
Time-Dependent Rate Phenomenon in Viruses

Pakorn Aiewsakun, Aris Katzourakis

Department of Zoology, University of Oxford, Oxford, United Kingdom

ABSTRACT

Among the most fundamental questions in viral evolutionary biology are how fast viruses evolve and how evolutionary rates differ
among viruses and fluctuate through time. Traditionally, viruses are loosely classed into two groups: slow-evolving DNA viruses and
fast-evolving RNA viruses. As viral evolutionary rate estimates become more available, it appears that the rates are negatively corre-
lated with the measurement timescales and that the boundary between the rates of DNA and RNA viruses might not be as clear as pre-
viously thought. In this study, we collected 396 viral evolutionary rate estimates across almost all viral genome types and replication
strategies, and we examined their rate dynamics. We showed that the time-dependent rate phenomenon exists across multiple levels of
viral taxonomy, from the Baltimore classification viral groups to genera. We also showed that, by taking the rate decay dynamics into
account, a clear division between the rates of DNA and RNA viruses as well as reverse-transcribing viruses could be recovered. Surpris-
ingly, despite large differences in their biology, our analyses suggested that the rate decay speed is independent of viral types and thus
might be useful for better estimation of the evolutionary time scale of any virus. To illustrate this, we used our model to reestimate the
evolutionary timescales of extant lentiviruses, which were previously suggested to be very young by standard phylogenetic analyses.
Our analyses suggested that these viruses are millions of years old, in agreement with paleovirological evidence, and therefore, for the
first time, reconciled molecular analyses of ancient and extant viruses.

IMPORTANCE

This work provides direct evidence that viral evolutionary rate estimates decay with their measurement timescales and that the
rate decay speeds do not differ significantly among viruses despite the vast differences in their molecular features. After adjust-
ment for the rate decay dynamics, the division between the rates of double-stranded DNA (dsDNA), single-stranded RNA
(ssRNA), and ssDNA/reverse-transcribing viruses could be seen more clearly than before. Our results provide a guideline for
further improvement of the molecular clock. As a demonstration of this, we used our model to reestimate the timescales of mod-
ern lentiviruses, which were previously thought to be very young, and concluded that they are millions of years old. This
result matches the estimate from paleovirological analyses, thus bridging the gap between ancient and extant viral evolu-
tionary studies.

An accurate and precise knowledge of the rate of viral evolution
is central to the reconstruction of viral natural history, which

is necessary for the calculation of many evolutionary parameters,
from viral age estimates to population size. Generally, viruses are
loosely classed into two groups according to their rates of evolu-
tion: “slow-evolving” and “fast-evolving” viruses. DNA viruses,
especially double-stranded DNA (dsDNA) viruses, are tradition-
ally thought of as slow-evolving viruses. To estimate molecular
evolutionary rates, the absolute timescales for the observed ge-
netic differences are required, and these can be derived from the
divergence dates and/or sampling dates of the study subjects.
Many dsDNA viruses have been shown to have an extremely stable
cospeciation history with their hosts, and therefore, their diver-
gence dates can be directly inferred from those of their hosts. On
the basis of these observations, their rates have been estimated to
be of the order of 10�7 to 10�9 nucleotide substitutions per site per
year (s/n/y) (1–5), comparable to those of their hosts (6, 7).

RNA viruses, on the other hand, are typically regarded as fast-
evolving viruses. RNA viruses are generally characterized by fre-
quent cross-species transmissions in nature; as a result, it is often
difficult to calibrate their evolutionary rates using host evolution-
ary timescales. Their rates are thus often calculated by using mo-
lecular sequences collected at different time points (heterochro-
nous molecular data sets). In this case, the differences among
sampling times provide the timescales for the observed genetic
divergence. Based on these analyses, their rates are commonly

estimated to be between 10�2 and 10�5 s/n/y (8–11), 2 to 7 orders
of magnitude higher than the typical rates of dsDNA viruses.

This conventional concept of a dichotomy between the rates of
DNA and RNA viral evolution has recently been challenged, how-
ever, and it seems that the boundary between the rates of DNA and
RNA viruses might not be as clear as previously thought (11–14).
For example, analyses of heterochronous molecular data sets of
dsDNA and single-stranded DNA (ssDNA) viruses has revealed
that DNA viruses are in fact capable of evolving very rapidly over
short timescales, with rates ranging between 10�3 and 10�6 s/n/y
(15–19), comparable to the established rates of many RNA vi-
ruses. On the other hand, when the cospeciation assumption is
applicable to RNA viruses, such as deltaretroviruses, hantaviruses,
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and foamy viruses, analyses suggest that their long-term rates of
evolution are extremely low, estimated to be in the range of 10�7

to 10�8 s/n/y (20–23), comparable to those of dsDNA viruses.
Paleovirological analyses have also shown that many ancient en-
dogenous viruses related to RNA viruses exhibit high similarity to
their modern-day counterparts despite being millions of years old
(24). This provides independent evidence indicating that RNA
viruses can indeed evolve very slowly over geological timescales
(24). If one naïvely combines all the rate estimates, the ranges of
the rate estimates for both DNA and RNA viral evolution would
appear to be extremely wide, spanning 10�3 to 10�9 s/n/y for DNA
viruses and 10�2 to 10�8 s/n/y for RNA viruses, largely overlap-
ping with one another. As a result, there is an emerging consensus
that there is no strict division between the evolutionary rates of
DNA and RNA viruses (13, 14).

As viral evolutionary rate estimates become more available, it is
becoming increasingly clear that viral evolutionary rates appear to
vary over time, continuously decreasing with the timescale of rate
measurement (25–27). Many hypotheses have been proposed to
explain this time-dependent rate phenomenon (TDRP), includ-
ing temporal changes in selection pressure and/or viral biology, as
well as the facts that short-term rates are methodologically prone
to overestimation and long-term rates tend to be underestimated
(for a review, see reference 25). This phenomenon may at least
partly explain the observed large variation and overlap of viral
evolutionary rate estimates.

Another consequence of the TDRP is that naïvely transferring the
rate estimates over different timescales for evolutionary inference can
severely bias the outcome (25–27). The best illustration of this is per-
haps the severe underestimation of the evolutionary timescales of
extant viruses by current standard phylogenetic tools. For example,
while paleovirological analyses unequivocally show that simian im-
munodeficiency viruses (SIVs) are millions of years old (28, 29), all
previous standard phylogenetic analyses, which do not account for
the TDRP, have suggested that they are young, with the most recent
common ancestor (MRCA) dating to less than a million years ago (8,
30–32). One pragmatic approach to solving this problem is to use
models describing the empirical relationship between the rate esti-
mates and their measurement timescales to correct for the TDRP
effects in evolutionary analyses (27, 33). Our study of foamy viruses
has shown that a power law rate decay model can describe the TDRP
very well empirically, and thus, it may be useful as a tool for correcting
for the effects of the TDRP (27).

