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Aim. To develop a population pharmacokinetic model for Uruguayan patients under treatment with cyclosporine (CsA) that can be
applied to TDM. Patients and Methods. A total of 53 patients under treatment with CsA were included. 37 patients with at least one
pharmacokinetic profile described with four samples were considered for model building, while the remaining 16 were considered
for the assessments of predictive performances. Pharmacokinetic parameter estimation was performed using a nonlinear mixed
effect modelling implemented in the Monolix® software (version 2019R1, Lixoft, France); meanwhile, simulations were
performed in R v.3.6.0 with the mlxR package. Results. A two-compartment model with a first-order disposition model
including lag time was used as a structural model. The final model was internally validated using prediction corrected visual
predictive check (pcVPC) and other graphical diagnostics. A total of 621 CsA steady-state concentrations were analyzed for
model development. Population estimates for the absorption constant (ka) and lag time were 0.523 h-1 and 0.512 h, respectively;
apparent clearance (CL/F) was 30.3 L/h (relative standard error ½RSE� ± 8:25%) with an interindividual variability of 39.8% and
interoccasion variability of 38.0%; meanwhile, apparent clearance of distribution (Q/F) was 17.0 L/h (RSE ± 12:1%) with and
interindividual variability of 53.2%. The covariate analysis identified creatinine clearance (ClCrea) as an individual factor
influencing the Cl of CsA. The predictive capacity of the population model was demonstrated to be effective since predictions
made for new patients were accurate for C1 and C2 (MPPEs below 50%). Bayesian forecasting improved significantly in the
second and third occasions. Conclusion. A population pharmacokinetic model was developed to reasonably estimate the
individual cyclosporine clearance for patients. Hence, it can be utilized to individualize CsA doses for prompt and adequate
achievement of target blood concentrations of CsA.

1. Introduction

With the approval of the calcineurin inhibitor cyclosporine
(CsA), a new era in immunopharmacology began. CsA, a
cyclic endecapeptide, has been the cornerstone of most
immunosuppressive regimens in organ transplantation. In
1994, the Food and Drug Administration (FDA) approved
tacrolimus, another calcineurin inhibitor as an effective alter-
native to CsA. Several studies have shown that the use of
tacrolimus is associated with a lower allograft rejection rate
compared with CsA [1–3]. However, CsA is still widely used

in clinical practice, predominantly for the prevention of
rejection in various types of organ transplantation, to prevent
graft-vs.-host disease after bone-marrow transplantation and
in a variety of inflammatory and autoimmune diseases such
as nephrotic syndrome, Crohn’s disease, psoriasis, and focal
segmental glomerulosclerosis [4–6].

CsA is extensively metabolized by CYP3A4 and to a
lesser extent by CYP3A5 in the liver and in the gastrointesti-
nal tract by CYP3A4, being the content of this enzyme much
higher in the intestine than in the liver [7, 8]. CsA is a sub-
strate of P-glycoprotein, and it is transported out of cells
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via this efflux pump [9]. Both CYP3A4 and Pgp content in
the intestine are responsible for its low bioavailability (27%).

Pharmacokinetic parameters of CsA are highly variable
and depend on factors such as age, sex, bodyweight, the
pathology of the patient, days posttransplantation, comedica-
tion, and creatinine clearance among others [10–13]. In addi-
tion, CsA has a narrow therapeutic index; thus, therapeutic
drug monitoring (TDM) provides a useful tool to individual-
ize therapy minimizing the probabilities of therapeutic
failure and toxicity. Trough concentrations (C0) are fre-
quently monitored for this purpose, although poor correla-
tion has been found between this observation and drug
mean exposure measured as the area under the concentration
versus time curve for the interdose interval at steady state
(AUCT), which has been recognized as the pharmacokinetic
metric that better predicts drug response. Several authors
proposed monitoring of 2-hour postdose concentration of
CsA (C2) as a better surrogate for CsA AUCT [14–17].

Over the past decade, the precision medicine paradigm
has emerged, largely supported by technological develop-
ments and advances in artificial intelligence methodologies.
Under this approach, different strategies are framed to aim
the individualization of medical treatments according to the
characteristics of the patient. Genetic information, bio-
markers, and phenotypic and psychosocial characteristics
are used to feed and develop tools that allow distinguishing
patients within a population with similar general clinical
conditions and therefore adapt the available therapeutic tools
to optimize the clinical outcome at the individual level. The
use of computational models to support decision-making
related to pharmacotherapy is therefore within the precision
medicine paradigm. This approach, which belongs to the
discipline of pharmacometrics, has been recently addressed
as model-informed precision dosing (MIPD) [18]. The goal
is to deliver the right dose, at the right patient, at the right
time. Its application in TDM supporting dose optimization
of narrow therapeutic index drugs has gained momentum
[19], allowing integration of available knowledge in a mathe-
matical model which is implemented to individualize dosing
regimens with a Bayesian forecasting framework [20].

