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Abstract: Reactive oxygen species (ROS) are generated during skin aging, including intrinsic
(chronologic aging) and extrinsic aging (photoaging). Therefore, antioxidants that inhibit ROS generation
can delay skin aging. In this study, we evaluated the potential anti-skin aging effect of (-)-phenolic
compounds isolated from the root bark of Ulmus davidiana var. japonica. We preferentially investigated the
possible preventive effects of isolates against the degradation of skin extracellular matrix. Among the
isolates, (-)-catechin suppressed the activity of collagenase MMP-1, and reversed the degradation of
collagen induced by tumor necrosis factor-α (TNF-α) in normal human dermal fibroblast. This action
mechanism of (-)-catechin was validated by the suppression of tumor necrosis factor-α-induced
accumulation of ROS and activation of mitogen-activated protein kinases, protein kinase B (Akt),
and cyclooxygenase-2 (COX-2). The proinflammatory cytokines upregulate inflammatory reactions,
and ultimately promote aging-related reactions. In this milieu, we demonstrated that (-)-catechin
decreased the expression and secretion of proinflammatory cytokines, including interleukin (IL)-1β
and IL-6. In conclusion, (-)-catechin is a candidate to ameliorate both intrinsic and extrinsic skin aging.

Keywords: skin aging; (-)-catechin; human dermal fibroblasts; tumor necrosis factor-α; reactive
oxygen species

1. Introduction

Intracellular reactive oxygen species (ROS) are the main cause of various diseases in humans [1,2].
They are produced by oxidative phosphorylation in the mitochondria, and harmful foreign substances
stimulate ROS production [3]. Generally, the human body produces antioxidants as a defense
mechanism to eliminate most of the intracellular ROS. However, excess ROS can induce oxidative
stress [4], which directly or indirectly causes DNA denaturation and cell membrane destruction,
leading to aging, cancer, arteriosclerosis, diabetes, and neurodegeneration [5,6].

Aging-related changes occur in all organs of the human body. As the skin is in direct contact with
the environment, skin aging is rapid as a result of environmental damage [7]. Skin aging can be divided
into intrinsic aging (chronologic aging) and extrinsic aging (photoaging) [8]. Intrinsic aging is the
natural aging process induced by reduced skin cell activity by ROS generated during metabolism in skin
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cells [9]. Extrinsic aging is caused by external environmental factors such as ultraviolet irradiation and
pollutants [10]. The major causes of extrinsic aging are ROS-mediated secondary reactions that occur
when UV rays are absorbed by the skin [11]. Excess ROS result in wrinkle formation via the cleavage
and abnormal chain crossing of fibrous proteins such as collagen, elastic fibers, and glycosaminoglycans
in the skin extracellular matrix. [4]. Collagen synthesis is inhibited by collagenases, including matrix
metalloproteinase-1 (MMP-1) [12]. Therefore, to delay skin aging, it is important to identify antioxidants
that suppress the production of ROS. During recent decades, antioxidants have been isolated from
natural products.

Ulmus davidiana var. japonica (Rehder) Nakai (Ulmaceae) is widely distributed in various parts of
Asia [13]. The stem and root barks of this species—yugeunpi in Korean traditional medicine—are known for
their therapeutic potential against various diseases such as gastroenteric disorders, inflammatory disorders,
edema, hemorrhoids, and jaundice [14–17]. Studies have demonstrated the pharmacological properties of
U. davidiana extract, including antiarthritis effect [18], antiangiogenic activity [19], and immunocompetence-
enhancing effect, by regulating inflammatory proteins [20]. Previously, we aimed to identify bioactive
products from diverse natural sources [21–24]. We conducted a phytochemical investigation of the
root bark of U. davidiana [25] and identified a new chromane derivative and 22 known compounds.
These compounds were four catechin derivatives, one megastigmane glycoside, two dihydrochalcone
glycosides, two flavanone glycosides, two coumarins, five lignan derivatives, and six phenolic compounds.
We evaluated their potential biological activities, including neuroprotective, antineuroinflammatory,
and anti-Helicobacter pylori activities [25].