In this study, we collected 396 viral nucleotide substitution
rates across almost all viral molecular features and replication
strategies, and we examined their TDRP dynamics at various tax-
onomical levels by using the power law rate decay model as the
basis of our investigation. We also examined how the rate dynam-
ics differ among viruses and reexamined the concept of fast- and
slow-evolving viruses. Last, we demonstrated the use of our TDRP
model by estimating the evolutionary timescale of extant lentivi-
ruses, which has always been severely underestimated by standard
phylogenetic analyses.

MATERIALS AND METHODS
Data collection and construction of phylogenetically independent data
sets of rate estimates. A total of 396 viral nucleotide substitution rate
estimates were collected from 133 pieces of published literature. The rates
were arbitrarily divided into two groups: short-term rates (estimated over
timescales of �1,000 years) and long-term rates (estimated over time-

scales of �1,000 years) (Fig. 1A; see also Table S1 in the supplemental
material). We considered 1,000 years to be an appropriate cutoff because
it corresponds to a large gap in the rate measurement timescales (between
760 years and 6,600 years), clearly dividing rate estimates into two distinct
rate categories. To control for the quality of the data, only evolutionary
rates estimated under the Bayesian or maximum likelihood frameworks
or from neighbor-joining trees were collected. All the rates estimated from
neighbor-joining trees were calculated based on explicit nucleotide sub-
stitution models where the rates of transversion and transition substitu-
tions were distinguished, at the very least. In two studies however, the
models were not reported. In total, the data set comprises nucleotide
substitution rate estimates of six major viral groups (according to the
Baltimore classification), including 21 rate estimates for group I dsDNA
viruses, 47 for group II ssDNA viruses, 123 for group IV positive ssRNA
[(�)ssRNA] viruses, 106 for group V negative ssRNA [(�)ssRNA] vi-
ruses, 85 for group VI reverse-transcribing RNA (RT-RNA) viruses and 14
for group VII reverse-transcribing DNA (RT-DNA) viruses (Table 1).

These rate estimates are not phylogenetically independent, however,
and this may bias our analyses if it is unaccounted for. To construct data
subsets of phylogenetically independent rate estimates, we constrained
the sampling criterion so that only one rate estimate was sampled per virus
(defined by their common names [Table S1 in the supplemental mate-
rial]), and all of its rates had the same probability of being sampled. We
also noted that some of these rate estimates are still phylogenetically in-
dependent despite being for different viruses. For example, the short-term
rates of herpes simplex virus 1 and varicella-zoster virus are phylogeneti-
cally independent, but both are phylogenetically nested within the long-
term rates of alphaherpesviruses, which are, in turn, nested within those of
alpha- and betaherpesviruses. In such cases, we divided the rates into
phylogenetically independent groups while maximizing the number of
rate estimates within each group. In this case, for instance, the rates were
divided into three groups: (i) those of herpes simplex virus 1 and varicella-
zoster virus, (ii) those of alphaherpesviruses, and (iii) those of alpha- and
betaherpesviruses. For a particular data subset, only one of these groups
was sampled with the same probability. Note that the number of rates may
differ among groups, and thus, the number of rate estimates may differ
across data subsets. Furthermore, the sampling was also constrained such
that in each data subset, there was at least one short-term and one long-
term rate estimate for each viral group. This constraint was imposed so
that the rate decay dynamics could be estimated reliably. In total, 1,000
pseudoreplicated data subsets of phylogenetically independent rate esti-
mates were constructed. See the sampling count in Table S1 in the sup-
plemental material and the summary of the number of rate estimates for
each data subset in Table 1.

TDRP analyses at the level of Baltimore classification viral groups.
For each of the 1,000 pseudoreplicated data subsets, the rate estimates and
measurement timescales were log-transformed (base 10) and were fitted
to three linear models (equivalent to modeling a power law relationship
between the rate estimates and measurement timescales): (i) rate estimate
as a function of the timescale of rate measurement, (ii) rate estimate as a
function of the timescale of rate measurement and viral group, and (iii)
rate estimate as a function of the timescale of rate measurement and viral
group, with separate rate decay slopes for each group. Model parameters
were estimated by using the linear model (lm) function, implemented in
R, version 3.1.2 (34). The significance levels of the estimated parameters
were evaluated by t tests. Analyses of variance (ANOVA) and F tests were
used to compare the models. Complete pairwise comparisons of the in-
tercepts were performed by using the glht function, implemented in R,
version 3.1.2 (34), to determine which viruses evolve faster or slower than
others. In order to capture all of the parameter estimation uncertainties
across 1,000 pseudoreplicated subanalyses, we constructed the distribu-
tions of parameter values by sampling 100 sets of parameter values from
each of the 1,000 pseudoreplicated analyses and combined them as one to
form an overall distribution (containing 100,000 sets of parameter esti-
mates in total). Fisher’s method was used to combine the P values from
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FIG 1 Time-dependent rate phenomenon among viral groups. (A) A total of 359 viral short-term rate estimates (calculated over timescales of 0.16 to 760 years)
(left), and 37 long-term rate estimates (calculated over timescales of 6,600 to 2.28 � 108 years) (right) were collected from 133 publications, including 21 rate
estimates for group I dsDNA viruses, 47 for group II ssDNA viruses, 123 for group IV (�)ssRNA viruses, 106 for group V (�)ssRNA viruses, 85 for group VI
RT-RNA viruses, and 14 for group VII RT-DNA viruses (Table S1 in the supplemental material). Lines indicating the upper quartile (top dashed line), median
(central solid line), and lower quartile (bottom dashed line) were added to each viral group to aid visualizing the point’s density. (B) Viral evolutionary rate
estimates are negatively correlated with their measurement timescales. Gray lines represent 1,000 individual best-fit models, where the slopes are the same across
all viral groups. Red or blue lines represent models that are parameterized by median parameter estimates; open red circles and solid line, group I dsDNA viruses;
red plus signs and dashed line, group II ssDNA viruses; blue plus signs and dashed line, group IV (�)ssRNA viruses; blue crosses and long-dashed line, group V
(�)ssRNA viruses; open blue squares and dotted line, group VI RT-RNA viruses; open red squares and dotted line, group VII RT-DNA viruses. (C) Complete
pairwise comparisons of the intercepts of the rate decay curves (representing rate estimates controlled for a 1-year timescale of rate measurement). Vertical dotted
lines indicate median estimates. The differences among intercepts were evaluated at a significance level of 0.05.
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each subanalysis into a single overall P value. The results were evaluated at
a significance level of 0.05.

