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The management of the Buruli ulcer (BU) in Africa is often accompanied by limited resources, delays in treatment, and macilent
capacity in medical facilities.These challenges limit the number of infected individuals that access medical facilities. While most of
themathematicalmodelswith treatment assume a treatment function proportional to the number of infected individuals, in settings
with such limitations, this assumptionmay not be valid. To capture these challenges, a mathematical model of the Buruli ulcer with
a saturated treatment function is developed and studied.Themodel is a coupled system of two submodels for the human population
and the environment.We examine the stability of the submodels and carry out numerical simulations.Themodel analysis is carried
out in terms of the reproduction number of the submodel of environmental dynamics. The dynamics of the human population
submodel, are found to occur at the steady states of the submodel of environmental dynamics. Sensitivity analysis is carried out on
the model parameters and it is observed that the BU epidemic is driven by the dynamics of the environment. The model suggests
that more effort should be focused on environmental management. The paper is concluded by discussing the public implications
of the results.

1. Introduction

TheBuruli ulcer disease (BU) is a rapidly emerging, neglected
tropical disease caused byMycobacterium ulcerans (M. ulcer-
ans) [1, 2]. It is a poorly understood disease that is associated
with rapid environmental changes to the landscapes, such
as deforestation, construction, and mining [3–6]. It is a
serious necrotizing cutaneous infection which can result in
contracture deformities and amputations of the affected limb
[3, 7]. Very little is known about the ecology of theM.ulcerans
in the environment and their distribution patterns [3]. The
survival of vectors or pathogens in the environment can be
directly or indirectly influenced by landscape features such as
land use and cover types. These features influence the vector
or pathogen’s ability to survive in the environment or to be
transmitted. In most cases the dynamics of the reservoirs
and vector depend on the management of the environment.
Research has shown that BU is highly prevalent in arsenic-
enriched drainages and farmlands [8, 9].

The lack of understanding of the dynamics of the inter-
actions of humans, the vectors, and the BU transmission
processes severely hinders prevention and control programs.
However, mathematical models have been used immensely
as tools for understanding the epidemiology of diseases and
evaluating interventions. They now play an important role
in policy making, health-economic aspects, emergency plan-
ning and risk assessment, control-programs evaluation, and
optimizing various detection methods [10]. The majority of
mathematicalmodels developed to date for disease epidemics
are compartmental. Many of them assume that the transfer
rates between compartments are proportional to the individ-
uals in a compartment. In an environment where resources
are limited and services lean, this assumption is unrealistic.
In particular, the uptake rate of infected individuals into
treatment programs is often influenced by the capacity of
health care systems, costs, socioeconomic factors, and the
efficiency of health care services. For BU, the number of
people admitted for treatment is limited by the capacity
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of health care services, the cost of treatment, distance to
hospitals, and health care facilities that are often few [11, 12].
BU treatment is by surgery and skin grafting or antibiotics. It
is documented that antibiotics kill M. ulcerans bacilli, arrest
the disease, and promote healing without relapse or reduce
the extent of surgical excision [13]. Improved treatment
options can alleviate the plight of sufferers. These challenges
all stem from the fact that many of the developing countries
have limited resources.

The demand for health care services often exceeds the
capacity of health care provision in cases where the infected
visit modern medical facilities. It will be thus plausible to use
a saturated treatment function to model limited capacity in
the treatment of the BU; see also [10, 14, 15].The transmission
of BU is driven by two processes: firstly, it occurs through
direct contact withM. ulcerans in the environment [1, 16, 17]
and, secondly, it occurs through biting by water bugs [18, 19].
In this paper we capture these two modes of transmission
and also incorporate saturated treatment.The aim is tomodel
theoretically the possible impact of the challenges associated
with the treatment and management of the BU such as
delays in accessing treatment, limited resources, and few
medical facilities to deal with the highly complex treatment
of the ulcer. We also endeavour to holistically include the
main forms of transmission of the disease in humans. This
makes the model richer than the few attempts made by some
authors; see, for instance, [18].

This paper is arranged as follows. In Section 2, we formu-
late and establish the basic properties of themodel.Themodel
is analysed for stability in Section 3. Numerical simulations
are given in Section 4. In fact, parameter estimation, sensitiv-
ity analysis, and somenumerical results on the behavior of the
model are presented in this section. The paper is concluded
in Section 5.

2. Model Formulation

2.1. Description. The transmission dynamics of the BU
involve three populations: that of humans, water bugs, and
the M. ulcerans. Our model is thus a coupled system of
two submodels. The submodel of the human population
is an (𝑆

𝐻
, 𝐼
𝐻
, 𝑇
𝐻
, 𝑅
𝐻
) type model, with 𝑆

𝐻
denoting the

susceptible humans, 𝐼
𝐻

those infected with the BU, 𝑇
𝐻

those in treatment, and 𝑅
𝐻
the recovered. The total human

population is given by

𝑁
𝐻
= 𝑆
𝐻
+ 𝐼
𝐻
+ 𝑇
𝐻
+ 𝑅
𝐻
. (1)

The submodel of the water bugs and M. ulcerans has three
compartments. The population of water bugs is comprised of
susceptiblewater bugs 𝑆

𝑊
and the infectedwater bugs 𝐼

𝑊
.The

total water bugs population is given by

𝑁
𝑊
= 𝑆
𝑊
+ 𝐼
𝑊
. (2)

The third compartment, 𝐷, is that of M. ulcerans in the
environment whose carrying capacity is 𝐾

𝑑
. The possible

interrelations between humans, the water bugs, and envi-
ronment are represented in Figure 1. As in [14, 15], we also
assume a saturation treatment function of the form

𝑓 (𝐼
𝐻
) =

𝜎𝐼
𝐻

1 + 𝐼
𝐻

, (3)

where 𝜎 is the maximum treatment rate. A different func-
tion can, however, be chosen depending on the mod-
elling assumptions. The function that models the interaction
between humans and M. ulcerans has been used to model
cholera epidemics [20] and the references cited therein. We
note that if BU cases are few, then 𝑓(𝐼

𝐻
) ≈ 𝜎𝐼

𝐻
, which is

a linear function assumed in many compartmental models
incorporating treatment; see, for instance, [21, 22]. On the
other hand, if BU cases are many, then 𝑓(𝐼

𝐻
) ≈ 𝜎 a constant.

