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Abstract

Motivation: Single-cell RNA-sequencing (scRNA-seq) offers unprecedented resolution for studying

cellular decision-making processes. Robust inference of cell state transition paths and probabilities

is an important yet challenging step in the analysis of these data.

Results: Here we present scEpath, an algorithm that calculates energy landscapes and probabilistic

directed graphs in order to reconstruct developmental trajectories. We quantify the energy land-

scape using ‘single-cell energy’ and distance-based measures, and find that the combination of

these enables robust inference of the transition probabilities and lineage relationships between cell

states. We also identify marker genes and gene expression patterns associated with cell state tran-

sitions. Our approach produces pseudotemporal orderings that are—in combination—more robust

and accurate than current methods, and offers higher resolution dynamics of the cell state transi-

tions, leading to new insight into key transition events during differentiation and development.

Moreover, scEpath is robust to variation in the size of the input gene set, and is broadly unsuper-

vised, requiring few parameters to be set by the user. Applications of scEpath led to the identifica-

tion of a cell-cell communication network implicated in early human embryo development, and

novel transcription factors important for myoblast differentiation. scEpath allows us to identify

common and specific temporal dynamics and transcriptional factor programs along branched line-

ages, as well as the transition probabilities that control cell fates.

Availability and implementation: A MATLAB package of scEpath is available at https://github.com/

sqjin/scEpath.

Contact: qnie@uci.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since it first became possible to simultaneously measure thousands

of genes in many single cells (Islam et al., 2011), technological devel-

opments in single-cell RNA sequencing (scRNA-seq) analyses have

dramatically improved (Svensson et al., 2017). Concurrently, meth-

ods are required that are suitable for the analysis of these data,

which are inherently of very large dimension, necessitating some

form of computational analysis for any meaning to be drawn from

them (Tanay and Regev, 2017). Such data analyses include the iden-

tification of functionally relevant (sub-)populations of cells, cell

state transitions along developmental or other trajectories, hierarchi-

cal lineage relationships (e.g. stem cell differentiation) and pseudo-

temporal ordering.

A number of computational methods have been developed to

address these tasks. Monocle was the first of a series of pseudotemporal

ordering algorithms, and uses a combination of independent component
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analysis and a minimal spanning tree (MST) algorithm to build a differ-

entiation trajectory (Trapnell et al., 2014). Monocle 2 has been recently

released, which uses reverse graph embedding, producing more accurate

trajectories than its predecessor (Qiu et al., 2017). TSCAN uses a

cluster-based MST, improving upon the original Monocle (Ji and Ji,

2016). Other tools include DPT, which uses diffusion-like random

walks (Haghverdi et al., 2016), Mpath, which uses neighborhood-based

cell state transitions (Chen et al., 2016) and TASIC, which uses a proba-

bilistic graphical model (Rashid et al., 2017).

The metaphorical epigenetic landscape conceived by

Waddington is frequently used to depict or describe cell fate

decision-making processes (Mojtahedi et al., 2016; Moris et al.,

2016). As yet however, producing robust hierarchical lineage maps

between cell states, and determining their corresponding transition

probabilities, remains challenging. Motivated in part by such

Waddington-like landscapes, recent works have sought to quantify

cell fate processes such as differentiation, either using entropy to

measure the current state of a cell: SCENT (Teschendorff and

Enver, 2017); StemID (Grun et al., 2016); SLICE (Guo et al.,

2017); Dpath (Gong et al., 2017); or by mapping cells to a land-

scape: HopLand (Guo and Zheng, 2017); Topslam (Zwiessele and

Lawrence, 2017). These methods provide means to characterize the

cell fate landscape. For example SLICE and SCENT both quantify dif-

ferentiation potency, and are able to infer initial cell states a priori

and without the need for feature selection. SCENT estimates the sig-

naling entropy of single cells in the context of an interaction network

(Teschendorff and Enver, 2017); a particular strength of this method,

and one that we will incorporate into our method development

below.

Here we introduce single cell Energy path (scEpath): a method

for mapping the quantitative energy landscape of single-cell dynami-

cal processes using statistical physics modeling, such that we can

obtain transition probabilities between cell states, reconstructed lin-

eages and pseudotemporal ordering of cells. scEpath requires neither

feature selection nor the number of branches in the trajectory to be

specified, and can predict initial states by inferring direction based

on physical principles, i.e. that the energy will decrease towards a

minimum at equilibrium (although in biology equilibria may never

be reached).

