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Abstract
Disturbances in gastrointestinal (GI) microbiota could play a significant role in the development of GI cancers, but the 
underlying mechanisms remain largely unclear. While some bacteria seem to facilitate carcinogenesis, others appear to 
be protective. So far only one bacterium (Helicobacter pylori) has been classified by the International Agency for Cancer 
Research as carcinogenic in humans but many other are the subject of intense research. Most studies on the role of microbiota 
in GI tract oncogenesis focus on pancreatic and colorectal cancers with the following three species: Helicobacter pylori, 
Escherichia coli, and Porphyromonas gingivalis as likely causative factors. This review summarizes the role of bacteria in 
GI tract oncogenesis.
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Colorectal

Introduction

Cancer is currently a major world-wide health problem: it 
is estimated that approximately 18.1 million new cancer 
cases and 9.6 million cancer-related deaths occurred in 2018 
alone, and there is a 20% risk of developing cancer before 
turning 75 years old, and 10% risk of dying from it (Ferlay 
et al. 2019). Infectious agents are estimated to be responsi-
ble for 17.8% of all cancers; specifically, viruses could be 
responsible for 12.1%, bacteria for 5.6% and helminths for 
0.1% of cases (de Martel et al. 2012; Parkin 2006). In con-
trast to viral-related oncogenesis, very little is known about 
the role of bacteria in cancer development; however, it is 
likely that understanding the long-term effects of changes in 

gastrointestinal (GI) microbiota composition could facilitate 
the development of cancer preventive strategies (Chang and 
Parsonnet 2010). Bacteria may also be involved in carcino-
genesis indirectly by modulating local and systemic immune 
responses, which are crucial for the development of the GI 
tract cancers (Velikova et al. 2021).

The human GI microbiota, defined as the ecological 
community of microorganisms (Wei et al. 2019), plays a 
plethora of beneficial roles including detoxification, reduc-
tion of inflammation, and balancing of host cell prolifera-
tion and growth (Garrett 2015). The microbiota colonizes 
GI tract shortly after birth and remains for the whole life, 
but it can undergo dynamic changes related to such factors 
as diet, environmental stressors, lifestyle, antibiotics, and 
other drugs (Wei et al. 2019). Bacteria living in the human 
gut achieve the highest documented cell concentration 
for any ecosystem  1011–1012 per mL (Hu et al. 2016) and 
Bacteroidetes and Firmicutes are the two dominant phyla 
in the stool microbiome (Leite et al. 2020). Altogether, 11 
microorganisms were named by the International Agency for 
Cancer Research as carcinogenic to humans including only 
one bacterium (Helicobacter pylori) (de Martel et al. 2012; 
Garrett 2015). Despite the fact that colonization by these 
microbes is widespread, only a minority of people develop 
cancer in their lifetime due to multifactorial nature of onco-
genesis (Garrett 2015).
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GI microbiota varies between individuals, but the most 
common phyla in healthy people are Firmicutes and Bac-
teroidetes (Lloyd-Price et al. 2016; Lukovic et al. 2019). 
The GI microbiota, by its interaction with the host, plays an 
important role in maintaining health but it can also facili-
tate disease development (Hold and Hansen 2019). In ani-
mal models of gut dysbiosis, defined as a shift in microbial 
composition and function (Fond et al. 2015), it may affect 
such organs as the brain, lungs, and kidneys (Lukovic et al. 
2019). Due to the high prevalence of GI cancers, relatively 
well-known effects of gut microbiota composition on GI 
tract functioning and easy access to fecal sampling, the most 
studies on the bacterial role in oncogenesis relate to the gut.

Gut microbes may not only play a role in stimulating 
carcinogenesis, but also in cancer prevention, and may 
even modulate cancer treatment effectiveness including, 
chemo-, immuno-, and radiotherapy (Kashyap et al. 2021). 
The potential role of gut microbiota in cancer development 
is supported by findings that fecal microbiota transplanta-
tion from mice with chemically induced colorectal cancer 
to germ-free mice markedly increases susceptibility of the 
latter to colonic tumorigenesis (Baxter et al. 2014).