So for very large values of 𝐼
𝐻
of the uptake of BU patients into

treatment become constant, thus reaching a saturation level.
The parameters 𝛽

1
and 𝛽

2
are the effective contact rates of

susceptible humanswith thewater bugs and the environment,
respectively. Here 𝛽

1
is the product of the biting frequency

of the water bugs on humans, density of water bugs per
human host, and the probability that a bite will result in an
infection. Also, 𝛽

2
is the product of density of M. ulcerans

per human host and the probability that a contact will result
in an infection. The parameter 𝐾

50
gives the concentration

of M. ulcerans in the environment that yield 50% chance of
infection with BU.

The dynamics of the susceptible population for which
new susceptible populations enter at a rate of 𝜇

𝐻
𝑁
𝐻
are given

by (4). Some BU sufferers do not recover with permanent
immunity; they lose immunity at a rate 𝜃 and become
susceptible again.The third termmodels the rate of infection
of susceptible populations and the last term describes the
natural mortality of the susceptible populations. In this
model, the human population is assumed to be constant over
the modelling time with the birth and death rate (𝜇

𝐻
) being

the same:
𝑑𝑆
𝐻

𝑑𝑡
= 𝜇
𝐻
𝑁
𝐻
+ 𝜃𝑅
𝐻
− Λ𝑆
𝐻
− 𝜇
𝐻
𝑆
𝐻
, (4)

whereΛ = 𝛽
1
𝐼
𝑊
/𝑁
𝐻
+𝛽
2
𝐷/(𝐾
50
+𝐷) and𝑓(𝐼

𝐻
) is a function

that models saturation in the treatment of BU.
For the population infected with the BU, we have

𝑑𝐼
𝐻

𝑑𝑡
= Λ𝑆
𝐻
− 𝑓 (𝐼

𝐻
) − 𝜇
𝐻
𝐼
𝐻
. (5)

Equation (5) depicts changes in the infected BU cases.
The first term represents individuals who enter from the
susceptible pool driven by the force of infectionΛ.The second
term represents the treatment of BU cases modelled by the
treatment function𝑓(𝐼

𝐻
).The last term represents the natural

mortality of infected humans.
Equation (6),

𝑑𝑇
𝐻

𝑑𝑡
= 𝑓 (𝐼

𝐻
) − (𝜇

𝐻
+ 𝛾) 𝐼
𝐻
, (6)

models the human BU cases under treatment. In this regard,
the first term represents themovement of BU cases into treat-
ment and the second term, with rates 𝜇

𝐻
and 𝛾, respectively,

represents natural mortality and recovery.
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Figure 1: A schematic diagram for the model.

For individuals who would have recovered from the
infection after treatment, their dynamics are represented by
the following equation:

𝑑𝑅
𝐻

𝑑𝑡
= 𝛾𝐼
𝐻
− (𝜇
𝐻
+ 𝜃) 𝑅

𝐻
. (7)

The first term denotes those who recover at a per capita rate
𝛾 and the second term, with rates 𝜇

𝐻
and 𝜃, respectively,

represents the natural mortality and loss of immunity.
The equations for the submodel of water bugs are

𝑑𝑆
𝑊

𝑑𝑡
= 𝜇
𝑊
𝑁
𝑊
− 𝛽
3

𝑆
𝑊
𝐷

𝐾
𝑑

− 𝜇
𝑊
𝑆
𝑊
, (8)

𝑑𝐼
𝑊

𝑑𝑡
= 𝛽
3

𝑆
𝑊
𝐷

𝐾
𝑑

− 𝜇
𝑊
𝐼
𝑊
. (9)

Equation (8) tracks susceptible water bugs. The first term is
the recruitment of water bugs at a rate of 𝜇𝑁

𝑊
. The second

and third term model the infection rate of water bugs by M.
ulcerans at the rate of𝛽

3
and the naturalmortality of thewater

bugs at a rate 𝜇
𝑊
, respectively. Equation (9) deals with the

infectious class of the water bug population. The first term
simply models the infection of water bugs and the second
term models the clearance rate of infected water bugs 𝜇

𝑊
,

from the environment.
Thedynamics ofM. ulcerans in the environment aremod-

elled by

𝑑𝐷

𝑑𝑡
= 𝛼𝐼
𝑊
− 𝜇
𝑑

𝐷

𝐾
𝑑

. (10)

The first term models the shedding of M. ulcerans by
infected water bugs into the environment and the second

term represents the removal ofM. ulcerans from the environ-
ment at the rate 𝜇

𝑑
.

System (4)–(10) is subject to the following initial condi-
tions:

𝑆
𝐻 (0) = 𝑆𝐻0 > 0, 𝐼

𝐻 (0) = 𝐼𝐻0 > 0,

𝑇
𝐻 (0) = 𝑇𝐻0 > 0, 𝑅

𝐻 (0) = 𝑅𝐻0 = 0,

𝑆
𝑊 (0) = 𝑆𝑊0 > 0, 𝐼

𝑊 (0) = 𝐼𝑊0, 𝐷 (0) = 𝐷0 > 0.

(11)

It is easier to analyse themodels (4)–(10) in dimensionless
form. Using the following substitutions:

𝑠
ℎ
=
𝑆
𝐻

𝑁
𝐻

, 𝑖
ℎ
=
𝐼
𝐻

𝑁
𝐻

, 𝜏
ℎ
=
𝑇
𝐻

𝑁
𝐻

, 𝑟
ℎ
=
𝑅
𝐻

𝑁
𝐻

,

𝑠
𝑤
=
𝑆
𝑊

𝑁
𝑊

, 𝑖
𝑤
=
𝐼
𝑊

𝑁
𝑊

, 𝑥 =
𝐷

𝐾
𝑑

, 𝑚
1
=
𝑁
𝑊

𝑁
𝐻

,

(12)

and given that 𝑠
ℎ
+ 𝑖
ℎ
+ 𝜏
ℎ
+ 𝑟
ℎ
= 1, 𝑠

𝑤
+ 𝑖
𝑤
= 1 and 0 ≤

𝑥 ≤ 1, system (4)–(10) when decomposed into its subsystems
becomes

𝑑𝑠
ℎ

𝑑𝑡
= (𝜇
𝐻
+ 𝜃) (1 − 𝑠

ℎ
) − 𝜃 (𝑖

ℎ
+ 𝜏
ℎ
) − Λ̃𝑠

ℎ
,

𝑑𝑖
ℎ

𝑑𝑡
= Λ̃𝑠
ℎ
−

𝜎𝑖
ℎ

1 + 𝑁
𝐻
𝑖
ℎ

− 𝜇
𝐻
𝑖
ℎ
,

𝑑𝜏
ℎ

𝑑𝑡
=

𝜎𝑖
ℎ

1 + 𝑁
𝐻
𝑖
ℎ

− (𝜇
𝐻
+ 𝛾) 𝜏

ℎ
,

(13)
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𝑑𝑖
𝑤

𝑑𝑡
= 𝛽
3
(1 − 𝑖
𝑤
) 𝑥 − 𝜇

𝑊
𝑖
𝑤
,

𝑑𝑥

𝑑𝑡
= �̃�𝑖
𝑤
− 𝜇
𝑑
𝑥,

(14)