TDRP analyses at the level of viral genera. A data set comprising rate
estimates obtained from seven viral genera was assembled, including 4
rate estimates for the group I dsDNA virus genera Simplexvirus and Vari-
cellovirus, 6 for the group II ssDNA virus genus Mastrevirus, 18 for the group
IV (�)ssRNA virus genus Tobamovirus, 12 for the group V (�)ssRNA
virus genus Hantavirus, 8 for the group VI RT-RNA virus genus Deltaret-
rovirus, and 3 for the group VII RT-DNA virus genus Avihepadnavirus.
The Simplexvirus and Varicellovirus genera were combined as one data set,
because there were not enough data points for separate analyses. The rate
estimates and measurement timescales were log-transformed (base 10)
and were fitted to three different linear models as described above. Param-
eter estimation, model comparison, and the construction of the distribu-
tions of estimated parameter values were also performed as described
above.

Sensitivity analyses. Although we controlled for the rate measure-
ment methods, some of the rate estimates, especially the short-term ones,
might still be erroneous, since they are estimated from molecular data sets
that do not contain sufficient temporal structure. We conducted simula-
tions to evaluate how sensitive our analyses are to the presence of this
specific type of erroneous rate estimate. We simulated 55 molecular se-
quences, each of which is 1,000 bp long. The evolutionary process was
assumed to be a nonhomogeneous Poisson process, with the instanta-
neous rate of substitution (rt) being constant across sites but varying
through time, governed by a power law decay function (rt � r0t��).
Guided by the results obtained from the TDRP analyses, the distribution
of � (the rate decay slope) was assumed to be normal, with a mean of 0.65
and a standard deviation of 0.041. r0 (an apparent instantaneous evolu-
tionary rate at one year before the present) was randomly sampled from a
log-uniform distribution, ranging from 10�4 to 10�2 s/n/y. Fifty se-
quences were simulated to evolve over short timescales, spanning 10 to
1,000 years, and five sequences evolve over long timescales, ranging from
1,000 to 100 million years. The timescales were sampled from log-uniform
distributions. The total numbers of substitutions were counted and were
divided by their corresponding timescales to derive average substitution
rate estimates. If the simulation resulted in at least one zero rate estimate,
the simulation was rerun with a new sampled set of parameter values. To
model erroneous rate estimates, a portion of short-term substitution
numbers (20%, 40%, 60%, 80%, 100%) was shuffled before dividing by
time, breaking the correlation between the two. The rate estimates and
measurement timescales were log-transformed (base 10) and were fitted
to a linear function using the lm function, implemented in R, version 3.1.2
(34). One hundred simulations were performed for each setting (0%,
20%, 40%, 60%, 80%, 100% erroneous short-term rate estimates). We
then compared the distributions of the intercepts and slopes of the rate
decay curves obtained from simulations containing erroneous rates to
those obtained from the control simulation (0% erroneous rate estimates)
using Wilcoxon signed-rank tests, implemented in R, version 3.1.2 (34).

The P values were corrected by using the Bonferroni correction for mul-
tiple testing. In addition, we also performed sensitivity analyses exclu-
sively on short-term rate estimates to investigate the effects of erroneous
rates on the short-term TDRP analyses (�1,000 years).

Short-term TDRP analyses. Only the short-term rates of groups II,
IV, and V were used, since there were �10 phylogenetically independent
short-term rate estimates for groups I, VI, and VII in each data subset
(Table 1). The rate estimates and measurement timescales were log-trans-
formed (base 10) and were fitted to three different linear models as de-
scribed for the overall TDRP analyses. Parameter estimation, model com-
parison, and the construction of the distributions of estimated parameter
values were also conducted as described above.

Estimating lentiviral evolutionary timescales by using our TDRP
model. A phylogeny of lentiviruses was estimated from a manually cu-
rated integrase nucleotide alignment (420 nucleotides [nt], 34 sequences)
under the Bayesian phylogenetic framework by using BEAST, version
1.8.1 (35). We decided to use only the integrase region, because it is the
only region currently available for Bioko drill SIV (SIVdrl-Bioko)—the
sole lentivirus that provides the timescale information we used to calibrate
our TDRP model (GenBank accession no. HM363427; see below). The
alignment is available from the authors upon request. The Yule speciation
process was applied, and the strict clock assumption with a fixed rate of 1
was used to estimate the total per lineage substitutions (s). Since we were
interested only in the number of substitutions, and the phylogeny is not
directly time calibrated, a strict molecular clock is sufficient. The best-fit
nucleotide substitution models for each codon position, determined by
jModelTest, version 2.1 (36), under the Akaike information criterion with
a correction for finite sample sizes (AICc), were used [1st, GTR�I�	(4);
2nd, GTR�I�	(4); 3rd, TrN�	(4)]. African mainland drill SIV (SIVdrl)
and SIVdrl-Bioko were constrained to be monophyletic. The Markov
chain Monte Carlo (MCMC) was run for 50,000,000 steps. Parameters
were logged every 5,000 steps, and the first 10% were discarded as burn-in.
In total, 9,000 sets of posterior parameter estimates were obtained. Effec-
tive sample sizes of all parameters are �1,000, indicating that all param-
eters were well sampled and had converged.

We then simply converted the units of the branch lengths of each
Bayesian posterior phylogeny from s to time (t) by using our TDRP
model. The TDRP model states that log(r�) � log(s/t) � 
 � � log(t),
where “r�” is the average evolutionary rate estimate (27); therefore, we
can convert s to t simply by using the equation t � (s/10
)1/(� � 1).
Nonetheless, our results show that although the rate decay slopes (�)
do not differ significantly among viruses, the intercepts (
) do. Thus,
an 
 that is specific to lentiviruses is required in order to conduct these
analyses.

