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Abstract
Colorectal cancer (CRC) is the third most common form of cancer and poses a critical public health threat due to the
global spread of westernized diets high in meat, cholesterol, and fat. Although the link between diet and colorectal
cancer has been well established, the mediating role of the gut microbiota remains elusive. In this study, we sought to
elucidate the connection between the gut microbiota, diet, and CRC through metagenomic analysis of bacteria
isolated from the stool of CRC (n= 89) and healthy (n= 161) subjects. This analysis yielded a dozen genera that were
significantly altered in CRC patients, including increased Bacteroides, Fusobacterium, Dorea, and Porphyromonas
prevalence and diminished Pseudomonas, Prevotella, Acinetobacter, and Catenibacterium carriage. Based on these
altered genera, we developed two novel CRC diagnostic models through stepwise selection and a simplified model
using two increased and two decreased genera. As both models yielded strong AUC values above 0.8, the simplified
model was applied to assess diet-based CRC risk in mice. Mice fed a westernized high-fat diet (HFD) showed greater
CRC risk than mice fed a regular chow diet. Furthermore, we found that nonglutinous rice, glutinous rice, and sorghum
consumption reduced CRC risk in HFD-fed mice. Collectively, these findings support the critical mediating role of the
gut microbiota in diet-induced CRC risk as well as the potential of dietary grain intake to reduce microbiota-associated
CRC risk. Further study is required to validate the diagnostic prediction models developed in this study as well as the
preventive potential of grain consumption to reduce CRC risk.

Introduction
Colorectal cancer (CRC) is the third most common

cancer with the fourth highest cancer mortality in the
world. Based on temporal profiles and demographic
projections, CRC incidence is predicted to increase by
60% by 20301. Despite global efforts to clearly define the
pathogenesis of CRC, the precise etiology of CRC remains
unknown. However, it has been established that CRC
incidence is affected by genetic, epigenetic and

environmental factors, such as diet2. The incidence rate of
CRC has been increasing especially in developing coun-
tries. This increase may reflect a rise in the prevalence of
CRC risk factors associated with westernization. The
westernization of developing countries is characterized by
rising unhealthy dietary habits, obesity and smoking3,4.
The globalized spread of unhealthy, westernized diets
high in red, processed meat and saturated fats is attracting
concern, as it is reported that rising CRC risk is related to
increased consumption of meats, animal fats, and
cholesterol-rich foods4,5. People consuming a high-
cholesterol diet have demonstrated higher CRC inci-
dence than those who consume a low-cholesterol diet6.
Additionally, it has been reported that native Africans
with a low CRC risk and diets high in grain and vegetables
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are characterized by higher Prevotella abundance than
African American counterparts with an increased risk of
CRC development and diets high in red meat and fat,
suggesting that gut bacteria also play a role in dietary CRC
risk7.
Although a variety of possible mechanisms through

which a high-fat diet (HFD) can lead to CRC development
have been proposed, the gut microbiota has recently been
revealed to be a likely mediator between diet and CRC.
Over 100 trillion bacteria reside in the human gut,
forming a complex community that mediates metabolism
and immune functions to both directly and indirectly
affect human health and disease8. As the impact of the gut
microbiota on metabolism and disease has been uncov-
ered, the relationship between diet, the gut microbiota
and CRC has begun to emerge. An HFD is known to
increase intestinal permeability, which in turn raises the
level of gut microbiota-associated lipopolysaccharide
(LPS)-induced local inflammation, and both phenomena
that have been independently associated with CRC9,10. In
turn, LPS has been reported to increase synthesis and
serum levels of leptin, a known growth factor for colonic
epithelial cells11. Increased serum leptin levels have been
shown to be associated with both HFD-induced obesity
and CRC12. Furthermore, leptin has been demonstrated to
induce carcinogenesis by increasing the proliferation of
colon cancer cells in vitro13. Altogether, these findings
demonstrate one example of the complex network of the
interactions among diet, the gut microbiota, and CRC and
particularly highlight the mediating role of the gut
microbiota.
Next-generation sequencing (NGS) has enabled

researchers to determine the holistic bacterial community
structure unique to each individual, and several studies
have found that gut microbiota dysbiosis is associated
with a variety of diseases, including colon cancer14.
However, mixed results have prevented a clear consensus
on the precise community dynamics between the gut
microbiota and CRC. One of the most consistent bacterial
groups shown to be associated with CRC carcinogenesis is
Bacteroides spp., particularly Bacteroides fragilis. It has
been shown that a high abundance of Bacteroides is
associated with an increased risk of colon polyps, induces
inflammation and contributes to CRC2,15. Overall,
decreased trends in lactic acid bacteria, increased Fuso-
bacterium, and altered Bacteroides/Prevotella levels have
also been reported in CRC gut microbiota. While
numerous factors may contribute to variations in CRC gut
microbiome study outcomes, such as sample size, disease
progression, age, sex, and regional dietary differences, one
key confounding factor has yet to be addressed: bacterial
extracellular vesicles (EVs). Bacteria release nanosized
lipid bilayer-encapsulated EVs composed of proteins,
lipids, DNA, RNA, lipopolysaccharides, and metabolites.