where �̃� = 𝛼𝑁
𝑊
/𝐾
𝑑
, Λ̃ = 𝛽

1
𝑚
1
(𝑁
𝑊
, 𝑁
𝐻
)𝑖
𝑤
+ 𝛽
2
𝑥/(�̃� + 𝑥),

and �̃� = 𝐾
50
/𝐾
𝑑
. Given that the total number of bites made

by the water bugs must equal the number of bites received by
the humans,𝑚

1
(𝑁
𝑊
, 𝑁
𝐻
) is a constant; see [23].

3. Model Analysis

Ourmodel has two subsystems that are only coupled through
infection term. Our analysis will thus focus on the dynamics
of the environment first and then we consider how these
dynamics subsequently affect the human population.We first
consider the properties of the overall system before we look
at the decoupled system.

3.1. Basic Properties. Since the model monitors changes in
the populations of humans and water bugs and the density
ofM. ulcerans in the environment, the model parameters and
variables are nonnegative.The biologically feasible region for
the systems (13)-(14) is in R5

+
and is represented by the set

Γ = { (𝑠
ℎ
, 𝑖
ℎ
, 𝜏
ℎ
, 𝑖
𝑤
, 𝑥) ∈ R

5

+
| 0 ≤ 𝑠

ℎ
+ 𝑖
ℎ
+ 𝜏
ℎ
≤ 1,

0 ≤ 𝑖
𝑤
≤ 1, 0 ≤ 𝑥 ≤

�̃�

𝜇
𝑑

} ,

(15)

where the basic properties of local existence, uniqueness,
and continuity of solutions are valid for the Lipschitzian
systems (13)-(14).Thepopulations described in thismodel are
assumed to be constant over the modelling time.

We can easily establish the positive invariance of Γ. Given
that 𝑑𝑥/𝑑𝑡 = �̃�𝑖

𝑤
− 𝜇
𝑑
𝑥 ≤ �̃� − 𝜇

𝑑
𝑥, we have 𝑥 ≤ �̃�/𝜇

𝑑
. The

solutions of systems (13)-(14) starting in Γ remain in Γ for all
𝑡 > 0. The 𝜔-limit sets of systems (13)-(14) are contained in
Γ. It thus suffices to consider the dynamics of our system in
Γ, where the model is epidemiologically and mathematically
well posed.

3.2. Positivity of Solutions. For any nonnegative initial condi-
tions of systems (13)-(14), the solutions remain nonnegative
for all 𝑡 ∈ [0,∞). Here, we prove that all the stated variables
remain nonnegative and the solutions of the systems (13)-(14)
with nonnegative initial conditionswill remain positive for all
𝑡 > 0. We have the following proposition.

Proposition 1. For positive initial conditions of systems (13)-
(14), the solutions 𝑠

ℎ
(𝑡), 𝑖
ℎ
(𝑡), 𝜏
ℎ
(𝑡), 𝑖
𝑤
(𝑡), and 𝑥(𝑡) are non-

negative for all 𝑡 > 0.

Proof. Assume that

�̂� = sup {𝑡 > 0 : 𝑠
ℎ
> 0, 𝑖
ℎ
> 0, 𝜏
ℎ
> 0, 𝑖
𝑤
> 0, 𝑥 > 0} ∈ (0, 𝑡] .

(16)

Thus �̂� > 0, and it follows directly from the first equation of
the subsystem (13) that

𝑑𝑠
ℎ

𝑑𝑡
≤ (𝜇
𝐻
+ 𝜃) − [(𝜇

𝐻
+ 𝜃) + Λ] 𝑠

ℎ
. (17)

This is a first order differential equation that can easily be
solved using an integrating factor. For a nonconstant force of
infection Λ, we have

𝑠
ℎ
(�̂�) ≤ 𝑠

ℎ (0) exp[−((𝜇𝐻 + 𝜃) �̂� + ∫
�̂�

0

Λ (𝑠) 𝑑𝑠)]

+ exp[−((𝜇
𝐻
+ 𝜃) �̂� + ∫

�̂�

0

Λ (𝑠) 𝑑𝑠)]

× [∫
�̂�

0

(𝜇
𝐻
+ 𝜃) 𝑒

((𝜇𝐻+𝜃)�̂�+∫
�̂�

0
Λ(𝑙)𝑑𝑙)

𝑑�̂�] .

(18)

Since the right-hand side of (18) is always positive, the
solution 𝑠

ℎ
(𝑡) will always be positive. If Λ is constant, this

result still holds.
From the second equation of subsystem (13),

𝑑𝑖
ℎ

𝑑𝑡
≥ − (𝜇

𝐻
+ 𝜎) 𝑖
ℎ
≥ 𝑖
ℎ (0) exp [− (𝜇𝐻 + 𝜎) 𝑡] > 0. (19)

The third equation of subsystem (13) yields

𝑑𝜏
ℎ

𝑑𝑡
≥ − (𝜇

𝐻
+ 𝛾) 𝜏

ℎ
≥ 𝜏
ℎ (0) exp [− (𝜇𝐻 + 𝛾) 𝑡] > 0.

(20)

Similarly, we can show that 𝑖
𝑤
(𝑡) > 0 and 𝑥(𝑡) > 0 for all 𝑡 > 0

and this completes the proof.

3.3. Environmental Dynamics. The subsystem (14) represents
the dynamics of water bugs and M. ulcerans in the environ-
ment. From the second equation, we have

𝑥
∗
=
�̃�𝑖
∗

𝑤

𝜇
𝑑

, 𝑖
∗

𝑤
= 0 or 𝑖

∗

𝑤
= 1 −

1

R
𝑇

, (21)

where

R
𝑇
=

�̃�𝛽
3

𝜇
𝑑
𝜇
𝑊

. (22)

In this case 𝑥∗ = (�̃�/𝜇
𝑑
)(1 − (1/R

𝑇
)).