To calculate 
, which is equal to log(s) � (� � 1) log(t), we need � and
at least a pair of corresponding s and t estimates. Based on the separation
date of the African mainland and Bioko island, it has been proposed that
SIVdrl and SIVdrl-Bioko separated �10,000 to 11,000 years ago (32),
providing us with a timescale of the genetic divergence between SIVdrl

TABLE 1 Summary of the number of viral evolutionary rate estimates used in this study

Viral group Type of virus

No. of evolutionary rate estimates

Entire data set Each data subset

Short-term rate Long-term rate Total Short-term rate Long-term rate Total

Group I dsDNA virus 9 12 21 3–8 1–5 7–10
Group II ssDNA virus 45 2 47 9–12 1–2 11–13
Group IV (�)ssRNA virus 122 1 123 45 1 46
Group V (�)ssRNA virus 103 3 106 12–16 1 13–17
Group VI RT-RNA virus 69 16 85 1–4 1–6 5–7
Group VII RT-DNA virus 11 3 14 1 1 2

Total 359 37 396 71–85 6–15 84–95
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and SIVdrl-Bioko. In this study, we assumed that the SIVdrl/SIVdrl-
Bioko separation date is normally distributed, with a mean of 10,500 years
and a standard error of (10,500 � 10,000) years/1.96, or (11,000 �
10,500) years/1.96, which equals 255.10 years. For each of the estimated
Bayesian posterior trees, we first extracted the s estimate since the MRCA
of SIVdrl and SIVdrl-Bioko to the present (scal) and sampled one SIVdrl/
SIVdrl-Bioko split date (tcal) from the assumed normal distribution. We
then sampled one rate decay slope estimate (�) from the slope distribu-
tion, obtained from the overall TDRP analyses, and, in turn, computed
the 
 of the lentivirus-specific TDRP model using the relationship 
 �
log(scal) � (� � 1) log(tcal). The calibrated model, t � (s/10
)1/(� � 1), was
then used to compute the t estimates of other nodes given their s estimates.
This process was applied to all of the 9,000 posterior estimated trees in
order to obtain the full posterior distributions of t estimates.

RESULTS
TDRP among Baltimore classification viral groups. A total of
396 viral nucleotide substitution rate estimates were collected
from 133 studies for TDRP analyses (Table 1; Fig. 1A; Table S1 in
the supplemental material). The rates were sampled from all Bal-
timore classification viral groups except group III, since to our
knowledge, long-term rate estimates (computed over timescales
of �1,000 years) are not currently available for this group. We
demonstrated previously that a simple power law curve can em-
pirically describe the TDRP well for foamy viruses (27). We there-
fore use this model as the basis for our investigation. To do so, we
log-transformed (base 10) the rate estimates (r�) and their associ-
ated measurement timescales (t), and, in turn, fitted a linear
model to them for statistical analyses; i.e., log(r�) � 
 � � log(t)
(equivalent to the equation r� � 10
t�), where 
 is an intercept and
� is a slope.

As shown previously (26, 27), our analyses suggested that viral
evolutionary rate estimates are negatively correlated with their
measurement timescales (P value of �0.05 in 1,000/1,000 suba-
nalyses; combined P value, �0.001). Surprisingly, the slopes of the
rate decay (� estimates) do not differ significantly among viral
groups (P value of �0.05 in 27/1,000 subanalyses; combined P
value, 0.133) and are estimated to be ��0.65 (95% highest prob-
ability density [95% HPD] � �0.72, �0.57); i.e., for every 3-fold
increase in the measurement timescale, the value of the rate esti-
mate decreases by approximately half (�2.03�; 95% HPD �
1.86�, 2.21�).

Our analyses showed that, overall, the power law rate decay
model can describe the data well (median R-squared value [R2] �
0.89; 95% HPD � 0.85, 0.93). We found that the rate estimates
differ significantly among viral groups even when one adjusts for
the rate decay dynamics (P value, �0.05 in 1,000/1,000 subanaly-
ses; combined P value, �0.001). To determine the rate differences
among viruses, the intercepts of the models (
 estimates), which
represent rate estimates that are controlled for the timescale of
measurement (i.e., 10
 is equivalent to a rate that is estimated over
a period of 1 year), were compared. The results show the following
ranking of rates of viruses (expressed in units of s/n/y), from low-
est to highest: group I dsDNA viruses (4.36 � 10�4; 95% HPD �
1.24 � 10�4, 1.48 � 10�3), group VII RT-DNA viruses (8.12 �
10�4; 95% HPD � 7.30 � 10�5, 9.82 � 10�3) and group VI
RT-RNA viruses (1.12 � 10�3; 95% HPD � 2.71 � 10�4, 4.50 �
10�3) (approximately equal), group II ssDNA viruses (1.75 �
10�3; 95% HPD � 7.37 � 10�4, 4.09 � 10�3), group V (�)ssRNA
viruses (6.87 � 10�3; 95% HPD � 3.11 � 10�3, 1.46 � 10�2) and

group IV (�)ssRNA viruses (8.63 � 10�3; 95% HPD � 4.97 �
10�3, 1.45 � 10�2) (approximately equal) (Fig. 1B and C).

TDRP within viral genera. We noted that although the TDRP
exists at the level of the Baltimore classification viral groups, it is
possible that this might be merely an artifact, resulting from our
tendency to use fast-evolving and slow-evolving viruses for short-
term and long-term viral evolutionary studies, respectively. That
is, it is possible that viral evolutionary rate estimates may in fact be
independent of the rate measurement timescale at lower taxo-
nomic levels, with some lineages evolving more slowly or more
rapidly than others. However, due to our tendency to use fast- and
slow-evolving viruses for short-term and long-term viral evolu-
tionary studies, respectively, the TDRP may emerge as an artifact
at the level of the Baltimore classification viral groups, in which all
of these different rapidly and slowly evolving viruses were ana-
lyzed together.

To examine this possibility, we investigated the TDRP at the
level of viral genera to see whether the rate decay pattern still holds
or not. We performed the same TDRP analyses on seven viral
genera sampled across six viral groups, including the group I
dsDNA virus genera Simplexvirus and Varicellovirus, the group II
ssDNA virus genus Mastrevirus, the group IV (�)ssRNA virus genus
Tobamovirus, the group V (�)ssRNA virus genus Hantavirus, the
group VI RT-RNA virus Deltaretrovirus, and the group VII RT-
DNA virus genus Avihepadnavirus. These genera were chosen be-
cause the timescales of their rate measurement cover the longest
time span (in term of orders of magnitude). The rates of simplex-
viruses and varicelloviruses were combined for analysis because
there were not enough data points to be analyzed individually.
Note that these rate estimates are not phylogenetically indepen-
dent, and thus, the results should be interpreted with caution.