Pharmacometric models provide population pharma-
cokinetic and pharmacodynamic information, estimating
parameters for the dose-dependent mean behavior of drug
exposition and effect throughout time and quantifying
different levels of variability, mainly the between-subject
(interindividual) and between-occasion (intraindividual)
variabilities. During model development, the effects of indi-
vidual variables on pharmacokinetic and pharmacodynamic
processes are recognized and quantified in a covariate model.
This framework offers a suitable tool to select the first dose in
a new patient according to specific characteristics. After-
wards, when drug concentrations are observed in that
patient, data can be included in the model using the pop-
ulation parameters to describe the prior distribution and
estimating individual parameters for further dose optimi-
zation [21].

The aim of this work was to develop and implement
prospectively in the clinical setting a population pharmacoki-
netic model for the Uruguayan patients under CsA treatment.

2. Material and Methods

2.1. Patients and Data Collection. Pharmacokinetic data from
CsA TDM routine of patients under treatment either for
organ transplantation or for autoimmune diseases was
retrospectively analyzed. Data CsA blood concentrations
taken from patients with at least one pharmacokinetic profile
described with four samples were included in the analysis for
model building. This group of patients was considered for the
training data set (Group A).

Data including sex, age, bodyweight, medication history,
dosage regimen, time of last dose, sampling time, informa-
tion on concomitant medications, and days posttransplant
was collected from the formulary provided by the TDM ser-
vice. Other relevant information coming from hematological
and biochemical tests was obtained from the hospital data-
base system.

After the model was developed and internally evaluated, a
prospective evaluation of the predictive capacity of the
model, in which the above described inclusion criteria were
met plus having at least two occasions of routine CsA blood
levels monitored over a period of 18 months, was imple-
mented (Group B).

2.2. Measurement of CsA Concentration. Steady-state blood
samples were withdrawn at 0, 1, 2, 3, and 4 hours postdosing
(C0-C1-C2-C3-C4) and placed into EDTA-containing tubes.
Determination of CsA concentrations in whole blood sam-
ple was performed using chemiluminescent microparticle
immunoassays (CMIA Architect®, Abbot Laboratories).
The lower limit of quantification was 12.5 ng/mL, and linear-
ity was proven up to 1500ng/mL. For concentrations located
at lower, middle, and higher portions of the calibration range,
coefficients of variation (precision) were 4.1, 2.6, and 0.56%,
respectively, and relative errors (accuracy) were 4.1, 8.3,
and 6.2%, respectively.

2.3. Pharmacokinetic Model of Cyclosporine. The population
pharmacokinetic analysis was conducted using a Monolix
Suite 2019R1 (Lixoft, France). Briefly, a nonlinear mixed
effect model was built through estimation by maximum like-
lihood using the Stochastic Approximation Expectation
Maximization (SAEM) algorithm [22].

Model development was guided with both metrics and
graphical diagnostics. Model data fit was assessed with the
Akaike information criterion (AIC) and inspection of good-
ness of fit plots. These included population observations
versus model predictions and population residuals and nor-
malized prediction distribution errors (NPDE) [23] versus
time and versus the dependent variable; last, TDM data has
a large variability in dose regimes, because these prediction-
corrected visual predictive checks (pcVPC) were utilized as
the main simulation-based diagnostic in model evaluation
[24]. In this graphic, both observed and simulated drug con-
centrations are normalized based on the typical population
prediction for the median time in the bin.

The uncertainty of the estimated population parameters
was calculated via the estimation of the Fisher Information
Matrix in Monolix.
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Different mammillary models were evaluated for the
disposition of CsA. Drug transference processes between
compartments in all cases were assumed to follow first-
order kinetics. Secondly, different modeling strategies for
the absorption phase were assessed: immediate first-order
absorption; lagged first-order absorption; parallel first-order
absorption and transit model absorption.