The case 𝑖∗
𝑤
= 0 yields the infection free equilibrium point

of the environmental dynamics submodel given by

E
0
= (0, 0) . (23)

The submodel also has an endemic equilibrium given by

E
1
= (�̃�𝜇

𝑊
(R
𝑇
− 1) , 𝜇

𝑑
𝜇
𝑊
(R
𝑇
− 1)) . (24)

Remark 2. It is important to note that the R
𝑇
is our model

reproduction number for the BU epidemic in the presence
of treatment driven by the dynamics of the water bug and
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M. ulcerans in the environment. A reproduction number,
usually defined as the average of the number of secondary
cases generated by an index case in a naive population, is
a key threshold parameter that determines whether the BU
disease persists or vanishes in the population. In this case, it
represents the number of secondary cases of infected water
bugs generated by the shedded M. ulcerans in the environ-
ment. R

𝑇
determines the infection in the environment and

subsequently in the human population. We can alternatively
use the next generation operator method [24, 25] to derive
the reproduction number. A similar valuewas obtained under
a square root sign in this case. The reproduction number is
independent of the parameters of the human population even
when the two submodels are combined. It depends on the life
spans of the water bugs andM. ulcerans in the environment,
the shedding, and infection rates of the water bugs. So, the
infection is driven by the water bug population and the
density of the bacterium in the environment. The model
reproduction number increases linearly with the shedding
rate of theM. ulcerans into the environment and the effective
contact rate between the water bugs and M. ulcerans. This
implies that the control and management of the ulcer largely
depend on environmental management.

3.3.1. Stability of E
0

Theorem 3. The infection free equilibrium E
0
is globally stable

whenR
𝑇
< 1 and unstable otherwise.

Proof. We propose a Lyapunov function of the form

V (𝑡) = 𝑖𝑤 +
𝛽
3

𝜇
𝑑

𝑥. (25)

The time derivative of (25) is

V̇ =
𝑑𝑖
𝑤

𝑑𝑡
+
𝛽
3

𝜇
𝑑

𝑑𝑥

𝑑𝑡

≤ 𝜇
𝑊
(R
𝑇
− 1) 𝑖
𝑤
.

(26)

WhenR
𝑇
≤ 1, V̇ is negative and semidefinite, with equality

at the infection free equilibrium and/or at R
𝑇

= 1. So
the largest compact invariant set in Γ such that V/𝑑𝑡 ≤ 0

when R
𝑇
≤ 1 is the singleton E

0
. Therefore, by the LaSalle

Invariance Principle [26], the infection free equilibriumpoint
E
0
is globally asymptotically stable if R

𝑇
< 1 and unstable

otherwise.

3.3.2. Stability of E
1

Theorem 4. The endemic steady state E
1
of the subsystem (14)

is locally asymptotically stable ifR
𝑇
> 1.

Proof. The Jacobian matrix of system (14) at the equilibrium
point E

1
is given by

𝐽E1 = (
−𝜇
𝑊

𝛽
3

�̃� −𝜇
𝑑

) . (27)

Given that the trace of 𝐽E1 is negative and the determinant is
negative if R

𝑇
> 1, we can thus conclude that the unique

endemic equilibrium is locally asymptotically stable when-
ever R

𝑇
> 1.

Theorem 5. If R
𝑇
> 1, then the unique endemic equilibrium

E
1
is globally stable in the interior of Γ.

Proof. We now prove the global stability of endemic steady
state E

1
whenever it exists, using the Dulac criterion and the

Poincaré-Bendixson theorem. The proof entails the fact that
we begin by ruling out the existence of periodic orbits in Γ
using the Dulac criteria [27]. Defining the right-hand side of
(14) by (𝐹(𝑖

𝑤
, 𝑥), 𝐺(𝑖

𝑤
, 𝑥)), we can construct a Dulac function

B (𝑖
𝑤
, 𝑥) =

1

𝛽
3
𝑖
𝑤
𝑥
, 𝑖
𝑤
> 0, 𝑥 > 0. (28)

We will thus have

𝜕 (𝐹B)

𝜕𝑖
𝑤

+
𝜕 (𝐺B)

𝜕𝑥
= −(

1

𝑖2
𝑤

+
�̃�

𝛽
3
𝑥2
) < 0. (29)

Thus, subsystem (14) does not have a limit cycle in Γ. From
Theorem 4, ifR

𝑇
> 1, thenE

1
is locally asymptotically stable.

A simple application of the classical Poincaré-Bendixson
theorem and the fact that Γ is positively invariant suffice
to show that the unique endemic steady state is globally
asymptotically stable in Γ.

3.4. Dynamics of BU in the Human Population. Our ultimate
interest is to determine how the dynamics of water bugs and
M. ulcerans impact the human population. The overall goal
is to mitigate the influence of the M. ulcerans on the human
population. We can actually evaluate the force of infection so
that

Λ̃ = (R
𝑇
− 1) 𝜇

𝑊
(𝑚
1
𝛽
1
𝜇
𝑑
+

�̃�𝛽
2

�̃� + �̃� (R
𝑇
− 1) 𝜇

𝑊

) .

(30)

This means that the analysis of submodel (13) is subject to
R
𝑇
> 1. Our force of infection is thus now a function of

the reproduction number of submodel (14) and is constant
for any given value of the reproduction number. Figure 2 is a
plot of Λ̃ versusR

𝑇
.

Using the second equation of system (13), we can evaluate
𝑠
∗

ℎ
so that

𝑠
∗

ℎ
= ([𝜎𝑖

∗

ℎ
+ 𝜇
ℎ
𝑖
ℎ
(1 + 𝑁

𝐻
𝑖
∗

ℎ
)] [�̃� + �̃�𝜇

𝑊
(R
𝑇
− 1)])

× ((1 + 𝑁
𝐻
𝑖
∗

ℎ
) [𝑚
1
𝛽
1
𝜇
𝑑
𝜇
𝑊
(R
𝑇
− 1)

× {�̃� + �̃�𝜇
𝑊
(R
𝑇
− 1)}

+�̃�𝛽
2
𝜇
𝑊
(R
𝑇
− 1)] )

−1
.

(31)

From the third equation of (13), we have

𝜏
∗

ℎ
=

𝜎𝑖∗
ℎ

(1 + 𝑁
𝐻
𝑖∗
ℎ
) (𝛾 + 𝜇

𝐻
)
. (32)
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Figure 2: The plot of the force of infection as a function ofR
𝑇
. The

force of infection increases linearly with the reproduction number.
The human population is at risk only ifR

𝑇
> 1.