Our analyses show that the model can describe the data well
(R2 � 0.95), and that the TDRP still holds even at the level of viral
genera (P value, �0.001). The slopes of the rate decay curves do
not differ significantly among the genera (P value, 0.89) and are
estimated to be ��0.68 (95% HPD � �0.74, �0.62). Remark-
ably, this slope estimate is strikingly similar to the slope estimate
we obtained from the TDRP analyses at the level of viral groups
(��0.65; 95% HPD � �0.72, �0.57). These findings further
support our observation that the rate decay slopes do not differ
significantly among viruses and suggest, simultaneously, that the
TDRP at the level of viral groups is not an artifact emerging from
systematic biases in our tendency to use fast- and slow-evolving
viruses for short-term and long-term evolutionary studies, respec-
tively. Moreover, this finding also suggests that the problem of
phylogenetic nonindependency, although present in our data set,
does not greatly affect the analyses. By comparing the intercepts of
the models, we found that different viral genera evolve at different
rates (P value, �0.001), which may be ranked as follows (ex-
pressed in units of s/n/y), from lowest to highest: the group I genus
Simplexvirus/Varicellovirus (3.99 � 10�4; 95% HPD � 1.28 �
10�4, 1.24 � 10�3), the group VI genus Deltaretrovirus (6.94 �
10�4; 95% HPD � 3.05 � 10�4, 1.58 � 10�3), the group II genus
Mastrevirus (2.07 � 10�3; 95% HPD � 8.93 � 10�4, 4.82 � 10�3),
the group VII genus Avihepadnavirus (3.92 � 10�3; 95% HPD �
1.04 � 10�3, 1.47 � 10�2), the group IV genus Tobamovirus
(5.57 � 10�3; 95% HPD � 3.26 � 10�3, 9.52 � 10�3), and the
group V genus Hantavirus (1.13 � 10�2; 95% HPD � 5.88 �
10�3, 2.16 � 10�2) (Fig. 2). These results are largely consistent
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with the results obtained from the TDRP analyses at the level of
viral groups.

Sensitivity analyses. Despite the control of the rate measure-
ment methods, it is likely that some of the rate estimates may still
be erroneous, especially the short-term rate estimates, computed
from data sets that do not contain sufficient temporal structure. In
such a scenario, it is expected that the number of substitutions (s)
and t are independent of one another [i.e., s(t) � c, where c is a
constant], and thus, the relationship between r� and t is expected to
be as follows: r� � s/t � c/t; i.e., log(r�) � log(c) � log (t). Therefore,
the presence of erroneous short-term rate estimates can systemat-
ically bias the rate decay slope toward �1.

To evaluate the effects of these erroneous rate estimates on our
analyses, we simulated 50 short-term and 5 long-term substitu-
tion rate estimates under the TDRP model and replaced 20%,
40%, 60%, 80%, and 100% of the short-term rates with erroneous
rates, calculated from noncorrelated substitution numbers and

timescales (see Materials and Methods). The intercepts and slopes
of the rate decay curves were compared to those obtained from the
control simulation, in which all of the rates were simulated under
the TDRP model.

Our analyses reveal that the intercepts obtained from all
simulations largely overlap (Fig. 3, top right). The intercept
estimate (expressed in units of s/n/y) was 7.02 � 10�3 (95%
HPD � 1.08 � 10�3, 2.41 � 10�2) with 0% erroneous short-
term rate estimates, 6.09 � 10�3 (95% HPD � 1.12 � 10�3,
3.25 � 10�2) with 20%, 6.05 � 10�3 (95% HPD � 8.96 � 10�4,
2.89 � 10�2) with 40%, 7.03 � 10�3 (95% HPD � 1.43 � 10�3,
4.01 � 10�2) with 60%, 8.43 � 10�3 (95% HPD � 1.68 � 10�3,
4.19 � 10�2) with 80%, and 7.65 � 10�3 (95% HPD � 1.61 �
10�3, 4.46 � 10�2) with 100%. In fact, we could not detect biases
in the intercept estimates even when all of the short-term rates
were erroneous (when intercept estimates were compared against
the controlled intercept by the Wilcoxon test, P values were

FIG 2 Time-dependent rate phenomenon among viral genera. (A) The lines represent the best fit models; open red circles and solid line, group I genera
Simplexvirus and Varicellovirus; red plus signs and dashed line, group II genus Mastrevirus; blue plus signs and dashed line, group IV genus Tobamovirus; blue
crosses and long-dashed line, group V genus Hantavirus; open blue squares and dotted line, group VI genus Deltaretrovirus; open red squares and dotted line,
group VII genus Avihepadnavirus. (B) Complete pairwise comparisons of the intercepts of the rate decay curves (representing rate estimates controlled for a
1-year timescale of rate measurement). Vertical dotted lines indicate median estimates. The differences among intercepts were evaluated at a significance level of
0.05.
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�0.999 with 20% erroneous short-term rate estimates, �0.999
with 40%, 0.632 with 60%, 0.705 with 80%, and 0.428 with 100%).
We estimated the slopes to be �0.65 (95% HPD � �0.71, �0.55)
with 0% erroneous short-term rate estimates, �0.66 (95%
HPD � �0.74, �0.59) with 20%, �0.68 (95% HPD � �0.75,
�0.60) with 40%, �0.69 (95% HPD � �0.76, �0.62) with 60%,
�0.71 (95% HPD � �0.78, �0.63) with 80%, and �0.72 (95%
HPD � �0.81, �0.64) with 100% (Fig. 3, top left). The bias
showed only when there were �20% erroneous rate estimates (P
values were �0.001 with 40% to 100% erroneous rate estimates);
otherwise, it could not be detected (P value was 0.142 with 20%
erroneous rate estimates). Furthermore, even when the bias could
be detected, the effect was very small. For example, with 60%
erroneous rate estimates, the slope only changes by �0.04 with
respect to the slope obtained from the control simulation, chang-
ing from ��0.65 (95% HPD � �0.71, �0.55) to ��0.69 (95%
HPD � �0.76, �0.62). Even in the case of 100% erroneous short-
term rates, the biased slope distribution still largely overlaps with
that obtained from the control simulation. Combined, these re-
sults suggest that our TDRP analyses are extremely robust against
erroneous rates derived from data sets containing insufficient
temporal structure.

We also performed sensitivity analyses exclusively on short-
term rate estimates. We found that in this case, erroneous short-
term rate estimates can severely bias the TDRP curve. As expected,
as the number of erroneous rate estimates increased, the slope
was increasingly biased toward �1 (Fig. 3, bottom left). Slope
estimates were �0.71 (95% HPD � �0.82, �0.62) with 20%
erroneous short-term rate estimates, �0.78 (95% HPD �
�0.92, �0.71) with 40%, �0.84 (95% HPD � �0.97, �0.73)
with 60%, �0.94 (95% HPD � �1.02, �0.83) with 80%, and
�1.01 (95% HPD � �1.10, �0.87) with 100% , all of which are

significantly different from the controlled slope (�0.65; 95%
HPD � �0.73, �0.55; P values were �0.001 for all compari-
sons). The intercept also became more and more overestimated
(Fig. 3, bottom right). The intercept estimate (expressed in
units of s/n/y) was 6.88 � 10�3 (95% HPD � 9.56 � 10�4,
2.48 � 10�2) with 0% erroneous short-term rates, 7.34 � 10�3

(95% HPD � 1.37 � 10�3, 4.10 � 10�2) with 20%, 9.24 � 10�3

(95% HPD � 2.14 � 10�3, 6.23 � 10�2) with 40%, 1.36 �
10�2 (95% HPD � 2.39 � 10�3, 6.98 � 10�2) with 60%, 2.12 �
10�2 (95% HPD � 3.91 � 10�3, 1.14 � 10�1) with 80%, and
2.86 � 10�2 (95% HPD � 5.37 � 10�3, 1.63 � 10�1) with 100%.
When the intercept estimates were compared with the controlled
intercept, the P value was 0.350 with 20% erroneous rate esti-
mates, 0.015 with 40%, and �0.001 with 60% to 100%.