Importantly, the effects of microbiota on cancer develop-
ment may be contradictory as some bacteria were reported 
to facilitate, while others seem to oppose carcinogenesis 
in the GI tract (Garrett 2015). For example, Baxter et al. 
(2014) found in mice models that several members of the 
Bacteroidales (Bacteroides, Parabacteroides, Alistipes, and 
Porphyromonodaceae) correlated positively with tumor 
development, while members of the Clostridiales, especially 
Clostridium Group XIVa, were associated with decreased 
cancer risk, probably due to the production of butyrate, 
which has anti-inflammatory and anti-tumorigenic proper-
ties (Pryde et al. 2002).

Multiple mechanisms were proposed to explain bacteria-
related oncogenesis and it seems that bacteria can affect 
both the initiation stage of tumour development as well as 
facilitate its further growth. Obviously, microbiota could 
promote cancer development and progression simultane-
ously, as demonstrated in a colorectal (CRC) mouse model 
in which gut microbiota changes, which occurred during 
tumorigenesis, supported increased tumorigenic process in 
the later stages (Baxter et al. 2014).

It was proposed that carcinogenicity is mainly attributed 
to microbial dysbiosis (Meng et al. 2018). Two of the best 
characterized mechanisms of bacterial-related carcino-
genesis are chronic inflammation and production of toxic 
metabolites. Inflammation is a well-established risk factor 
for many cancers, including CRC (Balkwill and Mantovani 
2001). The evidence for an important role of microbiota 
in regulating immune response is provided by interleukin 
(IL)-10 knock out mice (Il10−/−), which develop spontane-
ous colitis due to microbial-induced activation of effector T 

cells (Kuhn et al. 1993). In the study by Uronis et al. (2009), 
germ-free  Il10−/− mice were bred in specific pathogen-free 
conditions for 20 weeks and then exposed to azoxymethane, 
which is a carcinogenic and neurotoxic chemical compound. 
In this experiment 62% of  Il10−/− animals developed colon 
tumors compared to only 20% of the wild-type mice. Various 
mechanisms by which GI microbiota could contribute to GI 
cancers are listed in Table 1.

Research on the role of specific bacteria and interactions 
between the host and microbiota in oncogenesis is progress-
ing rapidly and is likely to provide new opportunities for 
cancer prevention and therapy (Garrett 2015). This review 
summarizes the current knowledge on the bacterial role in 
GI oncogenesis.

Comprehensive summary of the relationship between spe-
cific bacteria and GI tract cancers including short character-
istics of bacteria and possible mechanism of carcinogenesis 
are presented in Table 2.

Gut Microbiota in GI Cancer

Oral Cancer

Oral cancer is one of the most prevalent cancers globally 
(Zhang et al. 2019b) and its most common form (> 90%) 
is the squamous cell carcinoma (OSCC) (Kademani 2007). 
Oral microbiota in patients with OSCC are characterized 
by the increased prevalence of anaerobic and acid-resistant 
bacteria (Porphyromonas gingivalis, Streptococcus mitis, 
Fusobacterium), Firmicutes (mainly Streptococcus), and 
Actinobacteria (mainly Rothia) (Hooper et al. 2006, 2007).

Zhang et al. (2019b) examined microbiota composition in 
various stages of OSCC in three different types of samples: 
neoplastic tissue collected during surgery, saliva, and mouth-
wash. The study revealed significant differences between the 
samples in bacterial quantity and diversity: In particular Pro-
teobacteria were elevated in the cancer tissue (predominant 
taxa Acinetobacter and Fusobacterium), while Firmicutes 
predominated in saliva and mouthwash (predominant taxa 
Streptococcus and Prevotella). Interestingly, Acinetobacter 
and Fusobacterium, which were enriched in the neoplas-
tic tissue, remained increased in the late stage of OSCC 
facilitating cancer progression by their ability to cause local 
inflammation. Zhang et al. (2019b) performed a series of 
functional analyses demonstrating that microbiota might be 
involved in lipopolysaccharides (LPS) synthesis and escape 
of host cell cycle arrest which are potential risk factors for 
OSCC. Importantly, LPS was described as an effector facili-
tating transformation of oral epithelial cells into cancer cells 
(Gholizadeh et al. 2017). These authors found that microbi-
ota found in the saliva damage the environment by penetrat-
ing cells and secreting toxins (Zhang et al. 2019b). It was 
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Table 1  Mechanisms by which GI microbiota could contribute to GI cancers