Substituting 𝑠∗
ℎ
and 𝜏∗
ℎ
in the first equation of (13) at the

steady state yields a quadratic equation in 𝑖∗
ℎ
given by

𝑎𝑖
∗2

ℎ
+ 𝑏𝑖
∗

ℎ
+ 𝑐 = 0, (33)

where

𝑎 = 𝑁
𝐻
(𝜇
𝐻
+ 𝛾) (𝜇

𝐻
+ 𝜃)

× (�̃�𝛽
2
𝜇
𝑊
(R
𝑇
− 1) + (�̃� + �̃� (R

𝑇
− 1) 𝜇

𝑊
)

× [𝜇
𝐻
+ 𝑚
1
𝛽
1
𝜇
𝑑
𝜇
𝑊
(R
𝑇
− 1)] ) ,

𝑏 = �̃�𝛾𝜃𝜎 + �̃�𝜇
𝐻
[𝜃𝜎 + 𝛾 (𝜃 + 𝜎)

+𝜇
𝐻
(𝜇
𝐻
+ 𝛾 + 𝜃 + 𝜎)]

+ (𝑅
𝑝
− 1) [�̃� (𝜇

𝐻
+ 𝛾) (𝜇

𝐻
+ 𝜃) (𝜇

𝐻
+ 𝜎)

+ �̃�𝛽
2
(𝛾𝜃 + (𝛾 + 𝜃) 𝜎 − 𝑁

𝐻
(𝜇
𝐻
+ 𝛾)

×(𝜇
𝐻
+ 𝜃) + 𝜇

𝐻
(𝜇
𝐻
+ 𝛾 + 𝜃 + 𝜎))

+ �̃�𝑚
1
𝛽
1
𝜇
𝑑
{𝛾𝜃 +(𝛾 + 𝜃) 𝜎 − 𝑁

𝐻
(𝜇
𝐻
+ 𝛾)

× (𝜇
𝐻
+ 𝜃) + 𝜇

𝐻

× (𝜇
𝐻
+ 𝛾 + 𝜃 + 𝜎)}] 𝜇

𝑊

− �̃�𝑚
1
(𝑅
𝑝
− 1)
2

𝛽
1
𝜇
𝑑
(− (𝜃𝜎 + 𝛾 (𝜃 + 𝜎))

+ 𝑁
𝐻
(𝛾 + 𝜇

𝐻
) (𝜃 + 𝜇

𝐻
)

−𝜇
𝐻
(𝛾 + 𝜃 + 𝜎 + 𝜇

𝐻
)) 𝜇
2

𝑊
,

𝑐 = −𝜇
𝑊
(𝜇
𝐻
+ 𝛾) (𝜇

𝐻
+ 𝜃)

× [�̃�𝛽
2
+ 𝑚
1
𝛽
1
𝜇
𝑑
(�̃� + �̃�𝜇

𝑊
(R
𝑇
− 1))] (R

𝑇
− 1) .

(34)

Clearly our model has two possible steady states given by

E
𝑎

2
= (𝑠
∗

ℎ
, 𝑖
∗+

ℎ
, 𝜏
∗

ℎ
) , E

𝑏

2
= (𝑠
∗

ℎ
, 𝑖
∗−

ℎ
, 𝜏
∗

ℎ
) , (35)

where 𝑖∗±
ℎ

are roots of the quadratic equation (33). We note
that if R

𝑇
> 1, we have 𝑎 > 0 and 𝑐 < 0. By Descartes’ rule

of signs, irrespective of the sign of 𝑏, the quadratic equation
(33) has one positive root; the endemic equilibrium E𝑎

2
= E
2
.

We thus have the following result.

Theorem 6. System (13) has a unique endemic equilibrium E
2

wheneverR
𝑇
> 1.

Remark 7. It is important to note that when subsystem (14) is
at its infection free steady state then the human population
will also be free of the BU.We can easily establish the BU free
equilibrium in humans as Eℎ

0
= (1, 0, 0). The existence of Eℎ

0

is thus subject to the water bugs and the environment being
free ofM. ulcerans.

3.4.1. Local Stability of Eℎ
0

Theorem 8. The disease free equilibrium Eℎ
0
whenever it exists

is locally asymptotically stable if R
𝑇

< 1 and unstable
otherwise.

Proof. When R
𝑇
< 1, then either there are no infections in

the water bugs or they are simply carriers. So Eℎ
0
exists. The

Jacobian matrix of system (13) at the disease free equilibrium
point Eℎ

0
is given by

𝐽Eℎ
0

= (

− (𝜇
𝐻
+ 𝜃) −𝜃 −𝜃

0 − (𝜇
𝐻
+ 𝜎) 0

0 𝜎 − (𝜇
𝐻
+ 𝛾)

) . (36)

The eigenvalues of 𝐽Eℎ
0

are 𝜆
1
= −(𝜇

𝐻
+𝜃), 𝜆

2
= −(𝜇

𝐻
+𝜎), and

𝜆
3
= −(𝜇

𝐻
+ 𝛾). We can thus conclude that the disease free

equilibrium is locally asymptotically stable whenever R
𝑇
<

1.

3.4.2. Local Stability of E
2

Theorem 9. The unique endemic equilibrium point E
2
is

locally asymptotically stable for R
𝑇
> 1.

Proof. The Jacobian matrix at the endemic steady state E
2
is

given by

𝐽E2 =
(

(

−(𝜇
𝐻
+ 𝜃) − Λ̃ −𝜃 −𝜃

Λ̃ −𝜇
𝐻
−

𝜎

(1 + 𝑖∗
ℎ
)
2

0

0
𝜎

(1 + 𝑖∗
ℎ
)
2

− (𝜇
𝐻
+ 𝛾)

)

)

.

(37)
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If we let 𝜓 = 𝜎/(1 + 𝑖∗
ℎ
)
2, then the eigenvalues of 𝐽E2 are given

by the solutions of the characteristic polynomial

𝜗
3
+ 𝜂
1
𝜗
2
+ 𝜂
2
𝜗 + 𝜂
3
= 0, (38)

where

𝜂
1
= (𝜇
𝐻
+ 𝛾) + (𝜇

𝐻
+ 𝜃) + (𝜇

𝐻
+ 𝜓) + Λ̃,

𝜂
2
= (𝜇
𝐻
+ 𝜃) (𝜇

𝐻
+ 𝛾Λ̃) + (𝜇

𝐻
+ 𝛾) (𝜇

𝐻
+ 𝜓 + Λ̃)

+ (𝜇
𝐻
+ 𝜃) (𝜇

𝐻
+ 𝜓) + Λ̃𝜓,

𝜂
3
= 𝜃Λ̃ (𝛾 + 𝜓) + 𝛾 (𝜃 + Λ̃) 𝜓

+ 𝜇
𝐻
(Λ̃𝜓 + 𝜃 (Λ̃ + 𝜓) + 𝛾 (𝜃 + Λ̃ + 𝜓)

+𝜇
𝐻
(𝛾 + 𝜃 + Λ̃ + 𝜓 + 𝜇

𝐻
)) .