Current methods for scRNA-seq analysis focus of variation

between isolated genes, i.e. without accounting for statistical

dependencies between genes (Babtie et al., 2017; Tanay and

Regev, 2017). Underpinning our algorithm is consideration of

such gene interactions within local neighborhoods, which are

input to estimate the single-cell energy (scEnergy) within the con-

text of a gene network. Similarity between (groups of) cells and

thus the quantitative energy landscape can then be inferred. In

order to infer the cell state lineage and transition probabilities, we

combine scEnergy with a distance-based measure. scEpath also

performs downstream analyses including identification of marker

genes and transcription factors important for specific cell clusters

over pseudotime.

The rest of the paper is organized as follows: in the next section

we summarize the methods used in scEpath (full details of the meth-

ods are given in the Supplementary Methods). We then assess the

performance of scEpath on a simulated dataset and three biological

scRNA-seq datasets studying human early embryo development,

lung epithelial development and myoblast differentiation. We assess

scEpath against current state-of-the-art tools, and conclude with

a discussion.

2 Materials and methods

scEpath takes X¼ (xij) as input, where X is an expression matrix

in which columns correspond to cells and rows correspond to gen-

es/transcripts. Each element of X gives the expression (e.g. TPM,

FPKM or UMI values) of a gene/transcript in a given cell. We take

the log2-transform, i.e. log2(Xþ1), and for convenience, we still

denote this preprocessed expression matrix by X. scEpath then cal-

culates the energy landscape, cell state transition probabilities, pseu-

dotime and pseudotime-dependent maker genes. A schematic

description of the steps of the scEpath algorithm is given in Figure 1,

an overview is below, and detailed description is given in

Supplementary Methods.

2.1 Construction of a gene-gene interaction network
scEpath infers a correlation-based interaction network between

genes, i.e. a network with n nodes (genes) that is specified by its

adjacency matrix A¼ (aik), where aik takes value 1 or 0 depending

on the presence whether nodes i and k are linked or not (See

Supplementary Methods).

2.2 Calculation of single cell energy (scEnergy)
Waddington’s epigenetic landscape is an abstract metaphor fre-

quently used to describe lineage specification and cell fate decisions

(Li et al., 2016; Moris et al., 2016), however the question of whether

such a landscape can be mapped out quantitatively to infer transi-

tion probabilities between cell states and cellular trajectories

remains largely unanswered. To address this question and better

understand the relationship between gene expression stochasticity

and phenotypic variability, we employed a statistical physics-based

approach to quantitatively measure developmental states of single

cells. The state of a cell j containing n genes is represented by a ran-

dom vector Yj ¼ Y1j;Y2j; . . . ;Ynj

� �T
, where Yij indicates the expres-

sion of gene i in cell j. Yj is then modeled by the Boltzmann–Gibbs

distribution: pj yð Þ ¼ exp �Ej yð Þ
� �

=
Pm

j¼1 exp �Ej yð Þ
� �

; where pj(y)

is the probability that a system will be in a cell state j with the gene

Fig. 1. Overview of scEpath. (A) Given a gene expression matrix as input,

scEpath first constructs a gene-gene interaction network, then learns a cell-

cell similarity matrix using an unsupervised clustering method. Through a

combination of statistical physics modeling of single cell energy and principal

component analysis, gene expression patterns are then mapped on to energy

landscapes, and a cell-state probabilistic transition matrix is inferred. Cell lin-

eages are inferred by finding the maximum probability flow in the energy-

directed probabilistic graph. The pseudotemporal ordering is constructed by

projecting cells onto the principal curve embedded in the first two principal

components and re-ordering the cells according to the position of projection

points. (B) Downstream analyses that scEpath can perform to reveal addi-

tional molecular and functional mechanisms
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expression pattern y, Ej(y) is the scEnergy of cell j and m is the num-

ber of states accessible to the system, e.g. the number of cells.