Released microbiota-derived EVs interact with host cells
both locally and distally and control various cellular
processes by transferring their cellular components16. The
amount and composition of secreted extracellular vesicles
is not static, and we have shown through metagenomic
analysis that alterations in gut microbiota EVs are asso-
ciated with a variety of conditions, such as inflammatory
bowel disease and tight junction permeability17,18. How-
ever, the impact of the diverse and dynamic composition
of bacterial nucleic acids contained within microbiota-
derived EVs has yet to be accounted for as a confounding
factor in gut microbiota metagenomic analysis.
To elucidate the mediating role of the gut microbiota in

the relationship between diet and CRC, we sought to
identify significant gut microbiota alterations associated
with CRC. We isolated bacteria and removed all bacterial
EVs from the stool of 89 CRC patients and 161 healthy
controls and performed 16s rDNA metagenomic analysis
on the resulting bacterial pellet. Through this analysis, we
developed two CRC diagnostic models based on stepwise
selection of significantly altered gut microbiota-derived
biomarkers (D1-model) and two significantly increased
and two significantly decreased bacterial genera (D2-
model). Furthermore, we hypothesized that key bacteria
associated with CRC can be regulated by diet, providing
useful biomarkers for diet-mediated CRC risk. To verify
this hypothesis, we conducted an in vivo study assessing
gut microbial alterations and associated CRC risk in mice
fed an HFD or an HFD supplemented with a variety of
grains. The results of this study contribute a promising
advancement in CRC theragnostics, gut microbiota-based
therapeutics, and gut microbiota metagenomic analysis
methodology.

Materials and methods
Subjects
In total, 161 healthy people (76 males and 85 females)

were enrolled from Haewoondae Baek Hospital, and 89
CRC patients (52 males and 37 females) were enrolled
from Ewha Womans University Hospital and Seoul
National University Bundang Hospital. The healthy sub-
jects recruited in this study visited the hospital for a
regular health screening. After completion of the checkup,
we selected healthy persons for the study as healthy
controls who were confirmed to have no known diseases
and normal laboratory test results. The exclusion criteria
for healthy controls included gut disease diagnosis,
medication, and previous CRC diagnosis. Furthermore,
we excluded those younger than 20-years-old, cancer
patients and pregnant women. There was no significant
difference in age or sex between healthy controls and CRC
patients (p > 0.05) (Table 1). The present study was
approved by the Institutional Review Board of Ewha
Womans University Hospital (IRB No. EUMC
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2014–10–048–001), Seoul National University Bundang
Hospital (B-1708/412–301) and Haewoondae Baek Hos-
pital (IRB No. 129792–2015–064). The methods con-
ducted in this study were in accordance with the approved
guidelines, and informed consent was obtained from all
subjects.

Mouse Model
Female C57BL/6 mice that were 6 weeks of age were

purchased from Orient Bio Inc. (Seongnam, Korea). All
mice were housed and maintained in standard laboratory
conditions of 22 ± 2 °C and 50 ± 5% humidity under 12-
hour day and night cycles throughout the course of the
in vivo study.

In vivo mouse study to evaluate the effect of grain foods
Mice were randomly divided into nine groups (n= 5),

including a control group fed a regular chow diet (RCD).
The other eight groups were fed a HFD or an HFD sup-
plemented with either nonglutinous rice, glutinous rice,
rice syrup, brown rice, sorghum, buckwheat or acorn.
Mice within the RCD control group were fed regular
chow containing 18% dietary fat obtained from Research
Diets, Inc. (New Brunswick, NJ, USA) for 4 weeks. Mice in
the HFD group were fed a 60% fat diet, while mice in the
grain diet groups were fed a 60% fat diet (Research Diets,
Inc.) with 2% of the appropriate grain powder adminis-
tered in their drinking water. Mouse body weight and
food intake were measured weekly. At the conclusion of
the 4-week study period, all mice were sacrificed, and
cecal fluid was collected to analyze the microbiota
composition.

Bacterial and EV isolation and DNA extraction
Human feces and mouse cecal fluid samples were fil-

tered through a cell strainer after being diluted in 10 mL
of PBS for 24 hours. EVs contained in the stool samples
were isolated by centrifugation at 10,000 × g for 10 min at
4°C. After centrifugation, the resulting bacterial cell pellet
and EV-containing supernatant were separated. DNA
contained within the bacterial pellet and supernatant was
extracted using a DNA isolation kit (PowerSoil DNA

Isolation Kit, MO BIO Laboratory, CA, USA) following
the standard protocol in the kit guide. The DNA extracted
from the isolated bacterial cells and EVs contained in each
sample was quantified using a QIAxpert system (QIA-
GEN, Hilden, Germany).

Metagenomic analysis
Bacterial genomic DNA was amplified with the 16s_V3_F

(5′- TCGTCGGCAGCGTCAGATGTGTATAAGAGACA
GCCTACGGGNGGCWGCAG -3′) and 16s_V4_R (5′- GT
CTCGTGGGCTCGGAGATGTGTATAAGAGACAGGA
CTACHVGGGTATCTAATCC -3′) primers specific for
the V3-V4 hypervariable regions of the 16s rDNA gene. The
libraries were prepared using PCR products according to
the MiSeq System guide (Illumina, CA, USA) and quanti-
fied using a QIAxpert (QIAGEN). Each amplicon was then
quantified, set at an equimolar ratio, pooled, and sequenced
with a MiSeq (Illumina) according to the manufacturer’s
recommendations.