(39)

Using the Routh-Hurwitz criterion, we note that 𝜂
1
>

0, 𝜂
2
> 0 and 𝜂

3
> 0. The evaluation of 𝜂

1
𝜂
2
− 𝜂
3
yields

(𝜃 + Λ̃) (𝜃 + 𝜓) (Λ̃ + 𝜓) + 𝛾
2
(𝜃 + Λ̃ + 𝜓) + 𝛾(𝜃 + Λ̃ + 𝜓)

2

+ 2𝜇
𝐻
(𝛾
2
+ 𝜃
2
+ Λ̃
2
+ 3Λ̃𝜓 + 𝜓

2
+ 3𝜃 (Λ̃ + 𝜓)

+3𝛾 (𝜃 + Λ̃ + 𝜓) + 4𝜇
𝐻
(𝛾 + 𝜃 + Λ̃ + 𝜓 + 𝜇

𝐻
))

> 0.

(40)

This establishes the necessary and sufficient conditions for all
roots of the characteristic polynomial to lie on the left half of
the complex plane. So the endemic equilibrium E

2
is locally

asymptotically stable.

In the next section we establish the global stability of the
endemic equilibrium using the approach according to Li and
Muldowney [28] based on monotone dynamical systems and
outlined in Appendix A of [29, 30].

3.4.3. Global Stability of the Endemic Equilibrium. We begin
by stating the following theorem.

Theorem 10. If R
𝑇
> 1, system (13) is uniformly persistent in

Γ̂, the interior of Γ.
The existence of Eℎ

0
, only if R

𝑇
> 1, guarantees uniform

persistence [31]. System (13) is said to be uniformly persistent
if there exists a positive constant 𝑐 such that any solution
(𝑠
ℎ
(𝑡), 𝑖
ℎ
(𝑡), 𝜏
ℎ
(𝑡)) with initial conditions (𝑠

ℎ
(0), 𝑖
ℎ
(0), 𝜏
ℎ
(0)) ∈

Γ̂ satisfies

lim inf
𝑡→∞

𝑠
ℎ (𝑡) > 𝑐, lim inf

𝑡→∞

𝑖
ℎ (𝑡) > 𝑐,

lim inf
𝑡→∞

𝜏
ℎ (𝑡) > 𝑐.

(41)

The proof of uniform persistence can be done using
uniform persistence results in [31, 32].

Theorem 11. If Λ̃ > 𝛾, the endemic equilibrium point E
2
of

system (13) is globally asymptotically stable when R
𝑇
> 1.

Proof. Using the arguments in [28], system (13) satisfies
assumptions 𝐻(1) and 𝐻(2) in Γ̂. Let 𝑥 = (𝑠

ℎ
, 𝑖
ℎ
, 𝜏
ℎ
) and

𝑓(𝑥) be the vector field of system (13). The Jacobian matrix
corresponding to system (13) is

𝐽
(𝑠ℎ ,𝑖ℎ ,𝜏ℎ)

=
(
(

(

−(𝜃 + Λ̃ + 𝜇
𝐻
) −𝜃 −𝜃

Λ̃ −(
𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
+ 𝜇
𝐻
) 0

0
𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2

− (𝜇
𝐻
+ 𝛾)

)
)

)

.

(42)

The second additive compound matrix 𝐽[2]
(𝑠ℎ ,𝑖ℎ ,𝜏ℎ)

is given by

𝐽
[2]
(𝑠ℎ ,𝑖ℎ,𝜏ℎ)

=

(
(
(
(

(

−[𝜃 + Λ̃ + 2𝜇
𝐻
+

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
] 0 𝜃

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2

− (𝜃 + Λ̃ + 2𝜇
𝐻
+ 𝛾) 0

0 Λ̃ −(2𝜇
𝐻
+ 𝛾 +

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
)

)
)
)
)

)

. (43)

We let the matrix function 𝑃 take the form

𝑃 (𝑠
ℎ
, 𝑖
ℎ
, 𝜏
ℎ
) = diag{

𝑖
ℎ

𝜏
ℎ

,
𝑖
ℎ

𝜏
ℎ

,
𝑖
ℎ

𝜏
ℎ

} . (44)

We thus have

𝑃
𝑓
𝑃
−1
= diag{

𝑖
ℎ

𝑖
ℎ

−
𝜏
ℎ

𝜏
ℎ

,
𝑖
ℎ

𝑖
ℎ

−
𝜏
ℎ

𝜏
ℎ

,
𝑖
ℎ

𝑖
ℎ

−
𝜏
ℎ

𝜏
ℎ

} , (45)
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where 𝑃
𝑓
is the diagonal element matrix derivative of 𝑃 with

respect to time and

𝑃𝐽
[2]
𝑃
−1
=

(
(
(
(
(

(

−[𝜃 + Λ̃ + 2𝜇
𝐻
+

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
] 0 𝜃

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2

− (𝜃 + Λ̃ + 2𝜇
𝐻
+ 𝛾) −𝜃

0 Λ̃ −(2𝜇
𝐻
+ 𝛾 +

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
)

)
)
)
)
)

)

, (46)

where  represents the derivative with respect to time.
Thematrix𝑄 = 𝑃

𝑓
𝑃−1+𝑃𝐽[2]𝑃−1 can be written as a block

matrix so that

𝑄 = (
𝑄
11

𝑄
12

𝑄
21

𝑄
22

) , (47)

where

𝑄
11
= −[𝜃 + Λ̃ + 2𝜇

𝐻
+

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
] +

𝑖
ℎ

𝑖
ℎ

−
𝜏
ℎ

𝜏
ℎ

, 𝑄
12
= (0 𝜃) , 𝑄

21
= (

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2

0

) ,

𝑄
22
=(

−(𝜃 + Λ̃ + 2𝜇
𝐻
+ 𝛾) +

𝑖
ℎ

𝑖
ℎ

−
𝜏
ℎ

𝜏
ℎ

−𝜃

Λ̃ −(2𝜇
𝐻
+ 𝛾 +

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
) +

𝑖
ℎ

𝑖
ℎ

−
𝜏
ℎ

𝜏
ℎ

).