IL interleukin, CRC  colorectal cancer, TNF-α tumor necrosis factor-α, NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells, LPS 
lipopolysaccharides, HCC hepatocellular carcinoma, GI gastrointestinal, lncRNA long non-coding RNA, STAT  signal transducers and activator 
of transcription, DNMT DNA methyltransferase, lncRNA long non-coding RNA

Mechanism of action Example References

Chronic inflammation IL-1, IL-6, TNF-α, IL-23, and reactive oxygen species 
could promote CRC development by enhancing DNA 
damage in epithelial cells; these cytokines activate 
NF-κB, Wnt signaling and mitogen-activated protein 
kinases pathways and cause apoptosis inhibition and 
increased oxidative stress

Arthur et al. (2012) and Klampfer (2011)

IL-6 and IL-11 could sensitize signal transducer and 
activator STAT3, which plays an important role in trans-
forming epithelial cells

Putoczki et al. (2013)

Increasing intestinal permeability allows for leakage 
into circulation of antigens which activate the immune 
system

Critchfield et al. (2011), Elson and Alexander (2015), 
Fond et al. (2015) and Karakula-Juchnowicz et al. 
(2016)

Since the innate immune system can recognize such bac-
terial components as LPS, flagellin and peptidoglycan, 
gut microbiota dysbiosis can influence innate and adap-
tive immune responses involved in the tumor formation 
process

Meng et al. (2018), Palm et al. (2015) and Vijay-Kumar 
and Gewirtz (2009)

Bacterial metabolites Obesity in mice can result in the increased growth of 
Clostridia spp. producing deoxycholic acid, which can 
cause DNA damage and thus promote development of 
HCC

Yoshimoto et al. (2013) and Raza et al. (2019)

Induction of such hormones as somatostatin or gastrin, 
which increase epithelial cell growth, may affect the bal-
ance between host cell proliferation and death favour-
ing the former, while production of toxic carcinogenic 
metabolites by bacteria may affect various cells and 
consequently lead to cell transformation

Chang and Parsonnet (2010) and Garrett (2015)

Colibactin produced by Bacillus fragilis and E. coli and 
cytolethal distending toxin made by E. coli, Salmonella 
typhi and H. pylori facilitate carcinogenesis by causing 
transient DNA damage, which is followed by cell divi-
sions with incomplete DNA repair resulting in anaphase 
bridges and chromosome aberrations

Cuevas-Ramos et al. (2010) and Raza et al. (2019)

Horizontal gene transfer could result in transmission of 
oncogenes between pathogenic and commensal bacteria

Stecher et al. (2012)

The gut dysbiosis may result in the increase of such bacte-
rial metabolites as acetaldehyde, secondary bile acid, 
and glucuronic acid, which together with enzymes and 
immune factors activated by microbes were proposed as 
potential biomarkers for GI cancers

Kashyap et al. (2021)

Epigenetic modifications Gastritis with H. pylori infection is associated with 
hypermethylation of the promoter region of E-cadherin, 
the DNMT MGMT, the Wnt inhibitor WIF1, and the 
MLH1 gene

Fusobacterium nucleatum was correlated with wild-type 
tumor suppressor TP53, methylation of the mismatch 
repair gene hMLH1, genomic hypermutation, and muta-
tion of the chromatin remodelers CHD7/8

Kawanaka et al. (2016) and Tahara et al. (2014)

Histone modifications: bacterial presence resulted in 
changes in histone acetylation in the proximal colon of 
wild-type mice

Krautkramer et al. (2016)

In germ-free mice reconstituted with normal mouse 
microbiota or with E. coli, the lncRNA expression 
profiles are affected by gut flora

Liang et al. (2015)
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also reported that F. nucleatum infections may cause cancer 
through their effect on MMP9 pathways and upregulation of 
cytokines such as tumor necrosis factor (TNF)-α, IL-1β, and 
IL-6 (Whitmore and Lamont 2014).

Esophageal Cancer

Esophageal cancer is the eighth most commonly diagnosed 
cancer worldwide (Parkin et al. 2005) and esophageal adeno-
carcinoma (EAC) accounts for more than 60% of esophageal 
cancers in the United States (Jain and Dhingra 2017). The 
only established precursor of EAC is Barrett’s esophagus 
(BE) (Lopetuso et al. 2020). Normal esophagus flora consist 
mainly of Firmicutes, especially Streptococcus (Baba et al. 
2017), but chronic inflammation associated with gastroe-
sophageal reflux disease may result in the increase of Gram-
negative organisms such as Prevotella and Fusobacterium 
(Yang et al. 2009). In turn, LPS of these bacteria may acti-
vate the innate immune system facilitating the development 
of EAC through inflammatory cytokines IL-8 and TNF-α 
(Abdel-Latif et al. 2004; O'Riordan et al. 2005).