Analysis of the microbiota composition
Raw pyrosequencing reads obtained from the sequencer

were filtered according to the barcode and primer
sequences using MiSeq (Illumina). Taxonomic assign-
ment was performed by the profiling program MDx-Pro
ver.1 (MD Healthcare, Seoul, Korea) that selects high-
quality sequencing reads with read lengths greater than
300 bp and Phred scores higher than 20 (>99% accuracy of
base call). Operational taxonomic units (OTUs) were
clustered using the sequence clustering algorithm CD-
HIT. Subsequently, taxonomy assignment was carried out
using UCLUST and QIIME against the 16s rDNA
sequence database in Greengenes 8.15.13. Based on the
sequence similarities, taxonomic assignment to the genus
level was performed on all 16s rDNA sequences. The
microbial composition at each taxon level was plotted in a
stack bar. If clusters could not be assigned at the genus
level due to lack of sequences or redundant sequences in
the database, the taxon was assigned at the next highest
level, as indicated in parentheses.

Development of a CRC diagnostic model
The selection of biomarkers for inclusion in the diag-

nostic model was based on the relative abundances of
OTUs at the genus level. We selected candidate bio-
markers with p-values < 0.05, fold-changes greater than
two-fold, and average relative abundances greater than
0.1%. For the first diagnostic model (D1-model), we
included age and sex as covariates and selected bio-
markers for inclusion in the model by a stepwise selection
method. Akaike information criterion (AIC) was used to
assess model fitness of the predictive diagnostic models
using differing variables, and all candidate predictive
diagnostic models were calculated using logistic

Table 1 Clinical subject demographic information

Group Included samples Enrolled samples

N (Male/Female) Age

Control 161 (76/85) 63.7 (SD 9.0) 161

Colorectal cancer 89 (52/37) 64.3 (SD 13.5) 91

P-value 0.117* 0.7317**

*p-value of t test between male and female subjects
**p-value of chi-squared test

Yang et al. Experimental & Molecular Medicine (2019) 51:117 Page 3 of 15

Official journal of the Korean Society for Biochemistry and Molecular Biology



regression. The second diagnostic model (D2-model) was
established based on two increased and two decreased
biomarkers as variables and was calculated by logistic
regression. Based on the analysis of all the possible vari-
able combinations using two increased and two decreased
biomarkers, we selected the diagnostic model with the
highest resulting AIC value as the simplified D2-model to
be used to assess CRC risk during in vivo experimenta-
tion. Mann–Whitney statistics as an estimator of AUC
and the DeLong test to test the change in AUC were
used19,20, and 10-fold cross-validation was applied.

Statistical analysis
To avoid potential bias caused by differing sequencing

depths, samples with more than 3500 reads were rar-
efied to a depth of 3500 reads for subsequent analysis.
Significant differences between the healthy control
group and CRC patient group were determined using
the t test for continuous variables. Additionally, the
Mann–Whitney test was performed to analyze micro-
biome differences in vivo. Findings were considered
significant if the p-value was less than 0.05 or the
adjusted p-value (Ad. p) was less than 0.05. The alpha
diversity of microbial composition was measured using
the Chao1 index and rarified to compare species rich-
ness. Shannon’s index was used to measure the species
diversity of samples between the healthy control group
and CRC patient group. All statistical analyses were
performed using R version 3.4.1.

Results
Fecal microbiota diversity of CRC patients vs. healthy
controls
Microbial diversity within the human fecal samples was

measured using the Chao1 and Shannon diversity indexes.
Through this analysis, the healthy control group showed
high richness (p < 0.001) in both Chao1 and Shannon
index diversity. While there was an observable trend of
increased alpha diversity and species richness in the
control group relative to those in the case group, neither
Chao1 nor Shannon index measures yielded a significant
difference (Figs. 1a, b). CRC patients were shown to have
1.18 times more OTU reads than the healthy control
subjects, while the number of valid reads in the normal
group was significantly higher than that in the colorectal
group, with 58537.1 (SD 24831.5) and 50880.8 (SD
27830.7) valid reads, respectively (p= 0.026).

Compositional difference of the fecal microbiota of CRC
patients vs. healthy controls
Based on metagenomic analysis at the phylum level, Fir-

micutes and Fusobacteria were significantly increased in
CRC patient samples, while Proteobacteria was significantly

decreased (p < 0.05). In particular, Proteobacteria was vastly
altered, with a 0.45-fold difference between CRC and
healthy subjects (Figs. 1c, d). At the class level, carriage of
Gammaproteobacteria and Betaproteobacteria affiliated
with Proteobacteria was significantly lower in the CRC
patient group than in the healthy control group, while
Bacilli and Fusobacteriia were significantly higher (p < 0.05)
(Fig. 2a). At the order level, the case group showed sig-
nificantly lower carriage than the healthy control group of
Pseudomonadales, Burkholderiales, and Pasteurellales,
while Fusobacteriales, Lactobacillales, and Enterobacteriales
were significantly higher in the CRC group than in the
healthy control group (p < 0.05). Although Proteobacteria
was decreased overall at the phylum level, the order
Enterobacteriales showed increased carriage in the CRC
group (Fig. 2b). At the family level, carriage of Pseudomo-
nadaceae, Moraxellaceae, Prevotellaceae, and Pasteur-
ellaceae was significantly lower in the CRC group than in
the healthy control group, while carriage of Enter-
ococcaceae, Porphyromonadaceae, Bacteroidaceae, Enter-
obacteriaceae, Ruminococcaceae, and Lachnospiraceae was
significantly increased in the CRC group (p < 0.05). Pseu-
domonadaceae and Moraxellaceae showed particularly
dramatic fold-changes of 0.07 and 0.02, respectively
(Fig. 2c). At the genus level, Bacteroides, Ruminococcaceae
(f), Enterobacteriaceae(f), Enterococcus, Ruminococcus, Por-
phyromonas, and [Ruminococcus] showed a significant
increase in CRC patients, while Pseudomonas, Prevotella,
Acinetobacter, Haemophilus, Pseudomonadaceae(f) were
significantly decreased (p < 0.05). Notably, Porphyromonas,
Enterococcus, [Ruminococcus], Acinetobacter, Pseudomona-
daceae(f), Pseudomonas and Haemophilus showed drastic
fold changes of 85-, 20-, 4.4-, 0.01-, 0.02-, 0.08- and 0.36-
fold, respectively (Figs. 3a, b).