In the present study, we investigated the root bark extract of U. davidiana using a liquid
chromatography–mass spectrometry (LC/MS)-based phytochemical analysis method and isolated
three phenolic compounds (1–3). The structure of these compounds was determined by interpreting
one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopic
and LC/MS data, and the absolute configurations were established by comparing electronic circular
dichroism (ECD) data and specific rotation. Generally, phenolic compounds such as flavonoids,
as antioxidants, have the potential to suppress ROS generation. Thus, we evaluated the anti-skin aging
effect of phenolic compounds from the root bark of U. davidiana in normal human dermal fibroblasts
(NHDFs) to identify bioactive compounds. Herein, we describe the isolation and structure elucidation
of compounds 1, and their anti-skin aging effects in tumor necrosis factor-α (TNF-α)-stimulated
NHDFs, and elucidate the action mechanism of the active compound (-)-catechin.

2. Materials and Methods

2.1. Plant Material

U. davidiana root barks were acquired in 2016 from Jecheon-si, Chungcheongbuk province, Korea,
which was purchased from Donggwang General Corporation. The material was authenticated by
one of authors, K. H. Kim. A voucher specimen (SKKU-NR 0401) of the material was stored at the
herbarium in the School of Pharmacy, Sungkyunkwan University, Suwon-si, Korea.

2.2. Extraction and Isolation

U. davidiana root barks (5 kg) were dried and finely ground and extracted with 50% aqueous ethanol
(EtOH) (60 L each × 2 days) under reflux and filtered. The filtrates were collected and concentrated
under reduced pressure to afford crude EtOH extract (450 g). A portion of the extract (200 g) was
suspended in distilled water (800 mL) to be solvent-partitioned with four solvents, including hexane,
dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and n-butanol (BuOH). This procedure resulted in the
four main fractions of different polarities: hexane-soluble (2.5 g), CH2Cl2-soluble (25.0 g), EtOAc-soluble
(18.0 g), and BuOH-soluble fractions (62.0 g). On the basis of the LC/MS results, the EtOAc fraction
was determined for phytochemical investigation to identify the phenolic compounds.
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The EtOAc fraction (18.0 g) was employed to chromatography on a Diaion HP-20 column in a MeOH
solvent system (100% H2O, 20% MeOH-H2O, 40% MeOH-H2O, 60% MeOH-H2O, 80% MeOH-H2O,
and 100% MeOH) to yield six fractions (EA0, EA2, EA4, EA6, EA8, and EA10). Fraction EA4 (3.8 g)
was further applied to silica gel column chromatography (180 g, CH2Cl2-MeOH (20:1→1:1) gradient
solvent system) to give seven fractions (EA4A-EA4G). On the basis of the LC/MS results, fraction EA4C
(1.5 g) was separated using RP-C18 column chromatography with the MeOH-H2O solvent system
(10–100% MeOH) to obtain seven subfractions (EA4C1-EA4C7). Fraction EA4C4 (0.8 g), which was
found to have major phenolic compounds, as determined using the LC/MS analysis, was subjected
to preparative reversed-phase HPLC with the MeOH-H2O solvent system (10–80% MeOH) to obtain
four fractions (EA4C41-EA4C44). Finally, fraction EA4C42 (174.5 mg) was purified by semipreparative
HPLC (18% MeOH-H2O) to give compounds 1 (retention time (tR) 35.5 min, 21.4 mg), 2 (tR 42.0 min,
43.9 mg), and 3 (tR 23.2 min, 31.8 mg).

2.3. Cell Culture and Treatment

Normal human dermal fibroblast (NHDF) was purchased from PromoCell GmbH (Sickingenstr,
Heidelberg, Germany). The cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM;
Corning, Manassas, VA, USA) containing 10% fetal bovine serum (FBS; Atlas, Fort Collins, CO, USA)
and 1% penicillin–streptomycin solution (Gibco, Grand Island, NY, USA) in a humid atmosphere at
5% of CO2 and 37 ◦C. Dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO, USA) was used
as vehicle of compounds 1–3, and kept under 0.1% final percentage. TNF-α (PeproTech, Rock Hill,
NJ, USA) was prepared by dissolving in autoclaved distilled water. In each cell experiment, cells were
seeded and incubated for 24 h, and then it was starved with serum-free DMEM for 24 h. After that,
each compound and TNF-α were treated.

2.4. Assessment of Intracellular ROS

The NHDFs were seeded in a 96-well black plate at density 1 × 104 cells/well and incubated for
24 h. After starvation for 24 h, the cells were treated with 50 and 100 µM compound 1 for 1 h, and then
with 20 ng/mL TNF-α for 15 min. Subsequently, the cells were stained with 10 µM dichlorofluorescein
diacetate (DCFDA; Sigma-Aldrich) for 15 min and washed with phosphate-buffered saline (PBS;
Welgene, Gyeongsangbuk, Korea). The fluorescence was measured at wavelengths of 485/535 nm
using SPARK 10M (Tecan Group Ltd., Männedorf, Switzerland). ROS accumulation was calculated
based on a ratio to 100% of the vehicle control (DMSO). Fluorescent pictures were observed using a
fluorescence microscope IX51 (Olympus, Tokyo, Japan).