Lopetuso et al. (2020) found that BE and EAC patients 
have higher number of Operational Taxonomic Units and 
biodiversity when compared to healthy controls. They also 
observed a progressive reduction of Firmicutes to Bacteroi-
detes ratio during transition from BE to EAC and an increase 
of Leptotrichia, Veillonella and Prevotella, which are con-
sidered to be pro-oncogenic (Bundgaard-Nielsen et al. 2019; 
Castano-Rodriguez et al. 2017; Geng et al. 2014; Guerrero-
Preston et al. 2016).

There are contradictory reports regarding the association 
between EAC and H. pylori infection. On the one hand, it 
was found that H. pylori can protect against EAC by decreas-
ing gastric acid production (Bonde et al. 2021). On the other, 
Bonde et al. (2021) reported that H. pylori infection may 
dysregulate micro RNAs expression and subsequently mod-
ify intestinal metaplasia factors such as caudal-type home-
obox 2 and cyclooxygenase-2.

Interestingly, the role of Campylobacter in EAC progres-
sion may mimic that of H. pylori in gastric cancer (Baba 
et al. 2017), and colonization by this bacteria results in 
increased expression of cancerogenic IL-18 (Blackett et al. 
2013). In the esophagojejunostomy rat model, the antibiotic 
treatment resulted in the reduction of Lactobacillales and 
increase of Clostridium, but these shifts in the esophageal 
microbiome did not affect the incidence of EAC (Sawada 
et al. 2016).

Primary Gastric Lymphomas

Primary gastric lymphomas constitute approximately 2–8% 
of all gastric tumors and one type in particular – marginal 
zone lymphoma of mucosa-associated lymphoid tissue 

(MALT) has become the focus of extensive microbiota 
analysis (Zullo et al. 2014). The latter lymphoma is char-
acterized by activation of B and T helper cells, which are 
specifically reactive to H. pylori antigens (Wotherspoon 
et al. 1993). It was shown that anti-H. pylori treatment 
can prevent the development of gastric cancer and it also 
inhibits the progression of some precancerous lesions in 
humans (Correa et al. 2000; de Vries et al. 2009), and can 
also stop gastric cancer progression in mice (Chang and 
Parsonnet 2010Lee et al. 2008; Romero-Gallo et al. 2008). 
Antibiotics are effective in the early, but not advanced, 
stage of gastric cancer, although deferred therapy may 
still positively affect histological abnormalities in mice 
(Chang and Parsonnet 2010). It is worth noting some epi-
demiological studies have demonstrated that higher life 
standards and improved levels of hygiene, while decreas-
ing the prevalence of H. pylori infection, do not affect the 
incidence of gastric cancer (de Martel et al. 2012).

H. pylori is likely to be a factor in the cascade lead-
ing to gastric adenocarcinoma (GAC), but infection alone 
is not sufficient (Kumar et al. 2020; Wang et al. 2014). 
Kumar et al. (2020) analyzed 371,813 veterans infected 
with H. pylori and found that successful antibiotic treat-
ment decreased gastric cancer risk. The study also found 
significantly higher risks of gastric cancer were found 
amongracial ethnic minorities and smokers. Conversely, 
Nguyen et al. (2020) studied 91 patients with gastric ade-
nocarcinoma and found that the prevalence of H. pylori 
infection was low and decreasing over time, which sug-
gests that there are other important factors apart from H. 
pylori involved in the pathogenesis of GAC.

Early-stage immunoproliferative small intestinal disease 
and gastric MALT lymphoma share some histopathologi-
cal features and both respond to antibiotics, which sug-
gests a possible role of bacteria in their pathogenesis 
(Lecuit et al. 2004). Analysis of tissue specimens obtained 
from gastric, duodenal, and jejunal biopsies of patients 
with immunoproliferative small intestinal disease before 
and after antibiotic therapy suggest some role of Campy-
lobacter jejuni (Lecuit et al. 2004). Thus, C. jejuni was 
detected in the biopsy samples of the small intestine by 
fluorescence in situ hybridization and immunohistochemi-
cal staining and its eradication by antibacterial therapy 
resulted in disease remission. Importantly, the 16S analy-
sis of biopsy specimens from the proximal small intestine 
obtained before the initiation of antimicrobial treatment 
did not reveal the presence of any other enteropathogens.

