the TRIzol re-
agent (Invitrogen). The concentration and purity of the RNA 
were detected using Nanodrop 2000 and the RNA integrity 
was checked using agarose gel electrophoresis. We used the 
Ribo-Zero Magnetic Kit and RNase R (EpiCenter, USA) to re-
move rRNA and linear RNA. The purified RNA was used to con-
struct a paired-end library using the TruSeq™ Stranded Total 
RNA Library Prep Kit (Illumina, USA) for sequencing on the 
Hiseq4000 platform according to the supplier’s instructions.

Sequence analysis

SepPrep and Sickkle software were used to test the quality of 
the reads. The reads were then aligned with the human ref-
erence genome [13] using Bowtie to generate the gene lists. 
Sequences from cells transfected with pcDNA- DEPTOR or trans-
fected with pcDNA 3.1 were compared to generate differen-
tially expressed genes (DEGs).

Enrichment analysis of DEGs

Goatools was used to enrich GO function (molecular function, 
cell components, biological processes) [14–16] and KOBAS was 
used to enrich KEGG Pway and annotate KEGG functions [17,18].

Statistical analysis

Data were expressed as means ±s.d. and were analyzed us-
ing the statistical analysis software SPSS 19.0. Student’s t-test 
was performed to compare the difference between groups and 
P<0.05 were considered as statistically significant.

Results

Characterization of primary hsVEC culture

The morphology of primary hsVEC culture is shown in Figure 1A. 
HE staining and immunohistochemical staining of endothelial 
factor VIII (Figure 1B, 1C) showed that the culture had typical 
features of hsVECs. In addition, endothelial markers were de-
tected in the cytoplasm (CD31), nuclei (CD34), and the junc-
tions between the cells (vWF) in the cultured cells (Figure 2), 
further demonstrating that they are hsVECs.

DEPTOR increased after transfection

When the cells were transfected with pcDNA- DEPTOR, the 
mRNA and protein levels of DETOR were significantly upregu-
lated (p<0.05, Figure 3).

A C

B Figure 1.  Culture and characterization of hsVEC. (A) Morphology 
of primary hsVEC culture. (B, C). HE staining and 
immunohistochemical staining of endothelial factor 
VIII.
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Figure 2.  Immunofluorescence assays of endothelial markers CD31, CD34, and vWF in cultured hsVECs.
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Figure 3.  Expression of mTOR mRNA and protein in hsVECs transfected with pcDNA- DEPTOR. (A) mRNA level. (B) Left panel: 
representative Western blots, right panel: relative protein levels. * Denotes significantly difference vs. control.
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Differentially expressed genes following DEPTOR 
overexpression

To obtain the gene expression profiles following DEPTOR over-
expression, RNA samples were isolated from hsVECs transfect-
ed with and without DEPTOR expression cassette. The samples 
were sequenced on an Illumina HiSeq 4000 platform. Quality 
control on the raw reads was performed using SepPrep and 
Sickkle. Analysis showed that there were 102 upregulated 
and 409 downregulated genes in DEPTOR-transfected cells 
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Figure 4.  MA-plots showing fold change in expression generated 
by comparing DEPTOR overexpression vs. empty 
vector. The plots were obtained using DEGseq package, 
where M (Y-axis) represents the intensity ratio log2 

(fold change), and A (X-axis) represents the average 
intensity.
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Figure 5.  KEGG pathway analysis of DEGs identified in in hsVECs. The ordinate is the KEGG Pathway entry; the abscissa is the ratio 
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as compared with empty vector-transfected cells (Figure 4, 
Supplementary Table 1, [Supplemantary/raw data available 
from the corresponding author on request]).

KEGG pathway analysis of DEGs

KEGG pathway analysis showed that the differentially expressed 
genes were mainly concentrated in 20 signaling pathways, such 
as Focal adhesion, ECM-receptor interaction, Cytokine-cytokine 
receptor interaction, and PI3K-Akt signaling pathway (Figure 5).

GO analysis of DEGs

GO enrichment analysis showed that in molecular functions, the 
DEGs were concentrated in integrin binding, glycosaminoglycan 
binding, RNA polymerase II regulatory region sequence-specif-
ic DNA binding, and extracellular matrix structural constituent 
(Figure 6A). In biological process, enriched GO terms included 
cell differentiation, anatomical structure morphogenesis, and 
system development (Figure 6B). For cellular components, GO 
analysis revealed that differentially expressed genes were en-
riched in GO terms such as main axon, plasma membrane part, 
cell junction, and proteinaceous extracellular matrix (Figure 6C).

