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Abstract This paper reports the first intensified biochip
system for chemiluminescence detection and the feasibility of
using this system for the analysis of biological warfare agents
is demonstrated. An enzyme-linked immunosorbent assay
targeting Bacillus globigii spores, a surrogate species for
Bacillus anthracis, using a chemiluminescent alkaline
phosphatase substrate is combined with a compact intensi-
fied biochip detection system. The enzymatic amplification
was found to be an attractive method for detection of low
spore concentrations when combined with the intensified
biochip device. This system was capable of detecting ap-
proximately 1×105 Bacillus globigii spores. Moreover, the
chemiluminescence method, combined with the self-
contained biochip design, allows for a simple, compact sys-
tem that does not require laser excitation and is readily
adaptable to field use.
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Introduction

Over the last decade, there has been a growing interest in the
rapid detection of pathogens for homeland defense [1–3].
Of particular concern among the potential biological
warfare (BW) agent candidates for use as a weapon is
Bacillus anthracis for a number of reasons. For example, B.
anthracis can be produced and released in large numbers in
the spore form, which is highly resistant to inactivation.
Moreover, it is a highly pathogenic organism, requiring
medical attention within 24–48 h of initial exposure, and
infective doses have been estimated to be very low (e.g.,
8,000 to 10,000 spores inhaled) [3]. Consequently, there is
a definite need for practical detection devices capable of
identification and quantitation of BW agents, such as B.
anthracis spores.

One of the primary approaches for detection and species-
specific identification of BW agents is based on immuno-
logical recognition [2, 4–8]. In addition to being both highly
sensitive and selective, immunological techniques can also
be easily adapted to field use [2, 9–11]. Unlike nucleic acid-
based analyses, immunological methods do not require a
cell/spore lysis step for the extraction of DNA or RNA, as
surface antigens can be targeted. This is particularly
advantageous for the detection of bacterial spores, such as
B. anthracis, as it is very difficult to disrupt the strong,
resistant shell of the spore form [12].

In the development process of portable detection devices,
the tradeoff between the size of the instrumentation and
detection sensitivity is an important consideration. However,
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when detecting biological agents (e.g., B. anthracis) in the
field, sensitivity is essential. One route to sensitive
detection is to utilize a method that incorporates amplifica-
tion of the signal, such as enzyme-linked immunosorbent
assays (ELISA) [4, 6, 13]. In an ELISA, an antibody
specific to the target species is immobilized onto a solid
support or platform. As illustrated in Fig. 1, the antigen
(i.e., target species) binds selectively to the capture antibody,
and is thus immobilized on the platform. For these studies,
the target of interest is Bacillus globigii spores, a surrogate
species for B. anthracis. Following immobilization, a labeled
second antibody, which is used for detection, specifically
recognizes another epitope on the spore surface. Signal
amplification is made possible by modifying the detector
antibody(ies) to include a conjugated enzyme. The final am-
plification step of the assay involves addition of a substrate
upon which the enzyme (conjugated to the detector anti-
body) functions with a very high turnover rate to produce a
detectable product. This measurable endpoint, typically the
production of a colored reaction product, is usually detected
spectrophotometrically and the absorbance of the reaction
product is used to quantify the amount of antigens or target
species present in the sample. By using a substrate that
produces either a fluorogenic or chemiluminescent product
(upon enzymatic cleavage by the conjugated enzyme) the
sensitivity of the assay can be enhanced even further [6, 14].

Development of a method incorporating a chemilumines-
cent product allows for a number of potential advantages

over fluorescent methods including extreme sensitivity, as
well as simpler instrumentation [5, 15–18]. More specifi-
cally, with chemiluminescence, photons are generated only
when the reactants are present, unlike fluorescence where
an excitation source could induce nonspecific radiation
from either scattering or background excitation of the
sample matrix. Since problems of light scattering, nonse-
lective excitation, and source instability are absent, chemi-
luminescence possesses an inherently low background,
allowing for a very sensitive analysis. Moreover, since an
excitation source and associated optics required for fluo-
rescence analyses are eliminated, detection can be achieved
with a simpler system that is readily adaptable to field use.
Previously, we have developed an integrated circuit biochip
that has demonstrated great potential for field use [6]. This
biochip device has a number of distinct advantages over
alternate biosensing technologies including a fabrication
process based on complementary metal oxide semiconduc-
tor (CMOS) technology and multianalyte detection [6, 13,
19–21]. For example, the CMOS fabrication process allows
for application-specific circuitry (i.e., signal amplification
and filtering) to be integrated into the chip, thereby
significantly reducing the size and power requirements of
the system. Another important consideration is that the
CMOS process is very cost-effective, which is ideal for mass
producing portable detection devices. Furthermore, the chip
is composed of an array of individual detector elements, each
of which could be devoted to the detection of a different
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Fig. 1 Schematic diagram of the enzyme-linked immunosorbent
assay, used for the detection of Bacillus globigii spores. The final
stage of the bioassay involves enzymatic cleavage of the substrate by

the enzyme-conjugated detector antibody, converting the substrate into
the chemiluminescent product
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biological agent for multiplexed detection. For example, in
this work a 4×4 photosensor array was used, which could be
capable of performing 16 simultaneous biowarfare agent
analyses in a single, compact unit.