Diagnostic model for colorectal cancer
Bacterial biomarker candidates were selected based on

three criteria: a statistically significant difference (p < 0.05)
between the relative abundance in CRC and healthy
subjects, a greater than two-fold change in relative
abundance, and an average relative abundance above 0.1%
at the genus level. Following those criteria, Pseudomonas,
Acinetobacter, Enterococcus, Haemophilus, [Rumino-
coccus], Pseudomonadaceae(f), Porphyromonas, Cateni-
bacterium, Dorea, Fusobacterium, Erysipelotrichaceae(f),
Gemellaceae(f), Cupriavidus, Peptostreptococcus, Parvi-
monas, Desulfovibrio, and Prevotella were selected as
candidate CRC biomarkers. Eight biomarker candidates,
Pseudomonadaceae(f), Enterococcus, Peptostreptococcus,
Cupriavidus, Fusobacterium, [Ruminococcus], Desulfovi-
brio, and Erysipelotrichaceae(f), were selected using
stepwise selection with age and sex as covariates. Using
these 10 variables, we created the D1 model using logistic
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regression with the following function:

SD1 ¼ eðyD1Þ=ð1þ eðyD1ÞÞ with yD1
¼ ax1 þ bx2 þ cx3 þ dx4 þ ex5

þfx6 þ gx7 þ hx8 þ ix9 þ jx10þ k

In this D1-model, the values a to k are the independent
parameters, and variables x1 to x10 represent age, sex, and
the relative abundances of Pseudomonadaceae(f), Enter-
ococcus, Peptostreptococcus, Cupriavidus, Fusobacterium,
[Ruminococcus], Desulfovibrio, and Erysipelotrichaceae(f),
respectively. The values of these parameters are as follows:
a is 0.06 (CI: 0.01–0.12), b is 1.22 (CI: 0.31–2.19), c is
-749.7 (CI: −2679.3 to −137.9), d is 94.33
(CI: 49.77–201.65), e is 72380 (CI: 31695.5–120109.8), f is

−5327000 (CI: −12332540 to −2361652), g is 409
(CI: 15.41–1520.48), h is 53.73 (CI: 3.17–123.70), i is 288.2
(CI: −39.70–855.63), j is 60.6 (CI: −0.31–145.80), and k is
−6.146 (CI: −10.15 to −2.61). The D1-model test set
yielded an AUC of 0.91 (SD 0.06), sensitivity of 0.85 (SD
0.14), specificity of 0.87 (SD 0.10), and accuracy of 0.86
(SD 0.06) (cut-off value of 0.51) (p= 0.00001) (Fig. 3c).
In addition to the stepwise selection-based D1 model,

we sought to develop a simplified diagnostic prediction
model using only two increased and two decreased genera
of the 17 filtered biomarkers and no clinical covariates.
Sixty model variations were screened following those
criteria, with 8 models yielding an AUC above 0.8. Based
on this analysis, the most appropriate and relevant mar-
kers for the simplified diagnostic prediction model were
determined to be Prevotella, Catenibacterium, Dorea, and

Fig. 1 Alpha diversity and phylum-level gut microbiota composition. a Estimated species richness (Chao1 measure) and b alpha diversity
defined by Shannon’s index. c Heatmap of the gut microbiota at the phylum level, with columns representing individual control and CRC stool
samples and rows corresponding to the identified phyla. Color scale based on relative OTU abundance, and hierarchical clustering based on
Euclidean distance. d Average relative abundance of individual phyla, with error bars representing the standard error (SE). Significance between
groups assessed by a t test (*= Ad. p < 0.05, **= Ad. p < 0.01)
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Porphyromonas. The simplified D2-model constructed
using these four biomarkers and a logistic regression
model was created with the following function:

SD2 ¼ eðyD2Þ=ð1þ eðyD2ÞÞ with yD2
¼ ax1 þ bx2 þ cx3 þ dx4 þ e

In the D2-model function, a, b, c, d, and e are the
independent parameters, and x1, x2, x3, and x4 represent
the relative abundance of Prevotella, Catenibacterium,
Dorea, and Porphyromonas, respectively. The indepen-
dent parameters’ values are −4.51 (CI: −11.44–1.27)
for a, −15.80 (CI: −60.01–7.03) for b, 148.00
(CI: 49.68–260.51) for c, 166.65 (CI: 32.47–444.20) d, and
−1.26 (CI: −2.13 to −0.46) for e. The above D2-model
yielded an AUC of 0.80 (SD 0.14), sensitivity of 0.79 (SD
0.17), specificity of 0.82 (SD 0.16) and accuracy of 0.80

(SD 0.12) (cut-off value 0.27), based on analysis using the
test set (p= 0.0004) (Fig. 3c). The difference between the
D1-model and D2-model was not significant (p= 0.858)