Interindividual variability (IIV) was tested for each
parameter as well as interoccasion variability (IOV) assum-
ing an exponential error model as described below:

θi = θpop ∗ eηi , ð1Þ

where θi is the parameter estimate for the subject i, θpop the
typical value for the population, and ηi the subject discrep-
ancy from θ assumed to be normally distributed with mean
zero and variance ω2. IIV and IOV were expressed as coeffi-
cients of variation (CV), estimated from the respective
variance as

CV = 100 ∗
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eω2 − 1

p
: ð2Þ

In the case of IOV, the implementation is analogue, being
the gamma of the standard deviation of the interoccasion
parameter discrepancies among all patients.

Residual variability was described with a combined error
model:

Yij = Cij ∗ 1 + e, propij
� �

+ e, addij, ð3Þ

where Yij stands for the observed concentration and Cij

denotes the predicted concentration for the subject i at time
j using the pharmacokinetic model described above. Residual
error for each observation has therefore an additive ðe, addijÞ
and a proportional ðe, propijÞ component which are normally

distributed with mean of 0 and variances σ, add2 and σ, pro
p2, respectively.

2.3.1. Covariate Analysis. Covariate analysis was performed
by stepwise forward inclusion and backward deletion,
assessing the impact of variables with pharmacological and
physiological plausibility of having an impact on CsA phar-
macokinetics. Initially, univariate likelihood ratio test was
performed for each variable, selecting for inclusion in a full
model those variables which reduced the objective function
value (OFV) by at least 3.84 points. This magnitude corre-
sponds to a 5% type I error for the null hypothesis of one
variable having no effect in the model fit, provided that the
compared models are nested. Backward deletion was per-
formed from the full model with a 1% type I error, preserving
in the final model those covariates for which exclusion
increased the OFV in at least 6.63 points.

The impact of continuous and categorical variables
over CsA absorption and disposition pharmacokinetic
parameters was assessed, including sex, bodyweight, age,
comedication, reason of treatment, and creatinine clear-
ance estimated from serum creatinine using the Cockcroft

and Gault [25] formula. The following general covariate
model was used:

TVPi = θn ×
Ym
i

Covm,i
Covref

� �βm+n

×
Yp
i

β
Covp,i
p+m+n: ð4Þ

Typical value of a model parameter (TVP) is described
as a function of m continuous (Covm) and p categorical
(Covp) covariates.

θn describes the typical parameter value for and ith indi-
vidual with covariate values (Covm,i) equal to the reference
values: (Covm,i = Covm,ref ) and (Covp,i = 0).

Covm,ref refers usually to the median value across the
studied population.

βm+n and βp+m+n are parameters quantifying the magni-
tude of the covariate parameter relationship.

2.3.2. Predictive Performance Assessment of the Model. Pre-
dictive performance was assessed with patients of Group B
as already described above. Simulations were performed in
R v.3.6.0 with the mlxR package [26] (Inria Xpop team, v.
3.2). The following procedure was conducted:

(1) CsA blood concentrations were simulated for the first
occasion of each patient using population pharmaco-
kinetic parameters obtained in the final model,
including patient characteristics for the covariate
model. Simulated data (CSim1) was compared to
experimental concentrations (Cexp1) determined by
immunoassay analysis

(2) Experimental concentrations of occasion 1 were then
used to obtain individual pharmacokinetic parame-
ters by maximum a posteriori estimation (MAP),
using the population distribution as prior informa-
tion. This allowed Bayesian forecasting for the CsA
whole blood levels in each patient, providing infor-
mation for dose optimization

(3) On the second occasion of each Group B patient, a
new experimental CsA concentration was obtained
at a specific postdosing time (Cexp2). The individual
parameters estimated in step 2 were used to simulate
whole blood CsA levels for this second occasion
(CSim2). Model performance was then assessed on
this second occasion by comparing Cexp2 and CSim2

(4) Experimental concentrations of occasions 1 and 2
were then used to update individual pharmacokinetic
parameters by MAP and predict CsA levels to sup-
port dose optimization. This process was repeated
for subsequent occasions

On each occasion, the relative individual prediction error
(rIPE) was calculated for all patients as it is shown in equa-
tion (5). The comparison of simulated and experimental con-
centrations was performed computing the relative bias with
the MPPE (Mean Percentage Predictive Error); meanwhile,
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precision was assessed with the relative Root Mean Squared
Prediction (rRMSE) [27]

rIPE =
CSimulatedi − CExperimentali

� �
CExperimentali

× 100, ð5Þ

MPPE =
1
n
〠
1

i

CSimulatedi − CExperimentali

� �
CExperimentali

2
4

3
5 × 100, ð6Þ

rRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
i

1

CSimulatedi − CExperimentali

� �2
CExperimentali

� �2
66664

77775
vuuuut × 100,

ð7Þ
where n represents the number of individuals.