Interestingly, antibiotic treatment of Chlamydophila 
psittaci infections may result in regression of ocular 
adnexal lymphomas, which are usually marginal zone 
B-cell lymphomas of MALT type (Ferreri et al. 2012; 
Senff et  al. 2008). Ferreri et  al. (2005) reported that 
therapy with doxycycline was followed by lymphoma 
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regression in 50% of patients, including those resistant to 
standard therapy.

Zhang et al. (2021) showed that the microbiotic commu-
nity of patients with gastritis is more similar to that found 
in patients with gastric cancer than those present in healthy 
controls. Furthermore, chemotherapy reduced bacteria lev-
els in gastric cancer patients by more than half: 14 genera 
were decreased, including 12, which were enriched in gastric 
cancer group in relation to healthy controls. Importantly, 
this study associated Lactobacillus and Megasphaera with 
gastric cancer.

Pancreatic Cancer

Pancreatic cancer is the fourth major cause of cancer-related 
death in the USA, with the vast majority of patients (93%) 
dying within 5 years of initial diagnosis (Fan et al. 2018). 
Multiple factors including oral, GI, and intrapancreatic 
microbiota are likely to be involved in pancreatic carcino-
genesis and may influence response to therapy (Wei et al. 
2019). Poor oral health and related local microbiota changes, 
such as lower proportions of Neisseria elongata, Streptococ-
cus mitis, and Fusobacterium, seem to be a risk factor for 
pancreatic ductal adenocarcinoma (PDAC) (Nagano et al. 
2019; Olson et al. 2017; Wei et al. 2019). On the other hand, 
genus Leptotrichia and its phylum Fusobacteria were asso-
ciated with a lowered risk of pancreatic cancer (Fan et al. 
2018; Nagano et al. 2019).

P. gingivalis infection was reported to increase the risk 
of PDAC development by 59% (Fan et al. 2018). Studies of 
blood antibodies against P. gingivalis ATTC 53978 revealed 
higher levels in patients with PDAC than in healthy controls 
(Michaud et al. 2013) and levels > 200 ng/ml were associated 
with a twofold increase in the risk of pancreatic cancer sug-
gesting that they may serve as a marker of increased PDAC 
risk (Michaud et al. 2013; Wei et al. 2019). Gnanasekaran 
et al. (2020) showed in vivo that pancreatic tumor cell pro-
liferation is enhanced by P. gingivalis independently of Toll-
like receptor (TLR)2. Furthermore, the authors found that 
hypoxia, a dominant feature of the PDAC microenvironment, 
greatly enhances P. gingivalis intracellular survival (Gnana-
sekaran et al. 2020).

Such major periodontitis-causing pathogens as P. gin-
givalis, Treponema denticola, and Tannerella forsythia 
secrete peptidyl-arginine deiminase enzymes, which degrade 
arginine and can can cause p53 and K-ras point mutations 
associated with poor prognosis in PDAC patients (Wei 
et al. 2019). Moreover, P. gingivalis can negatively affect 
leukocyte-mediated bacteria killing mechanisms by inhibi-
tion of IL-8 secretion (local chemokine paralysis), comple-
ment activity and TLR4 activation. These effects facilitate 
local inflammatory responses that contribute to progression 
of periodontitis (Tribble et al. 2013).

Immune activation and bacteria-related inflammation 
could play some role in pancreatic tumorigenesis by increas-
ing proinflammatory cells and cytokines, oxidative stress 
damaging DNA, and altering energy metabolism. Conse-
quently, bacterial infections could result in molecular altera-
tions promoting tumor growth and metastases (Wei et al. 
2019). In animal models pancreatitis and the previously 
mentioned K-ras gene mutations were found to be necessary 
for the development of pancreatic intraepithelial neoplasia 
and invasive carcinoma (Guerra et al. 2007).