Compositional difference of the cecal microbiota of mice
fed an HFD vs. RCD
In contrast with the microbiota composition of CRC

patient samples, Firmicutes was significantly decreased in
HFD-fed mice (p < 0.05), while Proteobacteria showed no
difference. Bacteroidetes showed significant enrichment,
while Actinobacteria was significantly diminished in RCD-
fed mice (Figs. 4a, b). At the class level, HFD-fed mice had
higher carriage of Clostridia and Bacteroidia than RCD-fed
mice, while Bacilli, Coriobacteriia, and Erysipelotrichi
abundance was significantly greater in RCD-fed mice than
in HFD-fed mice. Only Clostridia affiliated with Firmicutes
was significantly increased in the HFD group (p < 0.05). At

Fig. 2 Composition of the gut microbiota at the class, order and family levels. a The left-side heatmap plots and hierarchical clustering
dendrograms show the gut microbiota composition between individual control and CRC samples at the a class, b order, and c family levels. Relative
abundances of individual taxa (rows) in each sample (columns) are indicated in the associated color scale. Right-side bar plots highlight the differing
average relative abundance of individual key taxa between control and CRC subject stool microbiota at the a class, b order, and c family levels.
Significant differences were calculated by a t test (*= Ad. p < 0.05, **= Ad. p < 0.01)
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the order level, Clostridiales and Bacteroides abundances in
HFD-fed mice were higher than in RCD-fed mice, while
Lactobacillales, Coriobacteriales, Erysipelotrichales, and
Turicibacterales were less prevalent in HFD-fed mice than
in RCD-fed mice (p < 0.05). Bacteroidales, Lactobacillales,
Erysipelotrichales, and Turicibacterales experienced drastic
alterations, with 38.5-fold, 0.19-fold, 0.07-fold, and 0.001-
fold changes, respectively. Meanwhile, at the family level,
proportions of Bacteroidaceae, Ruminococcaceae, Lach-
nospiraceae, Peptococcaceae, and Porphyromonadaceae
were significantly higher in HFD-fed mice than in RCD-fed
mice, while Lactobacillaceae, Coriobacteriaceae, and Erysi-
pelotrichaceae proportions were significantly lower (p <
0.05). In particular, Bacteroidaceae, Lachnospiraceae, Pep-
tococcaceae, and Porphyromonadaceae were sharply
increased in HFD-fed mice, with 38.1-fold, 29.1-fold, 242.4-

fold, and 48.7-fold increases, respectively, while Erysipelo-
trichaceae showed a steep 0.07-fold reduction in the HFD
model.
Finally, at the genus level, Bacteroides, Ruminococcaceae

(f), and [Ruminococcus] each showed highly significant
increases in HFD-fed mice. Ruminococcus, however,
demonstrated no significant difference between mice fed
an HFD or RCD and accounted for a relatively low por-
tion of the total microbiota. Furthermore, Oscillospira,
Lachnospiraceae(f), rc4–4, and Parabacteroides were sig-
nificantly enriched, while Lactobacillus, Adlercreutzia,
Turicibacter, and Allobaculum were significantly depleted
in HFD-fed mice. Bacteroides, rc4–4, [Ruminococcus], and
Parabacteroides showed particularly higher carriage in
HFD-fed mice than in RCD-fed mice, with 268-fold, 178-
fold, 48-fold, and 38-fold increases, respectively.

Fig. 3 Genus level gut microbiota composition and CRC diagnostic prediction model. a Heatmap and clustering of individual control and CRC
samples with a color scale indicating relative abundance at the genus level and hierarchical clustering measured by Euclidean distance. b Bar graph
displaying the relative abundance of select genera and error bars showing the standard error (SE). Significance between control and CRC groups
determined through Student’s t test (*= Ad. p < 0.05, **= Ad. p < 0.01). c ROC curves of CRC diagnostic prediction models developed through
stepwise selection of significantly altered genera (D1-model) and two increased and two decreased genera (D2-model). Models were validated by a
10-fold cross-validation method to assess the area under the curve (AUC), sensitivity, specificity, and accuracy of each model
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Meanwhile, Turicibacter and Allobaculum were extre-
mely depleted in HFD-fed mice, with proportions of 1.3%
and 2.4% in the control RCD-fed group, respectively,
while possessing less than 10–5% of the total population in
the HFD group (Figs. 4c, d). After applying the simplified
CRC diagnostic prediction model (D2-model) to the RCD
and HFD groups, the analysis yielded a fitted value of 0.24
(SD 0.01) in the control RCD group, while the HFD group
showed a fitted value of 0.44 (SD 0.07) (Fig. 4e). Addi-
tionally, the result applying the prediction model showed
that the AUC was 1.00.

Grain consumption reduces CRC risk in mice
Microbial analysis was also conducted on the cecal con-

tent of mice after they were fed a variety of grain diets in
combination with an HFD. At the phylum level, none of the
grains assessed in this study were shown to significantly

decrease Firmicutes, a phylum that was significantly
increased in the CRC group. However, nonglutinous rice
and rice syrup consumption led to a significant increase in
Proteobacteria, a phylum shown to be significantly
decreased in CRC patients (Fig. 5a, Table 2). At the class
level, Gammaproteobacteria, a diminished class in CRC
patients, was increased after consumption of rice syrup.
At the order level, nonglutinous rice consumption was
associated with a significant increase in the relative
abundance of Pseudomonadales, a decreased order in the
CRC group. At the family level, Ruminococcaceae,
Lachnospiraceae, Bacteroidaceae, and Porphyr-
omonadaceae were decreased in mice after consumption
of grains compared to those in the HFD-fed mice, con-
sistent with the differences between healthy subjects and
CRC patients. Ruminococcaceae and Lachnospiraceae
were significantly decreased after consumption of