Discussion

CABG uses autologous veins to bridge arteries, and the vein 
segment actually acts as an artery after the operation, which 
is thus subjected to different hemodynamic conditions and in-
creased partial pressure of oxygen after the surgery. In order 
to adapt to this change, the wall of the vein will gradually be-
come thicker and harder and the diameter expands [19,20]. It 
has been reported that if the vein was grafted back to the ve-
nous environment 2 weeks after CABG, there are restorative 
changes in the vein [21]. In this dynamic and reversible pro-
cess, the role of endothelial cells needs to be defined.

A B C

Figure 6.  GO term analysis of DEGs identified in in hsVECs. (A) Molecular functions. (B) Biological process. (C) Cellular components.

The main reason for the gradual hardening of the vein wall 
is the remodeling of matrix proteins [22]. These proteins are 
in the signal pathways identified in this study, such as Focal 
adhesion, Cell adhesion molecules, ECM-receptor interaction 
in KEGG enrichment and integrin binding, glycosaminoglycan 
binding, and extracellular matrix structural component in GO 
enrichment. In the Focal adhesion pathway, 20 DEGs were en-
riched; among them, 7 were upregulated and 13 were down-
regulated. In the Cell adhesion molecules pathway, 11 DEGs 
were enriched; among them, 3 were upregulated and 8 were 
downregulated. There were 11 common DEGs in the Focal ad-
hesion and ECM-receptor interaction pathways; therefore, all 
DEGs in the ECM-receptor interaction pathway are also DEGs 
in the Focal adhesion pathway. On the other hand, there was 
only 1 common DEG (integrin a4, ENSG00000115232) between 
the Focal adhesion and Cell adhesion molecules pathways.

DEPTOR is a component of mTORC1 and mTORC2, and mTOR 
regulates cell proliferation mainly through downstream PI3K-
Akt pathways [23]. In our work, these pathways were enriched 
with 19 DEGs; among them, 5 were upregulated and 14 were 
downregulated after DEPTOR overexpression. In addition, DEGs 
were identified in GO terms RNA polymerase II regulatory re-
gion sequence-specific DNA binding, suggesting that it has a 
regulatory role in gene expression. Cytokine-cytokine receptor 
interaction, TGF-beta signaling pathway, and NF-kappa B sig-
naling pathway are also significant signaling pathways that are 
associated with inflammatory response [24,25]. We found that 
3 upregulated and 14 downregulated DEGs were enriched in 
the Cytokine-cytokine receptor interaction pathway; 1 upregu-
lated and 5 downregulated DEGs were enriched in the TGF-beta 
signaling pathway; and 3 upregulated and 4 downregulated 
DEGs were enriched in the NF-kappa B signaling pathway. The 
Cytokine-cytokine receptor interaction and GF-beta signaling 
pathways had the same 4 DEGs: ENSG00000139269 (inhibin b 
E chain), ENSG00000101144 (bone morphogenetic protein 7), 
ENSG00000122641 (inhibin b A chain), and ENSG00000163083 
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(inhibin b B chain). These DEGs were all downregulated. The 
Cytokine-cytokine receptor interaction and NF-kappa B signal-
ing pathways also had the same 4 DEGs ENSG00000101017 
(CD40, upregulated) and ENSG00000125538 (interleukin-1 b), 
ENSG00000169429 (Interleukin-8) and ENSG00000111321 
(LTBR, all downregulated). Furthermore, more than half of the 
DEGs in the TGF-beta signaling pathway and NF-kappa B sig-
naling pathway were also found in the Cytokine-cytokine re-
ceptor interaction pathway. The enrichment of DEGs in these 
pathways suggest that DEPTOR may have a regulatory role 
in inflammatory response and release of cytokines in hsVEC.

It is worth mentioning that GO Term and KEGG signaling path-
ways of adipogenesis are not enriched, although DEPTOR is re-
lated to fat synthesis in hsVECs, suggesting that overexpres-
sion of DEPTOR does not change the expression patterns of 
genes related to adipogenesis.

Since more than 200 DEGs have been identified, these genes 
would provide candidates for functional analysis and lay a 
foundation for functional molecular and biological analysis.

Conclusions

Differentially expressed genes induced by overexpressing 
DEPTOR in hsVECs are involved in cell proliferation and differ-
entiation, intercellular junction, and extracellular matrix recep-
tor. These genes should be further explored for their biologi-
cal roles and may provide molecular cues to improve venous 
permeability through manipulation of DEPTOR and related 
mTOR pathways.
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