PDAC incidence in humans was reported to be higher in 
the presence of H. pylori, Enterobacter, and Enterococcus 
spp. GI infections (Wei et al. 2019). Although in PDAC H. 
pylori DNA is detected neither in pancreatic juice nor tissue 
(Jesnowski et al. 2010), it could exert its negative effects 
indirectly by facilitating inflammation (Wei et al. 2019). 
Maekawa et al. (2018) showed that Enterobacter and Entero-
coccus spp. were the predominant bacteria in bile of PDAC 
patients, and the levels of antibodies against Enterococcus 
faecalis capsular polysaccharide were increased in serum 
supporting the concept of a causal relationship between 
these bacteria and PDAC.

Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is currently the third lead-
ing cause of cancer-related death worldwide (El-Serag and 
Kanwal 2014). Although HCC is closely related to chronic 
infection with hepatitis B virus and hepatitis C virus as well 
as to chronic liver damage (Dhifallah et al. 2020), a general 
gut microbiota dysbiosis (Ni et al. 2019) and an increase in 
13 specific genera including Gemmiger and Parabacteroides 
were found in its early stages (Ren et al. 2019).

Mechanisms contributing to bacterial liver carcinogen-
esis are likely to be indirect and include the following : 
(1) increased intestinal permeability caused by alterations 
in the tight junctions between enterocytes allowing for the 
inflow of such harmful substances as LPS into portal blood. 
(2) Modification of specific receptor activity which conse-
quently allows for passage of microbial metabolites into cir-
culation. (3) Increased secretion of biochemically active fac-
tors (e.g. upregulation of transcription of various cytokines 
and receptors associated with innate and Th1-type adaptive 
immunity by Helicobacter hepaticus) (Fox et al. 2010).

Gut microbiota dysbiosis, which is common in HCC, 
increases LPS blood levels and may consequently lead 
to further liver damage (Ma et al. 2018; Yu and Schwabe 
2017). Moreover, using antibiotics in rats to reduce LPS 
levels or genetic ablation of its receptor TLR4 prevented 
excessive tumor growth and multiplicity (Yu et al. 2010). 
TLR4 on both parenchymal (hepatocytes) and nonparenchy-
mal cells such as Kupffer cells recognizes endotoxin and 
activates transcription factors that initiate innate immune 



 Archivum Immunologiae et Therapiae Experimentalis            (2022) 70:7 

1 3

    7  Page 8 of 14

response (Yu et al. 2010). The latter cells are the main target 
of LPS, which may lead to hepatic damage by producing 
proinflammatory cytokines (e.g. TNF-α and IL-6) (Anderson 
and Van Itallie 1995).

While there is no generally agreed upon marker of dysbio-
sis, a novel integrated index called degree of dysbiosis (Ddys) 
was proposed by Ni et al (2019). Ddys is based on the relative 
abundance of seven protective bacteria commonly decreased 
in patients with chronic liver diseases (Anaerostipes, Bifido-
bacterium, Coprococcus, Faecalibacterium, Lactobacillus, 
Oscillibacter, and Phascolarctobacterium) and 13 poten-
tially harmful bacteria, which are often increased in these 
patients (Akkermansia, Bacteroides, Clostridium, Dorea, 
Escherichia, Fusobacterium, Haemophilus, Helicobacter, 
Klebsiella, Prevotella, Ruminococcus, Streptococcus, and 
Veillonella) (Fox et al. 2010; Malaguarnera et al. 2010; Ren 
et al. 2019). In the study by Ni et al. (2019) Ddys were higher 
in patients with primary HCC when compared to healthy 
controls, and increased in parallel to HCC progression. 
However, this parameter could not reliably determine cancer 
stage in individual patients (Ni et al. 2019).

Colorectal Cancer

Colorectal cancer (CRC) is the second leading cause of can-
cer death in the USA (Baxter et al. 2014) and colon micro-
biota changes could be responsible for up to 15% of all cases 
(Nagano et al. 2019; Parkin 2006) However, no specific bac-
terial species was identified as a definite CRC risk factor 
(Zhang et al. 2019a). CRC patients were reported to have 
four-fold decrease of Eubacterium in their gut (Balamuru-
gan et al. 2008), which negatively affects the production of 
butyric acid (Zhang et al. 2019a). This short-chain fatty acid 
provides energy for colonic epithelial cells, regulates cellular 
gene expression, and could play an important role in the 
protection from cancer development (Scharlau et al. 2009). 
A significantly increased diversity of Clostridium leptum 
and C. coccoides was found in CRC and polypectomized 
patients (Scanlan et al. 2008).