Fig. 4 Gut microbiota composition and CRC risk differed between RCD and HFD mice. Heatmap and hierarchical clustering of gut microbiota
relative abundance of individual control regular chow diet-fed (RCD) and high-fat diet-fed (HFD) mouse stool samples at the a phylum and c genus
levels. The average relative abundances of individual taxa identified in RCD and HFD mouse stool at the b phylum and d genus levels. Standard errors
(SEs) represented by error bars and significant differences between groups measured by the Mann–Whitney test (*= Ad. p < 0.05, **= Ad. p < 0.01).
e Predicted values of CRC risk in RCD and HFD mice are based on the D2 model
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nonglutinous rice, glutinous rice, brown rice, and sor-
ghum. Meanwhile, Bacteroidaceae was significantly
decreased after consumption of nonglutinous rice. Por-
phyromonadaceae showed decreased carriage in mice
after consumption of nonglutinous rice, brown rice, and
sorghum. Finally, at the genus level, nonglutinous rice
consumption was associated with a significant decrease in
HFD-induced elevated Bacteroides, Ruminococcus, and
[Ruminococcus] levels and further caused significant
recovery of depleted Acinetobacter. The grain types that
caused a significant decrease in Ruminococcus and
[Ruminococcus] included glutinous rice, brown rice, and
sorghum (Fig. 5b, Table 3). These findings were then
analyzed using the D2 model to determine the CRC risk in
each group. Through this analysis, the HFD group yielded
a fitted value of 0.44 (SD 0.07), while the nonglutinous
rice-, glutinous rice-, rice syrup-, brown rice-, sorghum-,
buckwheat-, and acorn-fed groups yielded fitted values of

0.25 (SD 0.01), 0.24 (SD 0.01), 0.36 (SD 0.05), 0.32 (SD
0.08), 0.24 (SD 0.01), 0.43 (SD 0.08), and 0.38 (SD 0.16),
respectively. Nonglutinous rice, glutinous rice, and sor-
ghum were the main grain types for which consumption
was shown to decrease the level of CRC risk associated
with an HFD (Fig. 5c).

Discussion
In the present study, we developed two novel CRC

diagnostic models based on metagenomic analysis of
stool-derived bacterial pellets separated from bacterial
EVs containing bacterial DNA. As seen in Supplementary
Fig. 1, the total DNA yield of bacterial EVs isolated from
stool contributed to more than a quarter of the total
bacterial DNA yield. This finding is critical because it
reveals that more than a quarter of the bacterial sequences
obtained from stool originate from bacterial EVs rather
than from bacterial cells themselves. As the microbiota

Fig. 5 HFD mouse gut microbiota composition and associated CRC risk modulated by grain consumption. Heatmap and hierarchical
clustering depicts the differential microbiome relative abundance of HFD mouse stool after consumption of seven different grains at the a phylum
and b genus levels. Rows represent taxa identified in each sample, and columns represent individual samples, grouped by diet type. c The predicted
values of CRC risk in HFD mice and HFD mice fed seven different grains using the D2 model
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releases EVs differentially based on its metabolic state,
proliferation, apoptosis, and community structure, the
variable composition of bacterial EVs contained in stool
poses a crucial confounding factor in gut microbiota
metagenomic analysis21. To account for and eliminate
potential bias caused by differential bacterial EV compo-
sition, we removed bacterial EVs contained within fecal
samples via centrifugation and analyzed the resulting
isolated bacterial pellet. This methodology is a distin-
guishing aspect of this study because gut microbiome
analysis typically does not account for the potentially
confounding factor of EV-originating bacterial DNA in
stool. Therefore, we suggest that future gut microbiome
studies consider the impact of differential microbial EV
composition contained within fecal samples on micro-
biome profiling and take the appropriate measures to
remove EVs prior to bacterial analysis.
Although we determined a multitude of taxa at different

levels that were significantly altered in CRC patients (Fig. 2),
we selected only those at the genera level for inclusion in
the diagnostic models to enhance the model specificity
and accuracy. Of the 17 significantly differing genera, 8
were selected via stepwise selection in the D1 model, in
addition to age and gender. We also developed a second
model, the D2 model, that included only 4 genera to offer
a simplified model that is more accessible for practical
diagnostic purposes. Although the D2 model using
minimal biomarkers showed slightly lower accuracy,
sensitivity, and specificity than the more robust D1 model,
the D2 model demonstrated desirable strength as a
diagnostic risk model (AUC 0.88). Overall, although the
two models were similar in their CRC risk diagnosis
strength, the D1-model can obtain more accurate results
by utilizing both metagenomic analysis and clinical
information, while the D2-model offers a more simplified
option through a minimized, targeted approach. Although
additional experimentation is necessary to refine the
simplified, targeted D2-model, we found that four gut
microbiome-derived biomarkers were sufficient to diag-
nose CRC risk.
Metagenomic analysis of CRC patient and healthy

subject stool bacteria yielded a variety of altered genera
known to be associated with CRC. A number of genera
included in the D1 model, such as Enterococcus, Fuso-
bacterium, Peptostreptococcus and Desulfovibrio, have
been shown in previous studies to be enriched in CRC
patients via gut microbiome metagenomic analysis22–24.
Fusobacterium, in particular, has been thoroughly estab-
lished as a pathogenic driver of CRC. Specifically, the
overabundance of invasive Fusobacterium nucleatum is
associated with CRC and has even been suggested to
negatively impact patient outcomes25–27. Although it is
difficult to directly establish a causal link between a single
pathogenic species and CRC, possible mechanisms ofTa
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carcinogenic action of invasive Fusobacterium spp.
include induction of cascading inflammatory responses
and colon tumor cell growth promotion via β-catenin
activation28.
In the development of the targeted D2 model, two