In the current work, the first biochip device with an in-
tegrated intensifier enabling chemiluminescence detection is
reported and the feasibility of using this system for the de-
tection of Bacillus globigii spores is demonstrated. This
system has a number of potential advantages over previous
designs, including elimination of a laser and associated optics
used for sample excitation in fluorescence systems. Further-
more, this simpler design, along with the self-contained
biochip integrated circuit, could allow for the development of
a small yet sensitive system for field use.

Experimental

Intensified biochip detection system

The miniature biochip detection system, consisting of in-
tensifier and integrated circuit photosensing array chip, is
illustrated schematically in Fig. 2. The resulting chemilu-
minescence from each sample chamber was incident on a
modified night vision scope intensifier (Moonlight NV-100
009415 San Diego, CA). In this way, an image of the

chemiluminescence light originating from the 16 individual
sample chambers can be amplified prior to detection by
each one of the 16 elements of the photosensing chip. Four
amplifier gain settings, which were available by varying the
voltage applied to the intensifier, are referred to in the text
as settings 1–4.

The integrated circuit biochip prototype was developed
previously by the Vo-Dinh group at Oak Ridge National
Laboratory [20]. Each photosensor is 900-μm square in size
and is arranged in a 1-mm grid array. Through a 1.2-μm n-
well CMOS fabrication process, application-specific circuit-
ry was integrated into the chip for digital control of signal
filtering and amplification. The resulting output voltage from
each of the individual photosensors was recorded using a
laptop computer with in-house written Labview software.
The chemiluminescence signal intensity, originating from the
16 locations, was then correlated to the concentration of
target B. globigii spores.

ELISA procedure for detection of B. globigii spores

An enzyme-linked immunosorbent assay (ELISA) for
antibody-based capture and identification of Bacillus
globigii (B.g.) spores was used in conjunction with the
biochip detection instrumentation. As illustrated in Fig. 1,
antibodies specific to a surface antigen on the B.g. spore
(goat anti-B. globigii diluted to 10 μg mL−1 in 0.1 M
carbonate buffer, pH 9.6) were immobilized onto a Nunc
maxisorp protein binding platform (Nunc Maxisorp 96-well
plate surface) overnight at 4 °C. For all other antibody
binding steps, incubation times were approximately 1 h in
order to insure complete binding. However, these times
could be reduced significantly for field use [6, 14].

After immobilization of the capture antibodies, the
remaining binding sites were blocked for 1 h at room
temperature using a bovine serum albumin (BSA) diluent/
blocking solution concentrate, diluted 1:10 in distilled water
(Kirkegard and Perry Laboratories (KPL), Gaithersburg,
MD). Following blocking, the immobilized antibodies were
then incubated with Bacillus globigii spores (Var. Niger,
Baker Labs Dugway Proving Grounds, UT) diluted to
various concentrations in phosphate-buffered saline (PBS)
at 37 °C from a solution in the same buffer. Bacillus
globigii stock solution concentration was determined by
both serial dilutions and standard plate counts grown on a
generic growth medium (trypticase soy agar) as well as
through counting using a hemocytometer. Following incu-
bation with the spores, the wells were washed thoroughly in
PBS + 0.5% Tween 20 to remove any unbound target
species. Subsequently, a detector antibody (rabbit anti-B.
globigii), recognizing another epitope on the B.g. spore
surface, was diluted in BSA diluent/blocking solution
concentrate (1:15 dilution in distilled water) to a final

(3)(3)

(2)(2)

(1)(1)

Fig. 2 Schematic diagram of the miniature biochip detection system,
consisting of 1 sample chambers containing the chemiluminescent
assay, 2 intensifier for signal amplification, and 3 integrated circuit
photosensing array
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concentration of 5 μg mL−1 and incubated at 37 °C with the
captured spores before being washed several times (PBS +
0.5% Tween 20). The final antibody, goat anti-rabbit IgG
(H+L) conjugated with alkaline phosphatase (Jackson
Immunoresearch Laboratories, Avondale, PA), was diluted
1:3,000 in alkaline phosphatase (AP) stabilizer (KPL,
Gaithersburg, MD), and was incubated at 37 °C with the
sample complex. The unbound enzyme–antibody conjugate
was then removed through several washes as described
above. Finally, 100 μL of the chemiluminescent substrate
based on a novel 1,2-dioxetane (Intergen Bold APS 540)
was incubated with the immunocomplex for 1 h to yield a
detectable chemiluminescent product emitting 540-nm
light. For all experiments here, the reactions were carried
out under “saturated substrate” conditions. The results from
three separate bioassays were recorded ten times each per
chamber and averaged for each of the data points described
below. The error bars shown on the graphical results
represent plus or minus one standard deviation calculated
from these replicate assay experiments and measurements.