Short-term TDRP. We also performed TDRP analyses exclu-
sively on the short-term rate estimates in order to examine
whether or not the pattern we observed in the overall TDRP anal-
yses still holds. Groups I, VI, and VII were not included, however,
because there were only strictly less than 10 phylogenetically in-
dependent short-term rates for these groups in each data subset
(Table 1). Again, our analyses showed that the short-term rates
are negatively correlated with their measurement timescales (P
value, �0.05 in 840/1,000 subanalyses; combined P value,
�0.001). The slope was estimated to be �0.49, slightly greater
than the slope obtained from the overall TDRP analyses (�0.65;
95% HPD � �0.72, �0.57), with a much greater uncertainty
(95% HPD � �0.93, �0.06). Consistent with this is a low R2 score
of 0.26 (95% HPD � 0.10, 0.41). This is expected, however, since
the variance of the rate estimates is extremely high with respect to
the narrow range of the rate measurement timescales (Fig. 4). In
fact, it is very striking that the rate decay pattern could still be
observed even over a timescale of �1,000 years. Our analyses show

FIG 3 Effects of erroneous short-term rate estimates derived from noncorrelated substitution numbers and timescales of rate measurement on the rate decay
curve inference. Simulations were used to examine how the presence of erroneous short-term rate estimates may bias the time-dependent rate phenomenon
(TDRP) analyses, assuming a nonhomogeneous Poisson evolutionary process and a power law rate decay curve. Left and right graphs show slope and intercept
estimates, respectively, of the rate decay curve, computed in the presence of 20%, 40%, 60%, 80%, and 100% erroneous short-term rate estimates. Top and
bottom graphs show how the erroneous short-term rates affect overall and short-term TDRP curves, respectively. The intercept and slope of the rate decay curve
obtained from control simulations (0% erroneous rate estimates) were used as controls.
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that the short-term rate decay slopes do not differ significantly
among viral groups (P value of �0.05 in 24/1,000 subanalyses;
combined P value, 0.656). The temporally adjusted rate esti-
mates (expressed in units of s/n/y) are also clearly different
among viruses (P value of �0.05 in 963/1,000 subanalyses;
combined P value, �0.001); those of group II ssDNA viruses
(1.16 � 10�3; 95% HPD � 2.35 � 10�4, 5.36 � 10�3) are less than
those of group V (�)ssRNA viruses (4.34 � 10�3; 95% HPD �
1.02 � 10�3, 2.02 � 10�2), which are approximately equal to
those of group IV (�)ssRNA viruses (5.14 � 10�3; 95% HPD �
1.03 � 10�3, 2.54 � 10�2) (Fig. 4). These findings are consistent
with the results obtained from the overall TDRP analyses.

Case study: reestimating the time scale of evolution of lenti-
viruses. Lentiviruses are a group of medically important viruses
whose evolutionary history has been studied extensively. Never-
theless, there is still little consensus regarding when lentiviruses
originated. In fact, estimating the origin of lentiviruses from ex-
tant viral molecular sequences has long been one of the most dif-
ficult challenges in lentiviral evolutionary biology. For example,
while paleovirological analyses strongly support an age of millions
of years for SIVs (28, 29), all previous standard molecular analyses
of modern SIVs consistently estimated their age to be at most tens
of thousands of years old (8, 30–32). This is likely due to the fact
that the TDRP was not accounted for in previous molecular anal-
yses. Indeed, the TDRP has been noticed in lentiviruses (26), but
their TDRP-corrected age estimate has not been inferred. Here we
illustrate the use of our TDRP model by reestimating the time
scale of lentiviruses.

We first estimated a phylogeny of extant lentiviruses from their
integrase coding regions under the Bayesian phylogenetic frame-
work and a strict molecular clock assumption (Fig. 5). The rate

was fixed to 1, and thus, the node heights were expressed in units
of substitutions per site. We then simply converted the units of
branch lengths from substitutions per site to times by using our
TDRP model. The rate decay slope was sampled from the slope we
obtained from the overall TDRP analyses. The lentivirus-specific
intercept was calibrated by using the separation date of African
mainland drill SIVs (SIVdrl) and Bioko drill SIVs (SIVdrl-Bioko),
which was �10,000 to 11,000 years ago (32) (see Materials and
Methods).

The intercept of the lentivirus-specific TDRP curve was calcu-
lated to be ��2.20 (95% HPD � �2.54, �1.83). This result
implies that the short-term rate of lentiviruses (calculated over a
1-year period) is �6.34 � 10�3 (95% HPD � 2.86 � 10�3, 1.48 �
10�2) s/n/y, comparable to the established short-term rate of len-
tiviral evolution (10, 37–40). We then used this model to compute
the timescales of other nodes (Fig. 5). Note that since the curve is
calibrated by a geographical separation date, which likely post-
dates the actual SIVdrl/SIVdrl-Bioko speciation date (32), our
lentiviral evolutionary time scale estimates should be interpreted
as lower-bound estimates.

Our analyses suggest that lentiviruses as a whole have an an-
cient origin and are �15.9 (95% HPD � 1.03, 96.9) million years
(Myr) old. We also estimated SIVs to be �2.57 (95% HPD � 0.35,
10.9) Myr old, feline immunodeficiency viruses (FIVs) to be
�1.63 (95% HPD � 0.27, 6.50) Myr old, and the MRCA of SIVs
and FIVs to be �10.1 (95% HPD � 1.07, 55.8) Myr old. The
uncertainties of the age estimates are large, however, spanning �2
orders of magnitude. We believe that this is caused partly by the
fact that we used a short nucleotide alignment in our analyses
(integrase [420 nt]). Our alignment was limited to the integrase
region, since this is the only region currently available for SIVdrl-

FIG 4 Short-term time-dependent rate phenomenon among viral groups. (A) Gray lines represent 1,000 individual best-fit models, where the slopes are the same
across all viral groups. Red or blue lines represent models that are parameterized by median parameter estimates: red plus signs and dashed line, group II ssDNA
viruses; blue plus signs and dashed line, group IV (�)ssRNA viruses; blue crosses and long-dashed line, group V (�)ssRNA viruses. (B) Complete pairwise
comparisons of the intercepts of the rate decay curves (representing rate estimates controlled for a 1-year timescale of rate measurement). Vertical dotted lines
indicate median estimates. The differences among intercepts were evaluated at a significance level of 0.05.
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Bioko—the only lentivirus that provides the timescale calibration
information in our analyses. Note that, in our case, expanding the
alignment would not alleviate the problem. This is because
the SIVdrl-Bioko sequence would still be mostly blank, and thus,
the uncertainty of its substitution estimate, with which the TDRP
model was calibrated, would still be high. Furthermore, expand-
ing the alignment would likely bias the mean estimates of the
timescales as well. A longer sequence of SIVdrl-Bioko is required
to overcome this particular problem and, in turn, to increase the
precision of the date estimates.