2.5. Real-Time Reverse Transcription PCR (qRT-PCR)

Isolation and purification of total RNA were performed using the RNeasy Mini Kit (Qiagen,
Germantown, MD, USA). cDNA synthesis was performed using the RevertAid First Strand cDNA
synthesis kit (Thermo Fisher Scientific, Eugene, Oregon, USA). qPCR was performed using the
QuantStudio™ 3 Real-Time PCR System (Applied Biosystems, Waltham, CA, USA) and PowerUp
SYBR PCR Master Mix (Applied Biosystems, Waltham, CA, USA). PCR primers were as follows:
matrix metalloproteinase-1 (MMP-1), 5′-ATTCTACTGATATCGGGGCTTT-3′, and 5′-ATGTCCTTG
GGGTATCCGTGTA-3′; procollagen I α1 (COLIA1), 5′-CTCGAGGTGGACACCACCCT-3′, and
5′-CAGCTGGATGGCCACATCGG-3′; interleukin-1β (IL-1β), 5′-CTGTCCTGCGTGTTGAAAGA-3′,
and 5′-TTCTGCTTGAGAGGTGCTGA-3′; interleukin-6 (IL-6), 5′-CTCCTTCTCCACAAGCGCC-3′,
and 5′-GCCGAAGAGCCCTCAGGC-3′; and β-actin, 5′-AGAGATGGCCACGGCTGCTT-3′, and
5′-ATTTGCGGTGGACGATGGAG-3′. After preheating at 95 ◦C, the amplifications were performed by
40 cycles at 95 ◦C for 1 s, 60 ◦C for 30 s. Relative gene expression levels were normalized with β-actin
and calculated based on a ratio to 100% of the vehicle control (DMSO).
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2.6. Enzyme-Linked Immunosorbent Assay (ELISA)

The NHDFs were seeded in a 48-well plate at density 4 × 104 cells/well and incubated for 24 h.
After starvation for 24 h, the cells were treated with 50 and 100 µM compound 1 for 1 h, and then
with 20 ng/mL TNF-α for 12 h (IL-1β and IL-6) and 24 h (MMP-1 and COLIA1). Subsequently,
the supernatant was collected and the concentration of IL-1β, IL-6, MMP-1, and COLIA1 was measured
using a sandwich ELISA kit (R&D systems, Minneapolis, USA).

2.7. Western Blotting

The NHDFs were seeded in a 6-well plate at density 2 × 105 cells/well and incubated for 24 h.
After starvation for 24 h, the cells were treated with 50 and 100 µM compound 1 for 1 h, and then
with 20 ng/mL TNF-α for 15 min and 6 h. The cells were washed with PBS and lysed with
Radioimmunoprecipitation (RIPA) buffer (Tech & Innovation, Gangwon, Korea) containing phosphatase
inhibitor cocktail 2 and 3 (Sigma-Aldrich, St. Louis, MO, USA) and protease inhibitor cocktail
(Roche Diagnostics, Indianapolis, IN, USA). The cell lysates were centrifuged at 13,000 rpm for 20 min
at 4 ◦C, and the supernatant was collected. The protein was mixed with 4× Laemmli sample buffer
(Bio-Rad Laboratories; Inc., Hercules, CA 94547, USA) and boiled for 10 min. The protein samples
were separated on a sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) by electrophoresis and
transferred onto polyvinylidene difluoride membranes (PVDF; Merck Millipore, Darmstadt, Germany).
Subsequently, the membranes were blocked with 5% skim milk and then washed with Tris-buffered
saline containing 0.1% Tween-20 (TBS-T). The membranes were incubated overnight at 4 °C with
primary antibodies (extracellular-signal-regulated kinas (ERK) 1/2, phospho-ERK1/2, p38, phospho-p38,
c-Jun N-terminal kinase (JNK), phospho-JNK, protein kinase B (Akt), phospho-Akt, heme oxygenase-1
(HO-1), cyclooxygenase-2 (COX-2), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH);
Cell Signaling, Danvers, MA, USA). After washing with TBS-T, the membranes were incubated
with respective horseradish–peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology,
CA, USA) for 1 h. After washing with TBS-T, the immunoreactive bands were visualized by Fusion Solo
Chemiluminescence System (PEQLAB Biotechnologie GmbH, Erlangen, Germany) and SuperSignal®

West Femto Maximum Sensitivity Chemiluminescent Substrate (Thermo Fisher Scientific, Rockford,
IL, USA). Band densities were calculated using Image J software (Version 1.51J, National Institutes
of Health, Bethesda, MD, USA).