Moore and Moore (1995) showed that Bacteroides vulg-
atus, Bacteroides stercoris, Bifidobacterium longum, and 
Bifidobacterium angulatum were associated with high risk 
of colon cancer and total concentrations of bifidobacteria 
correlated with higher risk of colon cancer. On the other 
hand, these authors found that Lactobacillus sp. and Eubac-
terium aerofaciens were associated with lowered odds of 
colon cancer oncogenesis.

Patients with CRC were found to have a significant eleva-
tion of the Bacteroides/Prevotella population and elevated 
number of IL-17 producing cells in the mucosa compared to 
control subjects with normal colonoscopy findings (Sobhani 
et al. 2011). Moreover, gut microbiota disturbances varied 
depending on their disease stage. The authors (Sobhani 

et al. 2011) speculated that the levels of Bacteroides/Prevo-
tella were not the result of carcinogenesis, since they did 
not correlate with tumor size. B. fragilis was proposed as a 
likely carcinogen because of its ability to produce metallo-
protease in CRC patients (Sears et al. 2008) and as mucosal 
regulatory T-cell responses inductor in experimental models 
(Ivanov et al. 2008; Mazmanian et al. 2008). Moreover, it 
was suggested that the immune response in colon cancer 
tissue characterized by IL-17 overexpression exacerbating 
the disease is due to Bacteroides (Sobhani et al. 2011; Wu 
et al. 2009).

Fusobacterium nucleatum, B. fragilis, and E. coli express-
ing polyketide synthase (pks) are also likely to be important 
for colonic tumorigenesis (Garrett 2019). F. nucleatum was 
reported to be abundant in CRC tissue in patients with post-
chemotherapy recurrence (Yu et al. 2017) and was found to 
promote transformed cells proliferation in vitro (Bullman 
et al. 2017), likely due to the action of its adhesin and FadA 
activity, which bind to E-cadherin on the surface of epi-
thelial cells and play an important role in malignant cell 
transformation and cancer progression (Pecina-Slaus 2003). 
Binding of FadA to E-cadherin activates Wnt/β-catenin sig-
nalling and consequently nuclear translocation of β-catenin 
and overexpression of inflammatory genes and oncogenes 
c-Myc and Cyclin D1 (Rubinstein et al. 2013). F. nuclea-
tum binds preferentially to cancerous cells and is aided by 
Annexin A1, which is expressed in proliferating CRC cells. 
While F. nucleatum is detected in both colorectal adenoma 
and adenocarcinoma, the FadA gene levels are significantly 
higher in the latter (Rubinstein et al. 2019). However, Fuso-
bacterium is detected in less than half of all GI adenoma 
cases (Baxter et al. 2014).

Interestingly, Fusobacterium was found to promote chem-
oresistance in CRC by increasing the production of inflam-
matory cytokines and by modulating tumor immune micro-
environment (Yu et al. 2017). In preclinical models, tumors 
with high figures of F. nucleatum exhibit increased resist-
ance to such commonly used chemotherapeutic as oxalipl-
atin. F. nucleatum was found to activate autophagy (a cel-
lular recycling process which affects cell survival) through 
TLR4 expression on CRC cells (Garrett 2019) (Fig. 1).

Kanazawa et al. (1996) studied 13 males, who previ-
ously underwent surgery for sigmoid colon cancer and later 
developed new second or third colonic epithelial neoplasia, 
and compared them to fourteen healthy controls. He found 
increased levels of succinic, lactic, propionic, and isovaleric 
acids and increased fecal pH, as well as increased numbers 
of Clostridia and Lactobacillus (Kanazawa et al. 1996). 
Thus, microbiota could play an important role in colon car-
cinogenesis, because feces of high-risk patients is abundant 
in cancer promoters.

Several mechanisms have been proposed to explain the 
effect of bacteria on CRC development. The “alpha-bug” 
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hypothesis assumes that bacteria induce CRC by a spe-
cific action such as the one described for Bacteroides 
fragilis toxin which decreases E-cadherin on the sur-
faces of epithelial cells loosening intercellular junctions 
and thus allowing for an increased inflow of harmful 

substances and antigens from the gut (Sears et al. 2008). 
“Driver-passenger” hypothesis assumes that some other 
harmful bacteria (passenger bacteria) could adapt to the 
environmental changes produced by the driver bacteria 
and promote tumor growth. Thus, the tumor environment 