increased and two decreased bacterial genera in CRC
patients were shown to yield the most accurate results:
Dorea and Porphyromonas and Catenibacterium and
Prevotella, respectively. Dorea has previously been found
to be more abundant in fecal samples of CRC patients
than in those of healthy controls29. Dorea spp. have the
ability to adhere to cancer cells, which may confer Dorea a
competitive advantage in the cancerous colorectal envir-
onment30. Meanwhile, Porphyromonas has been reported
to be enriched in CRC patients in several studies using
NGS-based gut microbiota profiling methods22,24,31. Fur-
thermore, Porphyromonas species have been implicated as
biomarkers of orodigestive cancer, as increased carriage of
pathogenic, proinflammatory carcinogenic Porphyr-
omonas gingivalis (P. gingivalis) as well as increased P.
gingivalis-associated IgG serum antibody levels have been
associated with oral, colorectal and pancreatic cancers32.
In total, these previous findings support the association
between CRC and increased abundance of Dorea and
Porphyromonas in the gut and highlight the opportunistic
capacity of Dorea spp. and the potential carcinogenic role
of Porphyromonas spp. in CRC.
In contrast, Catenibacterium has seldom been asso-

ciated with CRC, aside from a finding that Catenibacter-
ium was absent in a Chinese cohort of CRC patients,
which is in line with the results of this study31. Further-
more, we found that Prevotella spp. were significantly
reduced in CRC patients, and multiple studies have shown
increased Prevotella abundance in the gut microbiota and
cancerous tissues of Chinese, American, and European
CRC patients31,33,34. These findings may be explained by
the connection between Tjalsma’s proposed Bacterial
Driver-Carrier model of CRC and the dietary-based Bac-
teroides-Prevotella gradient. Tjalsma’s Bacterial Driver-
Carrier model postulates that pathogenic bacterial drivers
can disrupt gut microbiota balance through carcinogenic
activity, such as proinflammatory signaling, secretion of
genotoxic substances and other mechanisms leading to
premalignant adenomas, mutations, and ultimately car-
cinoma development in the colorectal cavity35. This
model posits that bacterial drivers induce gut dysbiosis
and drive carcinogenic activity, enabling the enrichment
of other bacterial passengers that under normal circum-
stances cannot effectively colonize a healthy gut. How-
ever, here, we further suggest that gut dysbiosis initiated
by bacterial drivers also causes commensal bacterial pas-
sengers unsuited to the cancerous gut environment to
depart the gut, based on the initial bacterial community
structure.

Recently, it has been posited that the gut microbiota
community structure is characterized by a Prevotella-
Bacteroides gradient that enables broad classification of
gut enterotypes dominated by either Prevotella of Bac-
teroides36. These gut enterotypes are significantly affected
by dietary habits, as diets high in red meat and animal fat
are typically associated with high Bacteroides and low
Prevotella abundance, while conversely, those who con-
sume high amounts of dietary fiber and low amounts of
animal fat and protein are associated with low Bacteroides
and high Prevotella abundance. This dietary-based Pre-
votella-Bacteroides gradient may explain our finding that
Bacteroides was significantly increased and Prevotella was
significantly decreased in Korean CRC patients. Previous
studies have consistently reported an increased Prevotella
abundance in CRC patients; however, these studies mostly
assessed cohorts from regions known to have relatively
low Prevotella abundance in the general population and
low dietary fiber and high animal fat and protein con-
sumption35,37. However, Prevotella is one of the most
dominant genera in the Korean gut microbiota, which has
been largely attributed to the relatively low consumption
of animal fat and proteins and the high consumption of
complex fibers and grains in the typical Korean diet38.
Therefore, our finding of increased Bacteroides and
decreased Prevotella abundance in this Korean cohort
suggests a critical shift in the Prevotella-Bacteroides gra-
dient in the cancerous gut environment. Based on the
culmination of these findings, we postulate that Prevotella
may be a bacterial passenger that departs the Korean
colon as carcinogenic bacterial drivers, such as increased
Porphyromonas and Fusobacterium, induce a gut envir-
onment favorable to Bacteroides. Furthermore, we
emphasize that regional differences in diet and the Pre-
votella-Bacteroides gradient of the target population must
be considered to fully grasp the dynamic relationship
between CRC and the gut microbiome and develop
accurate diagnostic prediction models.
While altered carriage of certain genera found in this

study, such as Pseudomonas, Acinetobacter, Haemophilus,
and Parvimonas, has been previously associated with
CRC, such genera ultimately were not included in either
diagnostic prediction model due to diminished model
fitness31,33. Interestingly, in addition to the finding that
Acinetobacter and Pseudomonas were severely depleted in
CRC patients, conversely, we observed a general trend in
healthy subjects that high Acinetobacter and Pseudomo-
nas prevalence was associated with a sharp decrease in
Bacteroides-Prevotella abundance. While discrete gut
enterotypes have been established based on the dom-
inance of either Bacteroides or Prevotella in the gut, based
on our present findings, we suggest that dominance of
Acinetobacter and Pseudomonas may represent a distinct
third gut enterotype. In addition, as the Bacteroides-
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Prevotella enterotypes are strongly influenced by diet,
further study is required to determine any distinguishing
dietary patterns associated with Acinetobacter-
Pseudomonas dominance, such as high grain consump-
tion. Altogether, although our findings were generally
congruent with previous studies, conflicting results may
be attributed to our unique analysis method excluding
DNA contributed by bacterial EVs as well as to differing
regional dietary patterns in the sampled cohorts.
As dietary habits are well known to influence the risk of