2.8. Statistical Analysis

The results are presented as mean ± SEM. Statistical differences were carried out by a one-way
analysis of variance (ANOVA) and Tukey’s post-hoc test. It was considered statistically significant
when p < 0.05 as compared to non-treated cells.

3. Results and Discussion

3.1. Isolation and Structural Identification of Compounds

The crude extract of U. davidiana root bark was solvent-partitioned between water and organic
solvents (hexane, CH2Cl2, EtOAc, and n-BuOH) of increasing polarity, yielding four fractions.
By comprehensive LC/MS, the EtOAc-soluble fraction was selected for further chemical analysis of
phenolic compounds and isolated compounds 1–3 (Figure 1). The isolated compounds were structurally
elucidated as (-)-catechin (1) [26], (-)-catechin-7-O-β-d-apiofuranoside (2) [27], and procyanidin
B3 (3) [28,29], based on the spectroscopic data, including 1D and 2D NMR and LC/MS analyses
(Figures S1–S4). Their absolute configurations were established by comparing the ECD data and
specific rotation.



Antioxidants 2020, 9, 981 5 of 13
Antioxidants 2020, 9, x FOR PEER REVIEW 5 of 13 

 

Figure 1. Structure of compounds 1–3. 

Tea catechins are among the popular phenolic compounds and found in various plants [30]. 

Catechins are strong antioxidants, but some catechins can act as a pro-oxidant in cells. As a pro-

oxidant, they can cause cell death by increasing ROS generation [31,32]. Structural differences in 

catechins are considered important for antioxidative activity. Among the catechins, (-)-

epigallocatechin gallate and (+)-catechin have been reported to be beneficial in preventing and 

protecting against diseases caused by oxidative stress [30]. As our preliminary analysis showed that 

(-)-catechin (1) has antioxidative effect without cytotoxicity (Figures S5 and S6), we considered that 

it might ameliorate skin aging associated with oxidative stress. However, the anti-skin aging effect 

of (-)-catechin under oxidative stress has not been reported. Thus, in this study, we focused on (-)-

catechin (1) among the catechins isolated from root bark of U. davidiana. 

3.2. Effect of (-)-Catechin on MMP-1 and Procollagen I α1 mRNA and Protein Expression in TNF-α-

Stimulated NHDFs 

UV exposure results in the accumulation of free radical species (ROS), which alter gene and 

protein structure and function in the skin. It also increases the activity of collagenases such as MMP-

1 and degrades collagen in the skin extracellular matrix, leading to wrinkle formation in the skin 

[8,33]. Therefore, inhibitors of collagenase activity are considered potential treatments for skin aging, 

including wrinkle formation [34].  

Tumor necrosis factor-α can mediate the harmful effects of UV radiations, including UVB; it is 

secreted from skin fibroblasts and keratinocytes and plays an important role in photoaging [35]. We 

preferentially investigated the inhibitory effect of (-)-catechin on MMP-1 mRNA and protein 

expression in TNF-α-stimulated NHDFs. The cells were treated with (-)-catechin, and then stimulated 

with TNF-α. As shown in Figure 2A, the stimulation with TNF-α increased MMP-1 mRNA expression; 

however, its expression was decreased by (-)-catechin in a concentration-dependent manner. 

Similarly, increased MMP-1 protein expression by TNF-α stimulation was also significantly reversed 

by (-)-catechin treatment (p < 0.05) (Figure 2C). MMP-1 is a collagenase that cleaves procollagen I α1 

(COLIA1), which is the most abundant structural protein in the skin. Thus, we measured COLIA1 

mRNA expression. As shown in Figure 2B, TNF-α suppressed COLIA1 mRNA expression; however, 

it was not recovered by (-)-catechin treatment; whereas, the reduced COLIA1 expression by TNF-α 

was significantly reversed by (-)-catechin treatment (p < 0.05) (Figure 2D). These results showed that 

MMP-1 was suppressed by (-)-catechin in TNF-α-stimulated NHDFs, and it prevented the 

degradation of COLIA1. A previous study reported that (-)-epigallocatechin gallate, which is a 

structure conjugated with gallate, has a protective effect against collagenase activity by regulating 

the nuclear factor kappa B (NF-κB), Activator protein 1 (AP-1), and MAPK signaling pathways [30]. 