Fig. 1  Mechanisms by which gastrointestinal (GI) microbiota could 
contribute to GI cancers. The mechanisms and bacteria driving onco-
genesis are marked in grey, while protective mechanisms and bacteria 
are in green. Note that some bacteria have more than one mechanism 
of action. E. aerofaciens- Eubacterium aerofaciens, H. pylori- Heli-
cobacter pylori, H. hepaticus- Helicobacter hepaticus, F. nuclea-
tum- Fusobacterium nucleatum, P. gingivalis- Porphyromonas gin-

givalis, T. forsythia- Tannerella forsythia, T. denticola- Treponema 
denticola, E.  coli- Escherichia coli, B. fragilis- Bacteroides fragilis, 
EAC- esophageal adenocarcinoma, IL-1- interleukin- 1, IL-6- inter-
leukin- 6, IL-23- interleukin- 23, TNF- α- tumor necrosis factor-α, 
NF-κB- nuclear factor kappa-light-chain-enhancer of activated B 
cells, lncRNA- long non-coding RNA, HCC- hepatocellular carci-
noma
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may select for certain bacteria, which in turn drive the 
tumor process. Biofilm hypothesis postulates the role of 
the biofilm produced by the gut microbiota and involves 
lack of E-cadherin or activation of signal transducers and 
activator of transcription 3 (Nagano et al. 2019). Bacterial 
biofilms are carcinogenic only in the context of specific 
bacteria, especially Fusobacteria (Dejea et al. 2014), and 
bacteria demonstrating invasion and co-aggregation prop-
erties are required for the formation of tumor-promoting 
biofilms (Li et al. 2017). Finally, the bystander effect 
hypothesis emphasizes the harmful effects of microbiota-
produced metabolites (Van Raay and Allen-Vercoe 2017).

Interestingly, the colonic mucosa biofilm in patients 
with familial adenomatous polyposis was reported to be 
composed mainly of E. coli and B. fragilis already at an 
early noncancerous stage (Dejea et al. 2018) and experi-
mental colonization of tumor-prone mice with these bac-
teria resulted in an increase of IL-17 levels and DNA 
damage in colonic epithelium as well as in faster tumor 
onset and higher mortality (Dejea et al. 2018).

Based on metagenomic analyses a number of microbes 
have been proposed as biomarkers of CRC, but only F. 
nucleatum has been confirmed in studies involving global 
cohorts. However, this biomarker is not sufficiently spe-
cific and sensitive to allow for non-invasive CRC diag-
nosis (Chang et al. 2021). Promising results were also 
provided by analysis of Streptococcus bovis, which has 
been associated with colon cancer (Tjalsma et al. 2006). 
An immunocapture mass spectrometry analysis of S. 
bovis antigen profiles could distinguish 11 out of 12 
colon cancer patients from 8 control subjects, whereas 
E. coli antigen profiles were not useful (Tjalsma et al. 
2006). Furthermore, these S. bovis antigen profiles were 
also detected in patients with polyps, suggesting that this 
infection occurs in the early stage of carcinogenesis. This 
could be a promising diagnostic tool for the early detec-
tion of human colon cancer (Tjalsma et al. 2006).

Probiotics show promise as agents of host–microbiome 
modulation therapies for several diseases, including CRC 
(Torres-Maravilla et al. 2021). It has been proposed that 
probiotics may minimize the development and progres-
sion of CRC by mitigating the aggressiveness of tumors. 
Bacillus and Saccharomyces and next-generation probiot-
ics are currently tested in clinical trials (Torres-Maravilla 
et al. 2021).

Although the overwhelming majority of studies sup-
port the role of the microbiome in cancer, some authors 
did not find significant associations. For example, in 
the study by Olson et al. (2017) there were no statisti-
cally significant differences in oral bacterial composition 
among patients with PDAC, patients with intraductal pap-
illary mucinous neoplasms and healthy controls.

Conclusions

A large number of studies have been devoted in recent years 
to the analysis of the role of microbiota in GI oncogenesis. 
New treatments such as fecal transplantation, phage-based 
therapy, antibiotics, and probiotics therapies are currently 
tested in clinical settings to detect, prevent or improve the 
clinical course of various cancers. There is also a concerted 
effort to develop a fast, non-invasive, sensitive, and specific 
cancer detection test. However, these novel treatment inter-
ventions and diagnostic tests require validation in rigorous 
clinical trials before they could enter clinical practice.
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