Current methods for single cell analysis mostly do not consider

statistical dependencies among genes (Babtie et al., 2017; Jin et al.,

2017; Tanay and Regev, 2017). It is however reasonable to assume

that if the energy of a gene depends on its expression, then it should

also depend on the expression levels of genes that are closely inter-

acting with it. Furthermore, gene expression is more promiscuous in

multipotent cells, becoming restricted in differentiated cells (Banerji

et al., 2013; Teschendorff and Enver, 2017; Zipori, 2004). This

restriction that occurs during differentiation results in decreases in

energy, as genes have fewer neighboring ‘on’ genes. Thus, given the

level of functional interdependency between molecular components

in a cell, following the logic of (Teschendorff and Enver, 2017) we

defined an energy function incorporating nearest-neighbor correla-

tions based on maximum-entropy and statistical thermodynamics

(Presse et al., 2013; Rietman et al., 2017):

Ej yð Þ ¼
Xn

i¼1

Eij yð Þ ¼ �
Xn

i¼1

yijln
yijP

k2N ið Þykj
; (1)

where yij represents the normalized expression level (rescaled

between 0 and 1) of gene i in cell j and N(i) is the neighborhood of

node i (including i) in the network. We define Eij(y)¼0 when yij¼0.

In addition, this model shows that not only each cell has an associated

value representing its scEnergy (Ej), but also each gene is assigned a

local energy state Eij. We define the normalized scEnergy as:

bEj yð Þ ¼
Ej yð Þ= �E yð Þ
� �2

1þ Ej yð Þ= �E yð Þ
� �2

; (2)

where �E yð Þ is the average scEnergy across all the cells; the normal-

ized scEnergy is used throughout scEpath.

2.3 Energy landscape visualization via principal

component analysis and structural clustering
To visualize the energy landscape, scEpath performs Principal

Component Analysis (PCA) on the energy matrix E¼ (Eij). We then

fit a surface using piecewise linear interpolation over the first two

PCA components and energy of each cell. In addition, we plot

scEnergy against energy distance, which is defined as the distance

(L1 norm) from the cell with the maximum scEnergy to each other

cell in the low-dimensional space. To identify the cell states, scEpath

performs structural clustering using an unsupervised framework

called single-cell interpretation via multikernel learning (SIMLR)

(Wang et al., 2017). scEpath uses gap properties of the eigenvalue

spectrum (von Luxburg, 2007) to determine the number of desired

clusters by analyzing the Laplacian matrix derived from the cell-to-

cell similarity matrix learned by SIMLR. Generally, the number of

clusters N is usually given by the value of N that maximizes the

eigen-gap (difference between consecutive eigenvalues) (for full

details see Supplementary Methods).

2.4 Inference of transition probabilities
scEpath defines the metacell as the set of cells that occupies h1 per-

cent of the total energy in each cluster, and we set h1¼80% by

default. scEpath employs Tukey’s trimean (TM) to estimate the

energy of a metacell: TM ¼ 0:5 Q2 þ Q1 þQ3ð Þ=2ð Þ. The energy EM
k

k ¼ 1; 2; . . . ;Nð Þ of a metacell k is then the TM of the energies of

the cells composing that metacell. The expression of a gene in a

metacell is the TM of the expression values for that gene in all cells

comprising that metacell. The probability that a given system will be

in metacell k with energy EM
k can be calculated from the Boltzmann–

Gibbs distribution:

pM
k ¼ exp �EM

k

� �
=
XN
j¼1

exp �EM
j

� �
; (3)

where N is the number of metacells. The probability qM
k that the sys-

tem leaves this metacell is thus 1� pM
k . Next we assume that the

probability of entering a state l from state k is inversely proportional

to the pair-wise distance in reduced dimensional space. Since we

argue that any distance-based transition probability should be sym-

metrical, we define a symmetrical transition matrix ~G
sym

� �
based

on pair-wise distances between metacells, which is given by:

~G
sym

kl ¼ p1=2
k

~G
asym

kl p�1=2
l ; (4)

where p is the stationary distribution for the asymmetrical transition

matrix ~G
asym

kl that is derived using the Markov chains theory (see

Supplementary Methods). Combining Eqs. (3) and (4), scEpath

defines the transition probability Tkl between metacell k and meta-

cell l as follows:

Tkl ¼
1� pM

k

� �
~G

sym

kl ; k 6¼ l

pM
k ; k ¼ l:

(
(5)

2.5 Inference of cell lineage hierarchy via probabilistic

directed graph construction
scEpath constructs a probabilistic directed graph in which nodes

represent metacells and edges connecting metacells are weighted by

the transition probability between these metacells. Each metacell

has an associated energy, and edge direction on the graph is inferred

by comparing metacell energies. Since energy is expected to decrease

during developmental processes, directionality of the edges is deter-

mined by significant decreases in energy; here significance is deter-

mined by a two-sided Wilcoxon rank-sum test, where the null

hypothesis states that energies of the cells included in the metacells

under comparison have equal medians. scEpath rejects the null

hypothesis at the a significance level (Default: a¼0.01). If it fails to

reject the null hypothesis, the edge is marked as bidirectional. Taken

together, the weighted matrix W of the inferred probabilistic

directed graph is given by

Wkl ¼
1� pM

k

� �
~G

sym

kl ;k 6¼ l; if P�valueðEM
k ;E

M
l Þ < a;EM

k > EM
l

or P�valueðEM
k ;E

M
l Þ � a;

pM
k ;k ¼ l:

8>><>>:
(6)

where P� valueðEM
k ;E

M
l Þ indicates P-value returned from the two-

sided Wilcoxon rank sum test of metacells k and l.