Similarly, (-)-catechin is considered an inhibitor of collagenase, and it may prevent wrinkles caused 

by the damage of skin extracellular matrix. 

Figure 1. Structure of compounds 1–3.

Tea catechins are among the popular phenolic compounds and found in various plants [30].
Catechins are strong antioxidants, but some catechins can act as a pro-oxidant in cells. As a pro-oxidant,
they can cause cell death by increasing ROS generation [31,32]. Structural differences in catechins are
considered important for antioxidative activity. Among the catechins, (-)-epigallocatechin gallate and
(+)-catechin have been reported to be beneficial in preventing and protecting against diseases caused
by oxidative stress [30]. As our preliminary analysis showed that (-)-catechin (1) has antioxidative
effect without cytotoxicity (Figures S5 and S6), we considered that it might ameliorate skin aging
associated with oxidative stress. However, the anti-skin aging effect of (-)-catechin under oxidative
stress has not been reported. Thus, in this study, we focused on (-)-catechin (1) among the catechins
isolated from root bark of U. davidiana.

3.2. Effect of (-)-Catechin on MMP-1 and Procollagen I α1 mRNA and Protein Expression in
TNF-α-Stimulated NHDFs

UV exposure results in the accumulation of free radical species (ROS), which alter gene and
protein structure and function in the skin. It also increases the activity of collagenases such as
MMP-1 and degrades collagen in the skin extracellular matrix, leading to wrinkle formation in the
skin [8,33]. Therefore, inhibitors of collagenase activity are considered potential treatments for skin
aging, including wrinkle formation [34].

Tumor necrosis factor-α can mediate the harmful effects of UV radiations, including UVB; it is
secreted from skin fibroblasts and keratinocytes and plays an important role in photoaging [35].
We preferentially investigated the inhibitory effect of (-)-catechin on MMP-1 mRNA and protein
expression in TNF-α-stimulated NHDFs. The cells were treated with (-)-catechin, and then stimulated
with TNF-α. As shown in Figure 2A, the stimulation with TNF-α increased MMP-1 mRNA expression;
however, its expression was decreased by (-)-catechin in a concentration-dependent manner. Similarly,
increased MMP-1 protein expression by TNF-α stimulation was also significantly reversed by
(-)-catechin treatment (p < 0.05) (Figure 2C). MMP-1 is a collagenase that cleaves procollagen I
α1 (COLIA1), which is the most abundant structural protein in the skin. Thus, we measured COLIA1
mRNA expression. As shown in Figure 2B, TNF-α suppressed COLIA1 mRNA expression; however,
it was not recovered by (-)-catechin treatment; whereas, the reduced COLIA1 expression by TNF-α
was significantly reversed by (-)-catechin treatment (p < 0.05) (Figure 2D). These results showed that
MMP-1 was suppressed by (-)-catechin in TNF-α-stimulated NHDFs, and it prevented the degradation
of COLIA1. A previous study reported that (-)-epigallocatechin gallate, which is a structure conjugated
with gallate, has a protective effect against collagenase activity by regulating the nuclear factor kappa
B (NF-κB), Activator protein 1 (AP-1), and MAPK signaling pathways [30]. Similarly, (-)-catechin is
considered an inhibitor of collagenase, and it may prevent wrinkles caused by the damage of skin
extracellular matrix.
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Figure 2. Effect of (-)-catechin on MMP-1 and COLIA1 mRNA and protein expression in tumor necrosis
factor-α (TNF-α)-stimulated normal human dermal fibroblasts (NHDFs). (A,B) The NHDFs were
treated with 50 and 100 µM (-)-catechin for 1 h, and then with 20 ng/mL TNF-α for 4 h. The matrix
metalloproteinase-1 (MMP-1) and procollagen I α1 (COLIA1) mRNA levels were measured by qRT-PCR.
(C,D) The NHDFs were treated with 50 and 100 µM (-)-catechin for 1 h, and then with 20 ng/mL TNF-α
for 12 h. The MMP-1 and COLIA1 levels were measured using an ELISA kit. The data are presented as
mean ± SEM (N = 3). ## p < 0.01 and ### p < 0.001 compared with the untreated group; * p < 0.05 and
** p < 0.01 compared with the TNF-α-treated group.

