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Abstract

Purpose

Ischemia/reperfusion (I/R) during partial nephrectomy (PN) contributes to acute kidney

injury (AKI), which is inaccurately assessed using existent clinical markers of renal function.

We evaluated I/R-related changes in expression in hypoxia inducible factor 1α (HIF-1α) and

toll-like receptor 4 (TLR4), within kidney tissue and peripheral blood leukocytes (PBL) in a

porcine model of PN.

Materials and Methods

Three adult pigs each underwent unilateral renal hilar cross clamping for 180 min followed

by a 15 min reperfusion. The contralateral kidney served as control. Biopsies of clamped

kidneys were obtained at baseline (time 0), every 60 min during the hypoxic phase, and

post-reperfusion. Control kidneys were biopsied once at 180 min. Peripheral blood was

sampled at time 0, every 30 min during the hypoxic phase, and post-reperfusion. HIF-1α

and TLR4 expression in kidney tissue and PBL were analyzed by Western blotting. I/R-

related histological changes were assessed.

Results

Expression of HIF-1α in clamped kidneys and PBL was below detection level at baseline,

rising to detectable levels after 60 min of hypoxia, and continuing to rise throughout the hyp-

oxic and reperfusion phases. Expression of TLR-4 in clamped kidneys followed a similar

trend with initial detection after 30–60 min of hypoxia. Control kidneys exhibited no change
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in HIF-1α or TLR-4 expression. I/R-related histologic changes were minimal, primarily mild

tubular dilatation.

Conclusions

In a porcine model of PN, HIF-1α and TLR4 exhibited robust, I/R-related increases in

expression in kidney tissue and PBL. Further studies investigating these molecules as

potential markers of AKI are warranted.

Introduction
Nephron-sparing surgery (NSS) is an important goal of kidney cancer surgery whenever feasi-
ble, as it better preserves renal function without compromising oncological efficacy in select
clinical settings[1, 2]. However, NSS can cause acute kidney injury (AKI) resulting in the
subsequent development of chronic kidney disease (CKD)[3, 4], albeit at lower rates than for
nephrectomy. Mechanisms of NSS-induced AKI include loss of renal parenchymal volume,
worsening of pre-existing CKD and ischemia-reperfusion injury (IRI)[5–7].

The literature on renal functional preservation following NSS is controversial. Retrospective
clinical studies report minimal change in postoperative glomerular filtration rate (GFR) as
assessed by serum creatinine (sCr)-based estimators[8]. Prospective clinical studies incorporat-
ing novel markers of AKI including neutrophil gelatinase-associated lipocalin (NGAL), report
conflicting results with regard to estimation of AKI[9, 10]. Retrospective and prospective stud-
ies using 99mTc-DTPA renal scintigraphy for split GFR estimation report a significant and last-
ing decrease in GFR of the operated kidney[6, 11, 12]. There is therefore a need for
identification of sensitive and accurate molecular markers for the detection of early or subclini-
cal AKI during NSS[13]. Such markers could facilitate earlier intervention to prevent or miti-
gate associated renal impairment, future research into the development of novel renoprotective
agents, and development of surgical strategies aimed at minimizing renal impairment during
NSS[13].

Previous studies in small animal models have suggested that hypoxia inducible factor-1α
(HIF-1α) and toll-like receptor 4 (TLR4) mediate the kidney’s response to IRI[14, 15]. In this
study, we investigated the feasibility of detecting acute changes in expression of HIF-1α and
TLR4 in porcine peripheral circulation and kidney tissue during simulated partial nephrectomy
(PN) with warm ischemia. We hypothesized that protein expression changes detected in the
kidney might be reproduced in peripheral blood leukocytes (PBL), and if so, could serve as
putative markers of AKI during kidney surgery.

Materials and Methods

Surgical procedures
The animal study protocol was approved by the Institutional Animal Care and Use Committee
at Rutgers, Robert Wood Johnson Medical School. Three adult domestic female pigs, 50–70kg
in size, were used. After an appropriate acclimation period, the animals were placed under gen-
eral anesthesia using intramuscular injection of telazol (4.4 to 6.6 mg/kg), xylazine (1–2 mg/kg)
and atropine (0.05 mg/kg), and maintained under inhalational anesthesia using isoflurane 2%
in a 50/50 mixture of nitrous oxide and oxygen. Pulse oximetry levels were maintained at 98%
or above. Intravenous access was obtained via an auricular vein and an arterial line was inserted
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in a carotid artery to facilitate precise blood pressure monitoring and serial blood draws. Intra-
venous hetastarch was administered at a rate of approximately 2L/hour to maintain hydration.
A warming blanket was used to maintain body temperature at 36 to 38°C.