DISCUSSION

The last decade or so has seen several studies and reviews reporting
and discussing the discrepancies among viral rate estimates that
are calculated over different time frames (24, 26, 27, 32, 41, 42).
The recurring theme is that, as can be seen in Fig. 1A, viral short-
term rate estimates (typically calculated from heterochronous
molecular data sets) tend to be much greater than long-term rate
estimates (usually inferred based on the virus-host cospeciation
assumption or on geographical separation dates). Indeed, it has
been observed that viral evolutionary rate estimates are systemat-
ically negatively correlated with the time scale of rate estimation,
continuously decreasing as the measurement time scale increases
(25–27). Duchêne et al. (26) demonstrated this phenomenon in
both RNA and DNA viruses by fitting separate regressions onto
them a priori, and analyses of foamy viruses indicate that this
phenomenon can be empirically described very well by a power
law curve (27). In this study, we used the power law model as our
basis for further investigation of this time-dependent rate phe-

nomenon (TDRP) at a finer taxonomic scale, across different Bal-
timore classification viral groups and genera. We also statically
compared how the TDRP dynamics of different viruses differ
from one another.

We found that the TDRP holds both at the level of viral groups
(Fig. 1) and at the level of genera (Fig. 2) and that the power law
models can describe the phenomenon well, as indicated by high R2

scores. Our sensitivity analyses show that overall, the inference of
the rate decay curve is extremely robust against erroneous short-
term rate estimates, derived from data sets with weak temporal
signals (Fig. 3, top). This robustness likely comes from the fact that
the sampling times of the short-term rates are relatively short
(�1,000 years) compared to the timescales of the overall TDRP
examination (100 Myr). This result also suggests that the differ-
ence between short-term and long-term rate estimates is likely the
main factor that drives the inference of the overall TDRP slope.
This robustness, however, raises a particular concern, which is
that the TDRP we observed here could be driven by only a few
long-term rate estimates and, in the worst-case scenario, that the
majority of the short-term rates we used in our analyses are erro-
neous, calculated from data sets with no temporal signal. Never-
theless, our sensitivity analyses show that erroneous short-term
rates can severely bias the short-term TDRP curve estimation (Fig.
3, bottom). However, we found that the TDRP could still be de-
tected even among short-term rate estimates and that the results
from the short-term TDRP analyses are all consistent with those
obtained from the overall TDRP analyses (Fig. 4). This indicates a
temporal structure for the short-term rate estimates and suggests
that our analyses likely contain only a few erroneous short-term

FIG 5 Lentivirus phylogeny and evolutionary timescale. (Left) Maximum clade credibility phylogeny of lentiviruses. The tree was estimated in the Bayesian
phylogenetic framework under a strict clock assumption with a fixed rate of 1. The branch lengths and scale bar are in units of substitutions per site. The numbers
on nodes are node heights in units of substitutions per site. The corresponding 95% highest posterior density intervals (HPDs) are given in parentheses. Asterisks
indicate nodes with posterior support of �0.85. The split between SIVdrls and SIVdrl-Bioko (�10,000 to 11,000 years ago), which was used to calibrate the
lentivirus-specific TDRP model, is circled. (Right) Time-calibrated lentivirus tree. The numbers on nodes are node heights in units of years before the present,
inferred by using our TDRP model. Corresponding 95% HPDs are given in parentheses. The branch lengths and scale bar are also in units of millions of years
(Myr).
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rate estimates, if any. This finding also shows that our overall
TDRP analyses were not driven solely by a few long-term rate
estimates and that the rate decay slope is indeed stable across all
timescales.

Many factors have been put forward as underlying causes of the
TDRP (for a review, see reference 25). Nevertheless, the fact that
the TDRP can be found across all viruses suggests that it is a result
of natural phenomena that all viruses encounter. There are a wide
range of evolutionary scenarios that all viruses are expected to
encounter, which can lead to depressed long-term substitution
rate estimates and inflated short-term rate estimates, and hence
have the potential to explain the TDRP. For example, despite their
large diversity in biological features, life histories, and replication
strategies, all viruses experience repeated bottlenecking transmis-
sion events, which can lead to the accumulation of deleterious
mutations within viral genomes (43–45). It is also clear that all
viruses have highly subdivided population structures. This means
that slightly defective viruses within one subpopulation (e.g.,
within a host individual or a group of individuals within a trans-
mission network) might not be immediately outcompeted by
their slightly fitter relatives in different subpopulations, exacer-
bating the accumulation of deleterious mutations (46, 47). It is
therefore expected that deleterious mutations can persist within
viruses (as a species) for significant amounts of time, causing rates
estimated over short timescales (i.e., toward the present) to be
systematically overestimated. In contrast, the long-term rate of
viral evolution is a product of coevolution between viruses and
their slowly evolving hosts, constrained by many molecular fea-
tures needed for proper biological functions and host interaction,
such as overlapping reading frames, secondary structure, and re-
gions with multiple functions (48). These strong evolutionary
constraints are expected to result in extensive site saturation and
convergent evolution (48). This, in turn, can lead to systematically
underestimated long-term rate estimates. Overall, given that the
TDRP is a prevalent evolutionary feature of viruses, we hypothe-
size that the bottlenecking nature of viral transmission, highly
subdivided population structure, and substitution saturation are
the main drivers of the TDRP.

Surprisingly, all of our analyses reveal that the speeds at which
the rates decay do not differ significantly among viruses despite
their vast diversity in replication strategies, molecular features,
and evolutionary histories. This uniformity of the rate decay
slopes suggests that, irrespective of their biological and molecular
features, all viruses may experience the same degrees of popula-
tion subdivision and bottlenecking. Moreover, this finding may
also suggest that the degree of substitution saturation might be the
same across all viruses. The most parsimonious form of this hy-
pothesis predicts that all viral genomes might have similar propor-
tions of conserved, neutral, and adaptive sites. Indeed, it has been
shown that poor modeling of rate heterogeneity among sites can
cause rate estimates to appear to be time dependent (49). It is
therefore possible that the TDRP might be caused partially by the
proportions of conserved, neutral, and adaptive sites being poorly
modeled by our current methods. Examination of these hypothe-
ses will require experiments that elucidate how population subdi-
vision, bottlenecking, and the proportions of conserved, neutral,
and adaptive sites affect the measurement of evolutionary rates.