(48)

Let (𝑥, 𝑦, 𝑧) denote the vectors in R3 and let the norm in R3

be defined by
(𝑥, 𝑦, 𝑧)

 = max {|𝑥| , 𝑦 + 𝑧
} . (49)

Also let L denote the Lozinski ̌i measure with respect to
this norm. Following [33] we have

L (𝑄) ≤ sup {𝑔
1
, 𝑔
2
}

≡ sup {L
1
(𝑄
11
) +

𝑄12
 ,L1 (𝑄22) +

𝑄21
} ,

(50)

where |𝑄
12
| and |𝑄

21
| are thematrix normswith respect to the

vector norm 𝐿1 andL
1
is the Lozinski ̌i measure with respect

to the 𝐿1 norm.
In fact

L
1
(𝑄
11
) = −[𝜃 + Λ̃ + 2𝜇

𝐻
+

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
] +

𝑖
ℎ

𝑖
ℎ

−
𝜏
ℎ

𝜏
ℎ

,

𝑄12
 = 𝜃,

𝑄21
 =

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
,

L
1
(𝑄
22
) = − (𝜃 + 2𝜇

𝐻
+ 𝛾) +

𝑖
ℎ

𝑖
ℎ

−
𝜏
ℎ

𝜏
ℎ

.

(51)

We now have

𝑔
1
=
𝑖
ℎ

𝑖
ℎ

− [Λ̃ + 2𝜇
𝐻
+

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
] −

𝜏
ℎ

𝜏
ℎ

,

𝑔
2
=
𝑖
ℎ

𝑖
ℎ

− (𝜃 + 2𝜇
𝐻
+ 𝛾) +

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
−
𝜏
ℎ

𝜏
ℎ

.

(52)

The third equation of (13) gives

𝜏
ℎ

𝜏
ℎ

= (
𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
)(

𝑖
ℎ

𝜏
ℎ

) − (𝜇
𝐻
+ 𝛾) . (53)

Substituting (53) into (52) yields

𝑔
1
=
𝑖
ℎ

𝑖
ℎ

− [Λ̃ + 2𝜇
𝐻
+

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
] −

𝜏
ℎ

𝜏
ℎ

=
𝑖
ℎ

𝑖
ℎ

− [Λ̃ + 2𝜇
𝐻
+

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
]
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− {(
𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
)(

𝑖
ℎ

𝜏
ℎ

) − (𝜇
𝐻
+ 𝛾)}

≤
𝑖
ℎ

𝑖
ℎ

− {Λ̃ − 𝛾 + 𝜇
𝐻
+

𝜎

(1 + 𝑁
𝐻
𝑐)
2
+ (

𝜎

(1 + 𝑁
𝐻
𝑐)
2
)} ,

𝑔
2
=
𝑖
ℎ

𝑖
ℎ

− (𝜃 + 2𝜇
𝐻
+ 𝛾) +

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
2
−
𝜏
ℎ

𝜏
ℎ

=
𝑖
ℎ

𝑖
ℎ

− (𝜃 + 𝜇
𝐻
) + (

𝜎

(1 + 𝑁
𝐻
𝑖
ℎ
)
)(

1

(1 + 𝑁
𝐻
𝑖
ℎ
)
−
𝑖
ℎ

𝜏
ℎ

)

≤
𝑖
ℎ

𝑖
ℎ

− [(𝜃 + 𝜇
𝐻
) − (

𝜎

(1 + 𝑁
𝐻
𝑐)
)(

1

(1 + 𝑁
𝐻
𝑐)
− 1)] ,

(54)

where 𝑐 is the constant of uniform persistence. The inequali-
ties followTheorem 10.

If we impose the condition Λ̃ > 𝛾, then

L (𝑄) ≤ sup {𝑔
1
, 𝑔
2
}

=
𝑖
ℎ

𝑖
ℎ

− 𝜔,
(55)

where 𝜔 = min{𝜔
1
, 𝜔
2
} with

𝜔
1
= Λ̃ − 𝛾 + 𝜇

𝐻
+

𝜎

(1 + 𝑁
𝐻
𝑐)
2
+ (

𝜎

(1 + 𝑁
𝐻
𝑐)
2
) ,

𝜔
2
= (𝜃 + 𝜇

𝐻
) − (

𝜎

(1 + 𝑁
𝐻
𝑐)
)(

1

(1 + 𝑁
𝐻
𝑐)
− 1) .

(56)

Hence

1

𝑡
∫
𝑡

0

L (𝑄) 𝑑𝑠 ≤
1

𝑡
log

𝑖
ℎ (𝑡)

𝑖
ℎ (0)

− 𝜔. (57)

The imposed condition implies that the infection rate is
greater than the recovery rate.The result follows based on the
Bendixson criterion proved in [28].

4. Numerical Simulations

In this section we endeavour to give some simulation results
for the combined subsystems (13) and (14). The simulations
are performed using MALAB, and we set our time in years.
We carry out sensitivity analysis to determine the effects
of a chosen parameter on the state variables. Specifically,
we chose to focus on the parameters that make up the
model reproduction number because we are interested in
parameters that aid the reduction of the BU epidemic. We
now give a brief exposition on parameter estimation.

4.1. Parameter Estimation. The estimation of parameters in
the model validation process is a challenging process. We
make some hypothetical assumptions for the purpose of

illustrating the usefulness of our model in tracking the
dynamics of the BU. Demographic parameters are the easiest
to estimate. For the mortality rate 𝜇

𝐻
, we assume that the

life expectancy of the human population is 61 years. This
value has been the approximation of the life expectancy in
Ghana [34] and is indeed applicable to sub-Saharan Africa.
This translates into 𝜇

𝐻
= 0.0166 per year or equivalently

4.5 × 10
−5 per day. The Buruli ulcer is a vector borne disease

and some of the parameters we have can be estimated from
literature on vector borne diseases. Recovery rates of vector
borne diseases range from 1.6 × 10

−5 to 0.5 per day [35]. The
rate of loss of immunity 𝜃 for vector borne diseases ranges
between 0 and 1.1×10−2 per day [35]. Although themortality
rate of the water bugs is not known, it is assumed to be
0.15 per day [18]. We assume that we have more water bugs
than humans so that 𝑚

1
> 1. The remaining parameters

were reasonably estimated based on literature on vector borne
diseases and the intuitive understanding of the BU disease by
the first two authors.