A baseline (time 0) blood sample of 6 ml was drawn into a heparin containing tube. Bilateral
kidneys of each animal were then accessed retroperitoneally through separate flank incisions.
One kidney served as the experimental kidney with the contralateral kidney serving as the con-
trol. Trans-peritoneal access was specifically avoided so as to minimize potential for data con-
founding by unrecognized ischemia of intra-abdominal organs during surgical manipulation.
After surgical exposure of each kidney, a thin wedge biopsy of the experimental kidney was
obtained sharply (time 0). Hemostasis was obtained using oxidized cellulose bolsters and
0-vicryl renorrhaphy sutures for parenchymal repair. The renal hilum of the experimental kid-
ney was then cross-clamped for a total of 180 minutes followed by a 15-minute reperfusion.
Additional blood samples (6 ml each) were obtained from the arterial line at 30, 60, 90, 120,
and 180 minutes during the hypoxic phase, and following reperfusion (195 minutes). Serial
wedge biopsies of the experimental kidney were obtained during the hypoxic phase at 60, 120
and 180 minutes, and post-reperfusion (195 minutes). Hemostasis was obtained after each
biopsy as described above. A single wedge biopsy was obtained from the control kidney at 180
minutes, after which both kidneys were excised and fixed in formalin.

All blood samples were processed immediately for leukocyte isolation as described by
Zhang et al.[16] Kidney biopsies were flash-frozen in liquid nitrogen and subsequently stored
at -80°C pending processing for Western blotting. Animals were euthanized by first inducing
deep anesthesia using intravenous pentobarbitol (100 mg/kg), followed by an intravenous
bolus of saturated potassium chloride (30 ml).

Samples processing for Western blot analysis
Blood samples were processed as described: the blood was first mixed with lysis buffer (bicar-
bonate-buffered ammonium chloride solution) at a ratio of 20:1. Once the erythrocytes lysed,
the samples were centrifuged for 10 minutes at 400 g. The leukocyte pellet was washed once
with phosphate buffered saline. After centrifugation, the leukocyte pellet was lysed in RIPA
buffer (1% Triton X-100, 1% deoxycholic acid, 10mM Tris-HCl, pH 7.2, 158 mMNaCl, 0.1%
SDS, and 1 mM PMSF) and Roche complete protease inhibitor cocktail12. The lysates were
stored at -80°C. Sections of kidney biopsy samples were similarly lysed in RIPA buffer. PBL
and kidney tissue RIPA-lysates were normalized for protein content, and then were subjected
to western blot analysis, probing with antibodies to HIF-1α (Santa Cruz, SC-10790), TLR4
(Santa Cruz SC-10741) and actin (Sigma, A2066). Western blots were run in duplicate.

Histological evaluation
Portions of the kidney wedge biopsies obtained at times 0, 60, 120, 180 and 195 minutes were
separately submitted for H&E staining, and were evaluated by an experienced pathologist
blinded to the tissue source.

Results
All surgeries were completed without complications. In kidney tissue lysates, the expression of
HIF-1α was below detection levels at time 0. During the hypoxic phase, HIF-1α expression in
cross-clamped kidneys was detectable by 60 min, and its level continued to rise throughout the
ischemia interval and post reperfusion. HIF-1α expression remained below detection levels in
control, unclamped kidneys. A similar HIF-1α expression pattern was observed in PBL; HIF-
1α expression in PBL was below detection level at baseline (time 0), became detectable by 60
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minutes after unilateral cross-clamping, and continued to rise throughout the remainder of the
study (Fig 1).

The changes in TLR4 expression exhibited similar trends to those of HIF-1α in both kidney
tissue lysates and PBL. TLR4 expression in bilateral kidneys and PBL was low at baseline
(time 0). During the hypoxic phase, there was a notable increase in TLR4 expression in cross-
clamped kidneys as well as in PBL after 30–60 minutes of ischemia, with continued rise
throughout the remainder of the study. In marked contrast, TLR4 expression in the control
un-clamped kidney did not change over time (Fig 1). Collection of a blood sample from Pig 1
at 180 minutes was inadvertently overlooked, and therefore values for expression of HIF-1α
and TLR4 expression in PBL are missing for this time point.

On blinded histologic examination of H&E-stained kidney biopsy specimens, there was
minimal histologic change from baseline (time 0) in the biopsy specimens obtained at 60, 120
and 180 minutes during the hypoxic phase, or post-reperfusion (195 min). In addition, there
was minimal histologic difference between biopsies from the cross-clamped and the unclamped
control kidneys. The main histologic change in cross-clamped kidneys was mild tubular dilata-
tion consistent with acute tubular injury. There was no evidence of inflammation in the biopsy
specimens from either cross-clamped or unclamped control kidneys (Fig 2).