In the probabilistic directed graph derived by scEpath, some con-

nections (particularly those with low transition probabilities) can be

artifacts due the unavoidable technical noise in single-cell experi-

ments (Tanay and Regev, 2017), to account for which, scEpath

removes the connections with low transition probabilities by learn-

ing a maximum probability flow in the probabilistic directed graph

defined by a weighted matrix W. This problem is equivalent to find

a minimum directed spanning tree (MDST) by setting the edge

weights to be 1-W. A MDST rooted at r is a directed spanning tree

rooted at r of minimum weights. scEpath determines the root node

(initial state) as the metacell with highest energy. As this method

tends to connect metacells that are close (measured by high
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transition probability, i.e. high expression similarity) to each other

to achieve the maximum probability flow and minimal number of

edges, the resulting tree approximates the cell state transition

network.

2.6 Reconstruction of pseudotime
Once the cell lineage structure has been determined, scEpath recon-

structs pseudotime by ordering individual cells along developmental

trajectories. scEpath orders cells separately for each lineage branch

via a principal curve-based approach. A smooth one-dimensional

curve that passes through the middle of the data in reduced dimen-

sional space is fit. Each cell is projected onto the principal curve

such that the projected point is closest to the cell in an orthogonal

sense. In this way, all cells can be placed in order according to the

projected positions. Once cells are ordered, pseudotime is computed

for each lineage path. Then scEpath rescales the pseudotime such

that it is bounded in [0, 1].

To measure the accuracy of the reconstructed pseudotime based

on the ordering expected by independent sources of information

(e.g. true data collection time), we define a pseudotime reconstruc-

tion score (PRS)

PRS ¼ c� c0ð Þ= cþ c0ð Þ; (7)

where c and c0 are the number of concordant and disconcordant

pairs of cells, respectively.

2.7 Discovery of molecular and functional mechanisms

responsible for cell fate decisions
scEpath also identifies pseudotime-dependent marker genes that are

significantly changed along pseudotime by creating a smoothed ver-

sion of gene expression. To discover key transcription factor pro-

grams responsible for cell states and state transitions during

development, we first collected the TFs that are annotated in the

Animal Transcription Factor Database (AnimalTFDB 2.0) (Zhang

et al., 2015) among the identified pseudotime-dependent genes.

scEpath then declares potentially important TFs for directing cell

fate choices if these TFs are differentially expressed between consec-

utive clusters on one lineage path. In addition, transcription factor

regulatory networks are inferred to study cell-state transitions at the

network level. Moreover, multiscale transition dynamics can be

explored using scEpath by performing hierarchical clustering of

pseudotime-dependent genes and functional enrichment analysis of

the derived gene clusters (See details in Supplementary Methods).

3 Results

We tested the performance of scEpath using a simulated dataset (see

Supplementary Note 1 and Fig. S1) and three independent published

scRNA-seq datasets that have been previously used for comparison

and validation of pseudotime inference. These consist of cells from

human early embryos (HEE) (GSE36552) (Yan et al., 2013), from

mouse lung epithelium specification (LES) (GSE52583) (Treutlein

et al., 2014) and from human skeletal muscle myoblasts (HSMM)

(GSE52529) (Trapnell et al., 2014).

3.1 scEpath identifies transcriptional dynamics

on multiple scales during human early

embryo development
To test the effectiveness of scEpath, we first used scRNA-seq data

consisting of 88 cells from seven stages (from oocytes to blastocyst)

in human early embryos (HEE) (Yan et al., 2013). To construct a

gene co-expression network, we investigated the relationship

between the number of nodes (genes)/edges and the threshold, and

chose the highest threshold without a significant reduction in the

total number of genes of the constructed network. We hence selected

a threshold 0.5, giving a network consisting of 16, 664 genes

(Supplementary Fig. S2). Then the scEnergy of each cell is calculated

using Eqs. (1) and (2), and visualized using principal components

(Fig. 2A, Supplementary Fig. S11A). Unsupervised clustering identi-

fied six metacells (Supplementary Fig. S8A); of these six, one com-

prises oocytes, zygotes and 2-cell embryos, the 4-cell, 8-cell and

morula stages cluster into distinct metacells, and two metacells rep-

resent the late blastocyst stage (Fig. 2A and B). Figure 2C–E depict

the 3D energy path, showing how cells transition from oocytes to

blastocysts along landscape ‘valleys’.