4.2. Sensitivity Analysis. Many of the parameters used in this
paper are not experimentally obtained. It is thus important to
test how these parameters affect the output of the variables.
This is achieved by employing sensitivity and uncertainty
analysis techniques. In this subsection, we explore the sen-
sitivity analysis of the model parameters to find out the
degree to which the parameters influence the outputs of
the model. We determine the partial correlation coefficients
(PRCCs) of the parameters. The parameters with negative
PRCCs reduce the severity of the BU epidemic while those
with positive PRCCs aggravate it. Using Latin hypercube
sampling (LHS) scheme with 1000 simulations for each run,
we investigate only four of the most significant parameters.
These parameters influence only submodel (14). The scatter
plots are shown in Figure 3.

Figures 3(a) and 3(b) depict parameters with a posi-
tive correlation with the reproduction number. They show
a monotonic increase of R

𝑇
as 𝛼 and 𝛽

3
increase. This

means that, to curtail the epidemic, the reduction in the
shedding rate and infection of water bugs by M. ulcerans is
of paramount importance. On the other hand, Figures 3(c)
and 3(d) show a negative correlation with the reproduction
number. This means that the clearance of the water bug and
theM. ulcerans in the environment will reduce the spread of
BU epidemic.

A more informative comparison of how the parameters
influence the model is given in Figure 4. The tornado plot
shows that the parameter 𝛼 affects the reproduction more
than any of the other parameters considered. So interventions
targeted towards the reduction in the shedding rate of M.
ulcerans into the environment will significantly slow the
epidemic.

4.3. Simulation Results. To validate our mathematical anal-
ysis results, we plot phase diagrams for R

𝑇
less than 1 and

greater than 1 for the environmental dynamics. The global
properties of the steady states are confirmed in Figures 5(a)
and 5(b).The black dots show the location of the steady states.
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Figure 3: The scatter plots for the parameters 𝛼, 𝛽
3
, 𝜇
𝑑
, and 𝜇

𝑊
.
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Figure 4: The tornado plots for the four parameters in the model reproduction number.

Figure 6 shows a three-dimensional phase diagram for
the human population dynamics. The existence of the
endemic equilibrium, when R

𝑇
> 1, is numerically shown

here. The plot shows the trajectories of parametric solutions
of (13) for randomly chosen initial conditions.The position of
the endemic equilibrium point is indicated on the diagram.

To determine how the infection of the water bugs trans-
lates into the transmission of BU in humans, we plot the
fraction of BU in humans over time while varying 𝜇

𝑑
, the

clearance rate of bacteria from the environment. Figure 7(a)
shows how the infections of BU in humans change with
variations in the value of 𝜇

𝑑
. The infections are evaluated as
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Figure 5: The phase diagrams for R
𝑇
= 0.8889 (a) and R
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= 5.3333 (b).
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Figure 6: A phase diagram for the human population showing the endemic steady state. For a randomly chosen set of initial conditions, all
trajectories tend to an endemic equilibrium for the following parameter values: 𝜇
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= 0.02, 𝜃 = 0.04, Λ = 0.07, 𝜎 = 0.4, and 𝛾 = 0.7.

the number of infected humans.The figure shows that, as the
clearance of the bacteria from the environment increases, this
translates into a reduction in the number of infected human
cases. Similar results can be obtained if the parameter 𝜇

𝑤

is considered, as shown in Figure 7(b). So interventions to
reduce the impact of the epidemic on humans can also be
instituted through the reduction of bacteria andwater bugs in
the environment. It is important to note that the practicality
of such an intervention is a mirage.This has worked for other
vector borne diseases such as malaria.

We also explore the role played by direct M. ulcerans
infection on the transmission dynamics of BU. Research
has shown that antecedent trauma has often been related to
the lesions that characterize BU [36]. Figure 8 shows how
the proportion of infected humans changes with increasing
transmission rate through direct contact with the environ-
ment. The figures show that, as the transmission rate of
direct contact of humans with the environment increases,

the proportion of the infected also increases. This has direct
implications on how humans interact with the environment.

The shedding rate of M. ulcerans into the environment
and the treatment rate of humans are important to consider.
In Figure 9(a) we observe that increasing the amount of M.
ulcerans shed in the environment increases the infections of
the BU disease in the human population. While this may
sound very obvious, the quantification of the effects thereof
is of particular significance. We also note that there are
benefits in increasing the maximum threshold with regard to
treatment. An increase in the value of 𝜎will lead to a decrease
in the number of infections in the human population.

5. Conclusion

We present a deterministic model whose main aim was
to capture the two potential routes of transmission and
treatment uptake in a resource limited population. This
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Figure 7: Fraction of the infected human population for R
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= 0.00001.

uptake is not linear, and hence we propose a response
function of theMichaelis-Menten type. Because of the nature
of the infection process, our model is divided into two
submodels that are only coupled through the infection term.
The model is analysed by determining the steady states. The
analysis is done through the submodels. The model in this
paper presented a unique challenge in which the infection
in one submodel takes place at the steady state of the other
submodel. The model analysis is carried out in terms of

the model reproduction number R
𝑇
. Numerical simulations

are carried out. The model parameters were estimated from
literature and sensitivity analysis was done because not much
of the disease is understood and parameter estimation was
difficult. Through the simulations, changes in the number
of BU cases in the human population were determined for
different values of the clearance rates of the water bugs
and M. ulcerans. Our main result is that the management
of BU depends mostly on the environmental management,
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Figure 9: A phase diagram for the infected water bugs and M. ulcerans in the environment for the same parameters presented in Figure 7
with 𝜇

𝑑
= 0.02 and 𝜇

𝑊
= 0.025.

that is, clearance of the bacteria from the environment and
reduction in shedding. This in turn will reduce the infection
of the water bugs that transmit the infection to humans. As
mentioned earlier, clearance of M. ulcerans and water bugs
is not practically feasible, but non the less very informative.
Research in malaria now looks at vector control, sterilisation,
and genetic modification of the mosquito. Such an approach
could be beneficial with regard to the control of water bugs.

This model presents the very few attempts to mathe-
matically model BU. A lot of additional extensions can be
made.Themodel can be transformed into a delay differential
equation dynamical system to capture treatment delays that
are often fatal to BU victims. Social interventions such as
educational campaigns can be included in the model to
capture various campaigns and initiatives to stop the disease.
Finally, this model can be used to suggest the type of data that
should be collected as research on the ulcer intensifies.
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