3.3. Inhibitory Effect of (-)-Catechin on Intracellular ROS Production in TNF-α-Stimulated NHDFs

As described above, ROS accumulation causes skin damage via the degradation of collagen in the
skin extracellular matrix. To evaluate the antioxidative effect of (-)-catechin, we assessed the inhibitory
effect of intracellular ROS production by (-)-catechin in TNF-α-stimulated NHDFs. To measure
intracellular ROS production, the cells were stained with fluorogenic dye dichlorofluorescein diacetate
(DCFDA). Starved NHDFs were treated with (-)-catechin and subsequently with TNF-α and 10 µM
DCFDA for 15 min, and then fluorescent images were captured. The TNF-α-stimulated cells showed
strong green fluorescence (Figure 3A), indicating ROS accumulation. This increased ROS generation
was inhibited by (-)-catechin treatment. The graph in Figure 3B shows that fluorescent intensity in the
TNF-α-stimulated group was increased by 1.55± 0.03-fold compared with that in the non-treated group.
Furthermore, it was substantially reduced to 1.12 ± 0.01- and 0.97 ± 0.01-fold (p < 0.001) after treatment
with 50 and 100 µM (-)-catechin, respectively. These results showed that ROS accumulation was
suppressed in TNF-α-stimulated NHDFs by (-)-catechin, and this might be the mechanism involved in
ameliorating skin aging under oxidative stress.
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Figure 3. Inhibitory effect of (-)-catechin on intracellular reactive oxygen species (ROS) production in
tumor necrosis factor-α (TNF-α)-stimulated normal human dermal fibroblasts (NHDFs). The cells were
seeded at a density of 1 × 104 in a 96-well plate and incubated for 24 h. The cells were continuously
starved in serum-free Dulbecco’s Modified Eagle Medium (DMEM) for 24 h. Thereafter, the cells
were treated with 50 and 100 µM (-)-catechin for 1 h, and then with 20 ng/mL TNF-α and 10 µM
dichlorofluorescin diacetate (DCFDA) for 15 min. (A) Fluorescent images were captured by fluorescence
microscopy (scale bar = 50 µm). (B) The graph presents the fold-increase in fluorescent intensity
compared with the untreated group. The data are presented as mean ± SEM (N = 3). ### p < 0.001
compared with the untreated group; *** p < 0.001 compared with the TNF-α-treated group.

3.4. Effect of (-)-Catechin on TNF-α-Induced Phosphorylation of MAPKs in NHDFs

To investigate the mechanism underlying the anti-skin aging effect of (-)-catechin, we investigated
the effect on TNF-α-induced phosphorylation of MAPKs in NHDFs. The starved NHDFs were
treated with (-)-catechin, and then with TNF-α for 15 min; thereafter, the cells were subjected to
Western blotting. The TNF-α-stimulated cells showed high phosphorylation of ERK, JNK, and p38
(Figure 4A), and it was reduced by (-)-catechin treatment. The ratio of phospho-ERK (p-ERK)/ERK in
the TNF-α-stimulated group was 1.60 ± 0.06-fold higher than that in the non-treated group (Figure 4B).
Furthermore, it was significantly decreased to 1.22 ± 0.20- and 0.97 ± 0.17-fold (p < 0.05) by treatment
with 50 and 100 µM (-)-catechin (Figure 4B). Similarly, the phosphorylation of p38 was substantially
increased in the TNF-α-stimulated group to 2.67 ± 0.08-fold compared with the non-treated group,
and (-)-catechin reduced it to 1.34 ± 0.02- and 2.02 ± 0.16-fold (p < 0.05) after treatment with 50 and
100 µM (-)-catechin. Because the decrease was not concentration-dependent, and high concentrations
of (-)-catechin may be considered to increase phosphorylation of p38. The phosphorylation of JNK
was also increased in the TNF-α-stimulated group compared with the non-treated group, but the
(-)-catechin-treated group showed a decreasing tendency. These results showed that (-)-catechin
suppresses TNF-α-induced phosphorylation of MAPKs.
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Figure 4. Effect of (-)-catechin on tumor necrosis factor-α (TNF-α)-induced phosphorylation of
mitogen-activated protein kinases (MAPKs) in normal human dermal fibroblasts (NHDFs). (A) The
cells were treated with 50 and 100 µM (-)-catechin for 1 h, and then with 20 ng/mL TNF-α for 15 min.
The immunoreactive bands were analyzed by immunoblotting of p-JNK, JNK, p-ERK, ERK, p-p38, p38,
and GAPDH. (B) The graphs present the fold-increase in the phosphorylation of MAPKs compared
with the untreated group. The data are presented as mean ± SEM (N = 3). ### p < 0.001 compared with
the untreated group; * p < 0.05 and ** p < 0.01 compared with the TNF-α-treated group.