Significant decreases were found at each consecutive step from

C2 to C6, however we found no significant differences between the

energy distributions of the first two metacells C1 and C2 (by a two-

sided Wilcoxon rank sum test, Fig. 2F Inset). In an attempt to

resolve the difference between C1 and C2, we plot the scEnergy dis-

tance against the scEnergy, which suggests a separation between

these two clusters in this two-dimensional space (Fig. 2F). We also

used SCENT to calculate the signaling entropy for C1 and C2, and

found that it was higher for C1 than C2, although this difference

was not significant (Supplementary Fig. S30A). If we compare these

results to the original data, we see that C1 contains oocytes, thus

does indeed represent the initial state. Although the energy land-

scape is immediately suggestive of permissible transitions (e.g. by

following valleys from C1/C2 to C5, or from C3 to C6; Fig. 2E), we

find that the lineage is best determined by combining the energy

landscape with a transition matrix. The resulting transition proba-

bilities that scEpath predicts indicate that the probabilities of transi-

tions from C2 to C3, and from C3 to C4, are much higher than the

examples listed above (i.e. C2 to C5, or C3 to C6) (Fig. 2E). scEpath

then predicted a linear lineage from C1 to C6 [the stable state which

had the lowest scEnergy and the largest metacell probability (proba-

bility of remaining in this state)] (Fig. 2J). This de novo reconstruc-

tion closely follows the known progression of human early embryos

from oocyte to late blastocyst. Analysis of known markers collected

from (Yan et al., 2013) were in very good agreement with the pseu-

dotemporal ordering predicted by scEpath, with, e.g. LIN28B,

FGFR4 and CLDN10 being upregulated while DPPA3 and SALL2

are downregulated during development (Supplementary Fig. S9).

To investigate molecular mechanisms driving cell state

transitions, scEpath identifies pseudotime-dependent marker

genes along the lineage path. Hierarchical clustering of the

pseudotime-dependent genes resulted in nine temporal ‘rolling

wave’ clusters of transcriptional changes during development

(Fig. 2G, Supplementary Fig. S10A). Several gene clusters were

downregulated on different time scales; and enriched common or

specific gene function signatures can be found (Supplementary Fig.

S11C). Gene clusters I, III and IV were all enriched for ‘cell cycle’,

while notably, gene cluster III (downregulated late), was specifically

enriched for ‘neurogenesis’ and ‘chromatin modification’. Cluster V

exhibited interesting transient dynamics: gradually increasing in

expression until the 8-cell stage before downregulation. In human

embryos the major maternal-zygotic transition happens at the 8-cell

stage (Braude et al., 1988). Combining clusters produces a high-

resolution picture of the transcriptional spectrum in which we can

identify several different time scales. Our results thus depict a

detailed view of the transcriptional dynamics during human early

embryo development.
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scEpath can be used to identify TFs important for cell state tran-

sitions, as we demonstrate here in human embryos (Supplementary

Fig. S10C). The temporal expression dynamics of 40 representative

TFs are shown in Supplementary Figure S11B, suggesting continu-

ously transcription regulatory profiles during embryonic develop-

ment. scEpath found that several well known pre-implantation-

specific regulators such as UBTFL1, NANOG, SOX2, KLF4 and

GATA2 were successively upregulated along this lineage path.

In addition, scEpath also predicted novel TFs, such as ZNF736,

KLF10, IRX5 and SNAI1, which exhibited very similar expression

pattern to known TFs and thus represent attractive targets for future

studies. Finally, we constructed a TF regulation network based

on pairwise correlation of expression levels across all stages of devel-

opment (see Supplementary Methods). This revealed three densely

connected subnetworks, regulating early, intermediate and late

development respectively (Fig. 2H).

3.2 scEpath infers a branched lineage during murine

lung development, with branch-specific transcriptional

patterns
Next, we applied scEpath to data describing the development of

mouse lung epithelium. Cells were collected from embryonic mouse

lung at four developmental stages: E14.5, E16.5, E18.5 and adult

(Treutlein et al., 2014), totaling 155 cells. We studied cells compris-

ing the mouse lung alveolar type 2 (AT2) branch in isolation, to

investigate the development of this lineage branch before consider-

ing the full system (see Supplementary Note 2 and Figs S12–S14).