We want to emphasize that the TDRP is likely only an apparent
phenomenon—that the actual rate of substitution fixation within
viral species is time independent but appears to vary over time,

likely due to the presence of transient deleterious mutations
(which inflate short-term rate estimates) and substitution satura-
tions (which deflates long-term rate estimates) (24, 25, 27). Lying
between the two extreme ends of short-term/long-term rate esti-
mates is an effective (apparent) rate that matches the true time-
independent rate of viral evolution, resulting from a balance be-
tween the presence of site saturations and transient deleterious
mutations within viral genomes. It is likely that these true rates of
viral evolution differ between viral lineages; after all, the replica-
tion strategies, molecular characteristics, and evolutionary histo-
ries of these highly distinct viruses are drastically different, and
these should in some ways influence their (actual) substitution
rates. On the other hand, it is expected that viruses with similar
biology and molecular features should have similar evolutionary
rates. It is therefore surprising to see emerging evidence showing
that the difference in viral evolutionary rates is extremely large
even among viruses of the same type (11, 12) and that the bound-
ary between the rates of DNA and RNA viruses is very blurry to the
point that there may be no strict division between the two (13, 14).
Our analyses show, for the first time, that the TDRP can explain a
large portion of this variance, and the boundary between the rates
of different viruses becomes more apparent once the TDRP is
accounted for.

Our analyses show that our TDRP model can account for
�90% of the variance within the rate estimates (R2, 0.89 for TDRP
among viral groups and 0.95 for TDRP among viral genera), and
after adjusting for the TDRP, we found that dsDNA viruses evolve
more slowly than ssDNA viruses and reverse transcribing (RT)
viruses, which, in turn, evolve more slowly than ssRNA viruses
consistently across all analyses (Fig. 1C and 2B). These findings are
consistent with the experimental observations that (i) DNA is
more chemically stable than RNA (50), (ii) single-stranded nu-
cleic acids have higher instability than double-stranded nucleic
acids (51), and (iii) the replication fidelity of DNA polymerase is
higher than that of reverse transcriptase, which, in turn, is higher
than that of RNA polymerase (13, 52). Our results also greatly
resemble the observations that the mutation rates of dsDNA vi-
ruses are lower than those of ssDNA viruses and RT viruses,
which, in turn, are lower than those of RNA viruses (11, 53).
Together, our findings support the notion that there indeed exists
a clear basic division between the rates of evolution of dsDNA
viruses, ssDNA/RT viruses, and ssRNA viruses and that this can be
explained very well by differences in molecular biology among
viruses.

One of the most important implications of the TDRP is that
naïvely extrapolating evolutionary rate estimates across different
timescales for evolutionary inferences can severely bias the analy-
ses (26, 27). One of the best-known cases of this is perhaps the
severe underestimation of lentiviral evolutionary timescales by
standard phylogenetic analyses. Our TDRP model may offer a
partial solution to this problem, allowing us to reconcile the long-
term and short-term viral evolutionary studies. To illustrate this,
we used our model to reestimate the ages of various lentiviral
groups (Fig. 5).

Our analyses estimate that lentiviruses are millions of years old,
and the date estimates are highly consistent with paleovirological
evidence and the knowledge of lentiviral host migration. SIVs
were previously estimated to be at most tens of thousands of years
old by phylogenetic analyses that did not account for the TDRP
(32). Our TDRP model, on the other hand, estimated SIVs to
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be �2.57 (95% HPD � 0.35, 10.9) Myr old. Compared to
previous age estimates, our estimate fits much better with paleo-
virological evidence that suggests that SIVs are many millions of
year old (28). We also estimated FIVs to be �1.63 (95% HPD �
0.27, 6.50) Myr old. Based on the geographical distribution of
FIVs, Troyer et al. (54) proposed that modern FIVs likely origi-
nated before the last time felids crossed the Bering Strait, in the late
Pliocene (�2.58 Myr ago) to early Pleistocene (�1.80 Myr ago)
epoch (55). Our estimate fits very well with this knowledge of felid
migration. Furthermore, previous phylogenetic analyses revealed
that a gray mouse lemur endogenous lentivirus (pSIVgml) is em-
bedded within the clade of SIVs and FIVs (29), and it is �4 Myr
old (56). This places a lower-bound estimate of the time to the
MRCA (tMRCA) of SIVs and FIVs at 4 Myr. Again, our result is
consistent with this finding, suggesting that the tMRCA of SIVs
and FIVs is �10.1 (95% HPD � 1.07, 55.8) Myr. Last, we esti-
mated lentiviruses as a whole to be �15.9 (95% HPD � 1.03, 96.9)
Myr old. This is congruent with the results from analyses of or-
thologous rabbit-hare endogenous lentiviruses, which suggested
that lentiviruses are �12 Myr old overall (57).

It is also noteworthy that, based on the observed basal phylo-
genetic placement of pSIVgml within SIVs, an ancient cospecia-
tion between primates and lentiviruses has also been proposed,
implying that primate lentiviruses are 85 Myr old (29). Our esti-
mated tMRCA for SIVs and FIVs, at 10.1 Myr, is much more
recent than that date. However, it should be noted that this date
estimate is a lower-bound estimate, since our model was cali-
brated with a lower-bound viral speciation date. Furthermore,
given the limited number of basal viral lineages in our analyses, it
is possible that the number of substitutions of basal branches, and
therefore deep evolutionary timescales, might still be significantly
underestimated due to site saturation. We therefore consider that
it is too early to reject this hypothesis. Further investigation with
more basal lentiviral sequences may resolve this conundrum.

Overall, our results support the predictive value of our TDRP
model and suggest that our model is useful as a guideline for
further improvement of current evolutionary analytical tools. To
the best of our knowledge, this is the first demonstration of an
ancient origin of lentiviruses by phylogenetic analyses of extant
viruses, closing the gap between ancient and recent viral evolu-
tion. Nonetheless, we note the large uncertainties of our lentiviral
age estimates, spanning �2 orders of magnitude (Fig. 5). Rather
than representing intrinsic problems of the model, we believe that,
in addition to a short nucleotide alignment, this highlights the
inherent difficulties in working with the small number of data
points available for calibrating the model and extrapolating rate
estimates across large timescales. This problem could be partially
overcome by developing a TDRP model under a full Bayesian or
maximum likelihood phylogenetic framework. Such a model
would allow us to fully integrate and control the prior distribu-
tions of the rates, timescales, and substitutions, as well as to jointly
estimate the parameters, thereby increasing precision.
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