These estimators allowed us to evaluate our model and
assess the impact of including new experimental data (priors)
to update patient individual parameters, comparing model
bias and between successive occasion precision not only to
evaluate the predictive performance of our model but also
to compare the successive occasions.

3. Results

A total of 621 CsA blood concentrations from 37 patients
(21 women, 16 men) were included for model building and
internal evaluation (training data set). The characteristics
of the patients are summarized in Table 1.

The parameters of the final model estimates are summa-
rized in Table 2. The model that best fits CsA observations
(AIC = 6204) was a two-compartment model including lag
time, with absorption (ka) and disposition first-order rate
constants. The model was parametrized in terms of ka, tlag

Table 1

Group A Group B

Total number of patients 37 16

Number of observations 621 81

Sex (male/female) 16/21 6/10

Age (mean ± SD, years) 34:4 ± 15:85 39:6 ± 19:4

BW (mean ± SD, kg) 64:3 ± 11:0 63:7 ± 11:1
Serum Cr (mean, mg/dL) 1.11 (5.9-0.2) 1.71 (7.71-0.36)

Cl Cr (mean, mL/min) 98.62 (417.92-13.79) 98.56 (240.05-7.71)

Reason of treatment

Kidney transplant (14)
Liver autoimmune diseases (1)
Bone marrow transplant (1)

Kidney autoimmune diseases (21)

Kidney autoimmune diseases (8)
Bone marrow transplant (2)

Kidney transplant (5)
Erythroblastopenia (1)

Table 2

Parameter Mean RSE (%) Description

Tlag (h) 0.512 8.48 Latency time

Ka (h-1) 0.523 8.54 Absorption constant

Cl/F (L/h) 30.3 8.25 Apparent clearance

βCL-CLCr -0.204 43.7 loglog CLið Þ = loglog CLpopð Þ + βCL−CLCr ∗ log
CLCri
CLCr

� �
+ ηCL

Q/F (L/h) 17.0 12.1 Apparent clearance of distribution

V1 (L) 17.9 17.6 Apparent volume of central compartment

V2 (L) 400 45.6 Apparent volume of peripheral compartment

IIV Cl (%) 39.8 16.6 Interindividual variability of Cl

IIV Q (%) 53.2 18.7 Interindividual variability of Q

IOV Cl (%) 38.0 8.53 Interoccasion variability of Cl

IOV tlag (%) 54.1 12.4 Interoccasion variability of tlag

IOV ka (%) 52.6 9.85 Interoccasion variability of ka

Ka-Cl -0.551 20.2 Correlation between Ka-Cl

Prop (%) 0.228 8.86 Proportional error

Add (ng/mL) 7.52 45.0 Additive error

AIC 6204 Akaike information criterion
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Figure 1: Continued.
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(latency time for drug absorption), apparent clearance (Cl/F),
apparent clearance of distribution (Q/F), apparent volumes
of distribution for the central (V1), and peripheral (V2) com-
partments. Goodness of fit plots and metrics for the final
model are shown in Figure 1.

In accordance with previous reports, we found high
intra- and intervariability for pharmacokinetic parameters
of CsA. For instance, Cl/F showed a high variability both
between subjects (IIV = 39:8%) and between occasions
(IOV = 38:0%).

Age, sex, bodyweight, comedication, and reason of
treatment were not identified as significant covariates for
CsA clearance. This model was constructed based on ret-
rospective data, and even though hematocrit has been
lately related as a covariate affecting CsA population phar-
macokinetic models, this information was not available in
clinical charts, so it was not included. Only creatinine
clearance showed to be a significant covariate for CsA
clearance in the PK model. The value of creatinine clear-
ance can be interpreted as a renal function evaluator.

The result obtained for βClCrea was -0.204, considering that
individual Cl can be calculated as

Cli = Clpop ∗
ClCreai
ClCreapop

 !βClCrea

, ð8Þ

where Cli is the individual clearance of CsA, Clpop is the
population clearance determined in the PK model,
ClCrea is the individual value of creatinine clearance,
ClCreapop is the mean value for creatinine clearance
(98.62mL/min), and βClCrea represents how this covariate
impacts on the parameter.