Results and discussion

One of the greatest challenges to biowarfare detection is the
development of field-deployable instrumentation capable of
performing sensitive analyses. Not surprisingly, current
research efforts of many groups aim to improve detection
capabilities by incorporating some form of amplification of
either the target (e.g., polymerase chain reaction for DNA
targets) or indirect amplification of the signal (e.g., enzyme-
linked immunosorbent assay for protein targets). Another
method of achieving signal amplification is by enhancing
the capabilities of the detection device by using an inten-
sified system. However, with a typical fluorescence-based
analysis, background photons originating from nonspecific
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Fig. 3 Amplification of chemiluminescence signal from ELISA product
using the intensified biochip system levels 1–4 for a Bacillus globigii
spore sample (5.6×106 spores) and a negative control (0 spores)
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Fig. 4 Detection of Bacillus globigii spores using the ELISA method
and with an intensified biochip system and nonintensified biochip
system. The chemiluminescence intensity of the enzymatic product is
shown for different Bacillus globigii spore concentrations. The
negative control (0.0E+00), was obtained using identical conditions,
except there was no introduction of the spore samples. Also shown is
the signal from the substrate alone, which has not been converted to
the chemiluminescent product
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excitation and emission or light scattering of the light
source will also be amplified by the intensifier.

Intensified biochip system for chemiluminescence detection

To investigate the feasibility of incorporating an intensifier
with the portable biochip system for the analysis of a
chemiluminescence reaction product, the signal as a function
of four intensifier levels, (produced by increasing voltage on
the microchannel plate) for a positive sample and a negative
control were investigated, as shown in Fig. 3. For both the
positive (ca. 5.6×106 B.g. spores) and the negative control
sample (0 spores) shown, an ELISA producing a chemilu-
minescence reaction product was coupled to the intensified
biochip system. Increases in signal were observed for the
positive B.g. sample when using increasing amplification
levels of the microchannel plate. The negative control sig-
nal represents the level of nonspecific binding, as all assay
steps were conducted with the exception that there was no
introduction of the B.g. spore target. Since chemilumines-
cent photons are generated only when the reactants are
present, very little signal is observed for the negative control
sample, thereby providing a low background. Upon com-
parison of the positive control signal gain with increasing
intensifier settings to the negative control background at the
same intensifier settings, it is clear that the highest intensifier
setting produced the greatest signal to background advantage
and was hence used throughout the rest of these studies. The
highest intensifier setting did not appear to cause saturation
at the signal levels investigated.

Detection of Bacillus globigii spores using the intensified
biochip system

Once the optimal intensifier level was determined, the
feasibility of using the compact intensified biochip system
for the detection of anthrax spores was investigated using a
range of known concentrations of B.g. spores. These results
are summarized in Fig. 4 which shows the intensity of the
chemiluminescent product of the enzymatic reaction,
obtained after incubation with the substrate, for the different
B.g. spore concentrations. For comparison, the negative
control, using all assay steps except the introduction of B.g.
spores is shown. The background intensity of the unreacted
substrate control, which has not been converted to the
product, is also shown. In general, when using the intensified
biochip, the chemiluminescence intensity was found to
increase with increasing spore concentrations. Also shown
are the results obtained for the same B.g. spore sample
measurements taken without the intensifier. Comparison of
the two sets of data indicated that the intensified biochip
system allowed for a sensitive analysis that was not
achievable using the nonintensified system.

This method produced little background levels, as
evidenced by the comparable signal intensity of the negative
control relative to that observed for the substrate. One
possible source of this low background includes nonspecific
interactions of either the rabbit anti-B.g. or alkaline phos-
phatase-conjugated goat anti-rabbit detector antibodies used
in the immunoassay as described in Fig. 1. Consequently, it
is possible that the low background levels and error bars
produced in these studies could be further reduced through
systematic optimization of the blocking agent, reagent
concentrations, and washing conditions, for minimal non-
specific interactions and maximum assay reproducibility.

These results show that enzyme-based amplification offers
a potentially attractive alternative to nucleic acid-based
amplification methods (e.g., polymerase chain reaction),
since a sensitive analysis can be performed without requiring
a cell-lysing step that is particularly difficult to achieve with
the hard, resistant shells of spores. In addition, the ELISA
method utilizing a chemiluminescent product is characterized
by an extremely low background, which couples well to the
compact intensified biochip.

Conclusion

This is the first report of an intensified biochip system for the
detection of biological agents. Through the combination of the
sensitive intensified biochip system ideal for low-background
chemiluminescence measurements, and the enzyme-based
signal amplification, detection of 5×105 spores was demon-
strated. Advantages of this system include elimination of a
laser and associated optics used for sample excitation in
fluorescence systems, and a chemiluminescence-based meth-
od characterized by an inherently low background, which is
ideally suited for an intensified device. Furthermore, the
simple design, along with the self-contained biochip inte-
grated circuit, could allow for the development of a small yet
sensitive system for field use. Moreover, multiple biowarfare
agents could be detected within a single, compact unit, as
each biosensing element could be devoted to the detection of
a different biological agent.
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