CRC incidence, we sought to further elucidate the rela-
tionship between the gut microbiota, diet, and CRC risk.
While the impact of a westernized HFD on CRC and the
gut microbiota has been well characterized, conversely,
the protective effects of grain diets known to be associated
with low CRC risk remain uncertain at the microbiota
level. As previously discussed, populations at low risk of
CRC development generally consume diets high in grain
and dietary fiber and are characterized by a Prevotella-
dominant gut enterotype. Dietary grains contain poly-
phenols and other antioxidant components known to
promote health, reduce local inflammation in the colon
and protect against colorectal cancer39,40. Here, we
assessed the ability of seven different grains to reduce
CRC risk in mice fed an HFD and found that consump-
tion of nonglutinous rice, glutinous rice, and sorghum led
to the highest reduction in CRC risk. Although the 2012
Consumer Reports claimed that concerning levels of
arsenic in rice may lead to cancer risk in those who
consume rice, recent epidemiologic studies have deter-
mined no cancerous risk associated with rice consump-
tion in the United States41. Furthermore, previous studies
have shown that Asian diets high in rice consumption
were associated with reduced cancer risk42. Furthermore,
high-performance liquid chromatography (HPLC) analy-
sis has shown that nonglutinous rice in particular has
higher phenolic content than its glutinous counterpart43.
In the present study, while both nonglutinous and gluti-
nous rice showed similarly low CRC risk, nonglutinous
rice was especially effective in stabilizing key altered
genera shown to be associated with CRC, including Bac-
teroides, Lactobacillus, Ruminococcus, [Ruminococcus],
and Acinetobacter. As glutinous and nonglutinous rice
differ in phenolic content as well as the structure, type
and distribution of starch in the vicinity of the crushed
cell layer, these differences may explain the differing
trends of altered genera observed in this study44. Sor-
ghum, meanwhile, has previously shown tremendous anti-
CRC effects by suppressing the growth and metastasis of
cancerous colon epithelial cells as well as protecting
against gut microbiota alterations linked to colitis, an
inflammatory condition commonly associated with CRC
risk45,46. Other grains tested in this study, such as buck-
wheat, rice syrup and acorn, demonstrated limited effects

at offsetting HFD-induced CRC risk, highlighting the
differing efficacy of different grains in reducing CRC risk.
In total, these findings demonstrate the protective and
preventative effect of a variety of grain-based diets on the
development of CRC risk via differential stabilization of
key microbiota-based biomarkers. Furthermore, as East-
ern countries, such as Korea, continue to transition from
traditional rice-based diets to an increasingly westernized
HFD, we emphasize the importance of rice consumption
in the daily diet of vulnerable populations to improve the
balance of the gut microbiota and counteract the rising
trend in CRC risk.
Risk assessment, early diagnosis, and prevention of

disease, including for CRC, is critical for an effective
reduction of mortality and increased quality of life;
therefore, great effort has recently been put into advan-
cing early cancer diagnosis, including the development of
effective prediction models and in vitro diagnostics
(IVD)47,48. Although several diagnostic models have been
developed to predict CRC risk, models limited to pri-
marily epidemiological data have shown relatively low
discriminatory power, with AUCs ranging from 0.61 to
0.7849,50. Diagnostic models based on risk factor profiles
obtained via in vitro methodologies, such as serum
metabolomics, showed much higher discriminating abil-
ity, with an AUC up to 0.91; however, the high price of
such IVD methodologies may prevent the widespread
general use of such prediction models51. Thus, we aimed
to develop a cost-effective diagnostic model that main-
tained the high discriminatory power expected from IVD
methodologies by utilizing microbiome analysis. The
simplified D2 model developed in the present study
required only four key bacterial taxa to maintain an AUC
of 0.88, showing the high discriminatory power contained
within the gut microbiota to assess CRC risk. While this
study strongly supports the potency of gut microbiota-
based IVD, further clinical studies are necessary to con-
firm the efficacy of our diagnostic models and the effect of
grain consumption on CRC patients at varying stages of
disease progression. Unfortunately, we could not include
patient BMI and smoking history as covariates in this
study because we were unable to obtain sufficient infor-
mation on those variables from the subjects utilized for
diagnostic model development. We are continuously
collecting more stool samples from both healthy subjects
and CRC patients with a focus on obtaining as much
thorough clinical information and background as possible
for inclusion of more covariables in future microbiome-
based disease diagnostic model development.
In conclusion, our results highlight the important

mediating role of the gut microbiota in the relationship
between diet and CRC. First, we identified 16 significantly
altered genera with potential as biomarkers of CRC risk
and developed two novel gut microbiota-based CRC risk

Yang et al. Experimental & Molecular Medicine (2019) 51:117 Page 13 of 15

Official journal of the Korean Society for Biochemistry and Molecular Biology



assessment models. We used the simplified D2 model to
assess the role of diet in CRC risk and found that an HFD
increased CRC risk in mice. Next, we compared the effect
of an HFD and a variety of grain-based diets on micro-
biota composition and subsequent CRC risk in mice and
found that nonglutinous rice, glutinous rice, and sorghum
consumption vastly reduced CRC risk. Taken together,
these results suggest the utility and validity of gut
microbiota-based CRC risk assessment as well as dietary-
based prevention to reduce CRC risk in the development
of an effective CRC theragnostic strategy.
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