The predictive performance data set was comprised by 81
CsA whole blood concentrations from 16 patients included
in Group B (10 women, 6 men). The characteristics of the
patients are summarized in Table 1 as well.
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Figure 1: Diagnostic evaluations of the final model for CsA. (a) Observed CsA concentrations vs. population (left plot) and individual (right plot)
predictions. (b) Normalized prediction distribution errors (NPDE) vs. time in hours (top plot) and vs. individual prediction CsA concentrations
in ng/mL (bottom plot). (c) Prediction corrected visual predictive check (pcVPC) plot for the final model of CsA. Visual predictive check for the
final model of CsA shows the observed concentrations (ng/mL) of CsA (circles), the 50th percentile along with the 10th and 90th (blue lines)
percentiles of the observed concentration data, and the simulated confidence intervals for each percentile (red and blue shaded areas for the
median and 5th and 95th, respectively).

6 BioMed Research International



4. Discussion

In this study, a population pharmacokinetic model of CsA
was developed and its predictive performance tested, evaluat-
ing its routine implementation within the TDM service to
make corresponding dose adjustments, therefore maximizing
the probability of achieving effectiveness and safety in CsA
treatments.

Creatinine clearance was the only final significant covar-
iate in the model, showing a negative correlation with CsA
apparent clearance, i.e., a lower creatinine clearance is corre-
lated with an increase in CsA apparent clearance. Quantifica-
tion of this covariate effect is of particular importance to
quantify CsA elimination clearance under renal impairment
and make proper dose adjustments. Previous studies carried
out by our research group on the impact of cardiovascular
physiology in pharmacokinetic processes provide back-
ground to understand this effect, which we believe affects
CsA disposition [28, 29]. In fact, this relationship was pre-
viously described by Eiraldi et al. [30]. Although CsA
shows hepatic and intestinal metabolism, its elimination
clearance can be affected in renally impaired patients
because of a change in the relative blood flow fractions
being delivered to the different organs. When the renal
blood flow is affected, which can happen because of CsA
induced toxicity or CsA subtherapeutic levels in renal
transplanted patients, the fraction of blood flow directed
to the splanchnic region will increase, therefore increasing
CsA systemic clearance. This covariable was preferred to
postoperative days as it is considered that both parameters
share predictive and mechanistic information on CsA

clearance. Short after transplant, renal blood flow is negli-
gible and creatinine levels high; however, if transplantation
is successful, as hours go by, the organism accepts the
graft and the creatinine level normalizes, reducing blood
flow to the splanchnic region and therefore CsA clearance.
Nevertheless, grafts maintain acceptable function for a
period and functionality decreases with years and so does
creatinine clearance. Therefore, for higher POD creatinine
clearance decreases whereas CsA clearance increases due
to splanchnic elimination.

Model implementation in the clinical setting showed
interesting results. Predictions made for new patients using
only the population pharmacokinetic model and the individ-
ual creatinine clearance value were reasonably accurate for
C1 and C2, with MPPEs below 50%, which are not too high
if we consider CsA pharmacokinetic variability (both inter-
and intraindividual). The estimation of C0 gave poor results
for this first occasion. However, this improved remarkably
after the inclusion of patient data, reducing the MPPE from
98% to 27% at the third occasion. Accuracy indicators for
C1 also improved significantly for the second and third occa-
sions, whereas the prediction of C2 improved also for the sec-
ond and third occasions. Prediction improvement is shown
in Figure 2 as a boxplot of the rIPE vs. prior information.
Overall, the estimation of individual parameters using very
sparse patient data and the population distribution (the
model) are shown to significantly increase the accuracy of
model predictions. Considering again the high pharmacoki-
netic variability that CsA shows, the use of this approach pro-
vides a powerful tool to perform dose optimization in the
clinical setting.
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and 2 prior observations, respectively.
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Some limitations of the study should be addressed. In
our data, the reason of treatment (renal transplantation-
autoimmune disease) was analyzed as a covariate resulting
in nonsignificance on any of the pharmacokinetic parame-
ters; however, these results may not be conclusive as the
number of subjects on each group was small. The lack of
multiple validation cohorts is a limitation for the extrapola-
tion of model predictions in other populations; therefore,
the reported CYA population pharmacokinetic model should
be externally evaluated with target population before imple-
mentation in other centers.

5. Conclusions

A population pharmacokinetic model of CsA was developed
and implemented to predict CsA whole blood concentrations
in the clinical setting for patients under different dosage reg-
imens and pathologies. Creatinine clearance was shown to be
the only significant covariate able to partially explain the
interindividual variability observed in CsA apparent clear-
ance. The model showed a good predictive performance,
which significantly improved with the inclusion of individual
patient data and Bayesian forecasting, standing out as a
valuable tool to support dose optimization.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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