Studies have reported that antioxidants inhibit ROS accumulation, and thus prevent MAPK
activation. This indicates that ROS promote the activation in MAPK signaling [36–38]. The MAPKs
including p38, ERK, and JNK have important functions in increasing the activity of collagenases such
as MMP-1 [39,40]. Tumor necrosis factor-α-induced ROS accumulation causes the degradation of
collagen in the skin extracellular matrix via MAPK activation [41]. Overall, our results showed that
(-)-catechin may prevent MMP-1 synthesis by inhibiting MAPK activation.

3.5. Effect of (-)-Catechin on the Phosphorylation of Akt and Expression of COX-2 and HO-1 in
TNF-α-Stimulated NHDFs

Excessive accumulation of ROS results in the activation of Akt and upregulates the production
of nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2), causing inflammation [42,43].
Thus, we investigated the effect of (-)-catechin on the phosphorylation of Akt and expression of
COX-2 in TNF-α-stimulated NHDFs. The starved NHDFs were treated with (-)-catechin, and then
with TNF-α for 6 h; thereafter, the cells were subjected to Western blotting. The TNF-α-stimulated
group showed increased Akt phosphorylation and COX-2 expression compared with the non-treated
group (Figure 5A), and this was inhibited by (-)-catechin treatment. The ratio of phospho-Akt
(p-Akt)/Akt in the TNF-α-stimulated group was considerably increased to 2.28 ± 0.19-fold (p < 0.05)
compared with the non-treated group (Figure 5B); however, it was apparently reduced by (-)-catechin
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treatment. Analogously, COX-2 expression was increased by TNF-α stimulation, and it was decreased by
(-)-catechin treatment. Previous studies have demonstrated that phenolic compounds, including catechins,
inhibit inflammatory mediators (NO and COX-2) and suppress inflammatory responses via the NF-κB
pathway [44,45]. Similar to these findings, in the present study, (-)-catechin activated the NF-κB pathway by
suppressing the inflammatory mediators such as COX-2. Thus, (-)-catechin may ameliorate inflammation
induced by ROS accumulation.
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Figure 5. Effect of (-)-catechin on the phosphorylation of Akt and expression of cyclooxygenase-2
(COX-2) and heme oxygenase-1 (HO-1) in tumor necrosis factor-α (TNF-α)-stimulated normal human
dermal fibroblasts (NHDFs). (A) The cells were treated with 50 and 100 µM (-)-catechin for 1 h, and then
with 20 ng/mL TNF-α for 6 h. The immunoreactive bands of the immunoblotting analysis of p-Akt,
Akt, COX-2, HO-1, and GAPDH. (B) The graph presents the fold-increase in the phosphorylation of
Akt and expression of COX-2 and HO-1 compared with the untreated group. The data are presented
as mean ± SEM (N = 3). # p < 0.05 and ## p < 0.01 compared with the untreated group; * p < 0.05
compared with the TNF-α-treated group.

Studies have reported that heme oxygenase-1 (HO-1) can inhibit free radical generation, and
thus prevent inflammatory damage and apoptosis of human skin cells [46,47]. In the present study,
the expression of HO-1 did not show a significant change with TNF-α stimulation, but it was significantly
increased by (-)-catechin at 50 and 100 µM concentrations to 2.43 ± 0.41- and 2.73 ± 0.38-fold (p < 0.05),
respectively. This result suggests that (-)-catechin may prevent ROS accumulation induced by TNF-α
stimulation by capturing free radicals by HO-1.