Discussion
The impact of kidney surgery on the development new onset CKD, or the worsening of pre-
existent CKD, is well documented. Kidney removal results in the greatest deterioration in post-
operative kidney function[17]. However, up to 20% of patients undergoing nephron-sparing

Fig 1. Western blots of hypoxia inducible factor-1α (HIF-1α) and toll like receptor 4 (TLR4) expression in
kidney tissue (A) and peripheral blood leukocytes (B). CTRL = control. Beta-actin (β-actin) was used as a loading
control.

doi:10.1371/journal.pone.0154708.g001
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surgery also exhibit measurable decline in kidney function, depending on the amount and/or
quality of preserved renal parenchyma and warm ischemia time[18]. Advanced stage CKD has
been linked to increased risk of mortality, cardiovascular events and hospitalization[19], mak-
ing functional preservation an important goal of kidney cancer surgery.

AKI is a clinical syndrome characterized by acute deterioration in kidney function resulting
in a wide spectrum of clinical manifestations[20]. Permanent structural and functional damage
occurs in 50% of patients with AKI, including subsequent development of CKD or ESRD[21].
Warm ischemia and direct injury to functioning renal tissue are significant contributors to
AKI during nephron-sparing renal surgery. Current sCr-based clinical estimators of kidney
dysfunction do not reliably estimate the degree of AKI for several reasons. First, they lag the
acute changes at the cellular level by several days, and may not detect injury until a steady state
has been reached, typically several days after the injury. Second, since creatinine is both filtered
and secreted by the kidney, sCr-based estimators of kidney function tend to overestimate renal
function, thus masking the true severity of AKI. Third, in the setting of a normal contralateral
kidney, sCr-based estimators further underestimate AKI due to compensatory changes by the
normal kidney[18, 22]. Accordingly, numerous alternative potential biomarkers of kidney
injury have been evaluated over the past 2 decades, virtually all of them being urine based[13].
Clinical implementation of these novel biomarkers is limited to date, largely due to limited
availability of the markers, as well as poor sensitivity and specificity in urologic patients[23].

In this pilot study, we investigated the feasibility of measuring acute HIF-1α and TLR4
expression in the peripheral circulation of pigs subjected to unilateral, ischemia-induced renal
injury. HIF-1α and HIF-1β form the transcription factor HIF-1 complex. Whereas HIF-1β is
expressed constitutively, the expression of HIF-1α is highly regulated and commonly stabilized
under hypoxic conditions. However, stressors that activate TLR4 stabilize the expression of
HIF-1α under either hypoxic or normoxic conditions[24–26]. Studies have suggested that
HIF-1α/HIF-1, which can be detected in transplanted kidneys, protects against IRI[27]. Experi-
ments in post-transplant human biopsies and in murine models of IRI have similarly suggested
that HIF-1α accumulates during post-ischemia reperfusion[14].

Toll-like receptors (TLRs) play a key role in innate immunity and tissue inflammation. TLRs
are activated by pathogen-associated molecular patterns (PAMPs) as well as endogenously

Fig 2. Representative hematoxylin and eosin (H&E)-stained biopsy sections from controls (A) and
experimental (cross-clamped) kidneys (B) at 10x magnification. T = tubules. Histologic change in
hypoxic kidneys primarily consisted of tubular dilation without associated inflammation.

doi:10.1371/journal.pone.0154708.g002
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released danger-associated molecular patterns (DAMP’s)[28, 29]. Studies in mice showed that
TLR4 activation occurs in response to renal damage during hypoxia. More specifically, down-
stream signaling results in heightened inflammation, amplifying the initial IRI-mediated renal
damage[15, 30].