3.6. Effect of (-)-Catechin on Proinflammatory Cytokines in TNF-α-Stimulated NHDFs

Cellular oxidative stress is associated with proinflammatory cytokines such as TNF-α, IL-1β,
and IL-6, and they upregulate inflammatory reactions [48,49]. Furthermore, they promote aging-related
reactions, including skin aging [41,50]. Among these cytokines, TNF-α plays an important role in
photoaging [35]. To investigate the inhibitory effect of (-)-catechin on aging-related inflammatory reaction,
we investigated the effect of (-)-catechin on IL-1β and IL-6 mRNA expression in TNF-α-stimulated
NHDFs. The starved NHDF cells were treated with (-)-catechin, and then with TNF-α for 4 h; thereafter,
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the cells were subjected to qRT-PCR. As shown in Figure 6A, the stimulation with TNF-α increased
IL-1β mRNA expression by 3.64 ± 0.21-fold compared with that in the non-treated cells, and it
was decreased by (-)-catechin at 50 and 100 µM concentration to 3.25 ± 0.24- and 2.59 ± 0.11-fold,
respectively. IL-6 mRNA expression was substantially increased to 4.96± 0.34-fold by TNF-α stimulation
compared with that in the non-treated cells, and it was significantly reversed by (-)-catechin in a
concentration-dependent manner (100 µM; 2.23 ± 0.38-fold, p < 0.01) (Figure 6B). To measure the
expression of IL-1β and IL-6, we performed the ELISA. Consistent with the results of mRNA expression,
IL-1β (from 1.36 ± 0.09 to 6.58 ± 0.18 pg/mL, p < 0.001) and IL-6 (from 3.14 ± 0.21 to 41.56 ± 0.32 ng/mL,
p < 0.001) expression was apparently increased by TNF-α stimulation. The expression of both IL-1β
and IL-6 was significantly reduced in a concentration-dependent manner (p < 0.001) (Figure 6C,D).
The results suggest that (-)-catechin may prevent skin aging-related reactions induced by TNF-α
stimulation via the suppression of proinflammatory cytokines.
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Figure 6. Effect of (-)-catechin on proinflammatory cytokines interleukin (IL)-1β and IL-6 in tumor
necrosis factor-α (TNF-α)-stimulated normal human dermal fibroblasts (NHDFs). (A,B) The cells were
treated with 50 and 100 µM (-)-catechin for 1 h, and then with 20 ng/mL TNF-α for 4 h. The mRNA
level of IL-1β and IL-6 was measured by qRT-PCR. (C,D) The NHDFs were treated with 50 and 100 µM
(-)-catechin for 1 h, and then with 20 ng/mL TNF-α for 12 h. The levels of IL-1β and IL-6 were measured
using the ELISA kit. The data are presented as mean ± SEM (N = 3). ## p < 0.01 and ### p < 0.001
compared with the untreated group; * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the
TNF-α-treated group.

In summary, (-)-catechin isolated from U. davidiana extract exerted an antioxidant effect by
inhibition of intracellular ROS accumulation in TNF-α-stimulated NHDFs. (-)-Catechin prevented the
degradation of the skin extracellular matrix, including increase of collagenase MMP-1 and decrease of
collagen synthesis. Mechanistically, it acts via the suppression of MAPK, Akt, and COX-2 activation.
Furthermore, (-)-catechin prevents TNF-α-induced ROS accumulation by capturing free radicals
by HO-1. It also suppresses proinflammatory cytokines, including interleukin (IL)-1β and IL-6,
which upregulate inflammatory reactions and promote aging-related reactions, including skin aging.
Although the study was performed under TNF-α stimulation, which occurs ROS accumulation,
(-)-catechin is expected to also protect further upstream such as with photoaging. Therefore, it is
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necessary to further investigate whether (-)-catechin has a protective effect on extrinsic skin aging with
harmful direct UV exposure.

4. Conclusions

Our study demonstrated that (-)-catechin significantly suppressed the TNF-α-induced activity of
MMP-1 and prevented the inhibition of collagens synthesis. The mechanism underlying the anti-skin
aging effect of (-)-catechin involved the suppression of TNF-α-induced ROS accumulation and MAPK,
Akt, and COX-2 activation. Furthermore, (-)-catechin suppressed the expression of TNF-α-induced
proinflammatory cytokines, including IL-1 and IL-6. Overall, (-)-catechin is considered a therapeutic
candidate for improving both intrinsic and extrinsic skin aging, because it inhibited ROS accumulation
in NHDFs.
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negative ion-mode ESI-MS data of 1; Figure S3: The 1H NMR spectrum of compound 2 in CD3OD and negative
ion-mode ESI-MS data of 2; Figure S4: The 1H NMR spectrum of compound 3 in CD3OD and negative ion-mode
ESI-MS data of 3; Figure S5: Antioxidant activity of isolated compounds 1–3; Figure S6: Cell viability of isolated
compounds 1–3 against normal human fibroblast (NHDF) cells.
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