Our data demonstrate that HIF-1α and TLR-4 are acutely overexpressed in hypoxic kidneys
and PBL during warm ischemia and post-reperfusion. To our knowledge, this is the first study
to demonstrate in vivo expression of these molecules in a large animal model during active tis-
sue hypoxia. These findings are significant since the porcine kidney is similar to the human
kidney in genetics, development, size, anatomy and physiology[31]. Based on this, we speculate
that the responses observed in the porcine model of PN also unfold in human kidney under
hypoxia. However, a notable difference between the pig and human kidney is that the pig kid-
ney is significantly more resilient to ischemic stress. In solitary kidney models, pig kidneys
were found to recover from ischemic insults of up to 90 minutes, with a maximal tolerance
limit of 120 minutes[32, 33]. These tolerance limits were determined by evaluating renal func-
tion at several postoperative intervals out to 15 days. In the present proof-of-concept study, the
ischemic window was extended to 180 min to ensure occurrence of clinically significant ische-
mic renal injury. We observed only minimal histologic change by H&E staining after 180 min-
utes of ischemia followed by a brief re-oxygenation. In marked contrast, within PBL, increased
expression of HIF-1α or TLR-4 was observed after 60 minutes or 30–60 minutes of ischemia
respectively, well within the tolerable ischemic limit for pig kidneys. The changes in HIF-1α
and TLR4 expression observed in PBL paralleled the changes observed in the kidneys subjected
to hypoxia. Since similar changes were not detected in the unclamped control kidney, these
data suggest the changes in HIF-1 α and TLR4 expression detected in PBL were caused by
renal hypoxia.

A possible explanation for why molecular changes within hypoxic kidney tissue were detect-
able in circulating blood may be the existence of pre-existing collateral circulation between the
kidney parenchyma and extra-renal blood vessels. Indeed, studies in dogs and humans have
demonstrated evidence of such collateral circulation, which plays a role in renal parenchymal
preservation after renal artery occlusion[34, 35]. Although we did not check for the presence of
collateral circulation in our model, we postulate that similar to other species, collateral renal
circulation exists in pigs. Differences in collateral circulation patterns could also explain the
minor variations between the animals in HIF-1 α and TLR4 expression levels at specific time
points. Hessel et al. reported that collateral circulation varied between different vascular beds
even within the same species[35]. However, the overall expression pattern in HIF-1 α and
TLR4 in response to renal ischemia was similar for each animal.

Conde et al. described the role of increased HIF-1α expression during renal ischemia/reper-
fusion stress in a study conducted in three different settings: human proximal epithelial cells,
Sprague-Dawley rat kidneys, and post-transplant human renal allograft biopsies[14]. They
determined that HIF-1α in proximal renal tubular cells is expressed in a biphasic fashion, dur-
ing hypoxia and during re-oxygenation, both in vitro and in vivo. HIF-1α was found to mediate
proximal renal tubular cell survival and recovery following IRI. Indeed, analyses of the renal
allograft biopsies revealed a significant negative correlation between HIF-1α expression and
ATN severity[14].

In contrast to the renoprotective role of HIF-1α, increased TLR4 expression in response to
ischemia further amplifies the initial damage via activation of inflammatory mediators[15, 30].
Using a mouse model, Wu et al. found that TLR4 expression is significantly increased on days
1 and 3 after ischemia/reperfusion[15]. An interesting finding in our study was that TLR4
expression is upregulated as early as 30 minutes after renal hypoxia in the pig kidney. We
therefore infer that TLR4-mediated immune system activation occurs early during tissue
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hypoxia; this could be a potential target for future intervention to minimize IRI-mediated AKI
during renal surgery, pending further investigation.

Studies have suggested a possible link between HIF-1α and TLR4. In an in vitro study, Kim
et al. found that hypoxic stress up-regulates the expression of TLR-4 in macrophages via a
HIF-1α-dependent mechanism[36]. Zhou et al. demonstrated that downstream TLR4 signaling
leads to the accumulation of HIF-1α in vivo, during lung ischemia-reperfusion injury[37].
Although the precise interactions between these molecules are beyond the scope of our study,
it is likely that further complex mechanisms beyond those described above could be at play
during the kidney response to ischemia/reperfusion. This warrants further investigation.

A few limitations of our study warrant discussion. First, the number of animals used was
small. However, this was a feasibility study, and we believe that the small sample size was justi-
fied for establishing proof-of-concept at minimal cost and at minimal adverse impact to animal
welfare. Secondly, this was a non-survival experiment, thereby limiting assessment of post-
operative renal function. Thus, it is presently unclear how increased expression of HIF-1α and
TRL4 during renal ischemia/reperfusion correlates with postoperative renal function. Further
studies are underway to address these issues. Third, the experiments were conducted in nor-
mal, healthy kidneys and it is uncertain whether similar findings would be observed in cancer-
bearing kidneys.

Conclusion
In this feasibility study, we demonstrate for the first time that increased expression of HIF-1α
and TLR4 occurs during renal ischemia/reperfusion in a large animal model of partial nephrec-
tomy, and that this increased expression is detectable in both ischemic renal tissue and in
peripheral blood leukocytes. Pending further studies investigating the correlation of these find-
ings with postoperative renal functional outcomes, these molecules have the potential for
future development as biomarkers of AKI during renal surgery and/or to serve as targets for
intervention to minimize the deleterious effects of IRI on postoperative renal function.
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