Applying scEpath to all the full dataset (155 epithelial cells), we

identified six metacells including various progenitors and differenti-

ated cell types: early EPs (early progenitor), late EPs, BPs (bipotential

progenitors), AT1, nascent AT2 and mature AT2 (Fig. 3B, see details

in Supplementary Note 3), which is good agreement with previous

studies (Treutlein et al., 2014). The energy landscape (Fig. 3C) shows

a path from the highest cells in C1 (early EPs), through C2 (late EPs)

and C3 (BPs), to the lowest wells denoting C4 (AT1) and C6 (mature

AT2); with statistically significant differences between clusters

(Fig. 3F Inset). Therefore, energy landscapes define the developmental

and cellular hierarchy of the distal mouse lung epithelium, suggesting

the potential paths for the maturation of progenitors along both AT1

and AT2 lineages. Although there is no significant scEnergy difference

between C3 and C4, we observed a significant difference in the

scEnergy distance (Fig. 3F), suggesting that C4 constitutes a distinct

branch, bifurcating from C5/C6 at C3. We also calculated the signal-

ing entropies of C3 and C4 using SCENT (Teschendorff and Enver,

2017), and found that significant difference of signaling entropies was

observed (P-value<0.001) (Supplementary Fig. S30C). Furthermore,

scEpath inferred AT1 and AT2 lineages emerging from a common BP

(Fig. 3G), which is spread on the landscape (Fig. 3D). Each lineage

exhibited consistently decreased energies during differentiation.

Moreover, scEpath revealed that there is a higher probability of differ-

entiation from BPs into AT1 lineage than to AT2 lineage, which is

consistent with the facts that cells in clusters C3 and C4 are from the

same developmental stage (E18.5) and that the scEnergies between

them are similar.

Fig. 2. scEpath reconstructed the developmental lineage and a high-resolution view of the transcriptional programs of human early embryos. (A) Cells visualized

on the first two principal components, colored by their experimentally verified developmental stage. (B) Cells are colored according to unsupervised clustering.

Cell size is proportional to scEnergy. (C) Overall energy landscape view in 3D. The developmental trajectories are shown by a curve: white indicates initial and

blue indicates later stages. (D) Energy landscape view from another aspect, showing the transition path during late stages. (E) Contour plot of the energy land-

scape: solid blue line denotes actual transition path; dashed blue lines indicate other possible paths according to the locations of landscape ‘valleys’; numbers

represent transition probabilities between two metacells. (F) Cells visualized on the scEnergy distance–scEnergy space (the distance was normalized). Inset:

Comparison of energy distributions among the identified cell clusters. ‘***’: P-value<0.001, ‘*’: 0.01<P-value< 0.05, ‘n.s.’: not significant. (G) Left panel: ‘Rolling

wave’ plot shows the normalized-smoothed expression pattern of pseudotime-dependent genes (n¼ 9545) clustered into nine groups (I–IX). Right panel: Average

expression of the nine gene clusters along pseudotime. (H) Transcriptional factor co-expression network, showing putative activating (inhibiting) relationships

according to significant positive (negative) correlations. The node size is proportional to their betweenness centrality reflecting the contribution to the communi-

cation between two subnetworks. (J) scEpath revealed a linear lineage in which transition probabilities are shown and node size corresponds to the energy

(Color version of this figure is available at Bioinformatics online.)
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scEpath found eight temporal ‘rolling wave’ clusters of transcrip-

tional changes during lung epithelial specification (Fig. 3H,

Supplementary Fig. S15A). Three clusters (V, VI and VIII) of genes

showed distinct expression kinetics along the AT1 versus AT2

branches while the remaining clusters followed very similar dynami-

cal trends on both branches. In addition, enriched common or

specific gene function signatures can also be discovered (see

Supplementary Note 3 and Fig. S17).

Moreover, scEpath revealed 32 TFs important for state transi-

tions. Figure 3J and Supplementary Figure S15B demonstrated that

the differentiation process is accurately regulated by cell state-

specific TFs. Several well-known regulators such as Smad5, Sox11,

Sox9 and Hmga1-rs1 were rapidly downregulated in progenitor cells

of both lineages. We also observed switch-like inactivation of several

TFs such as Id1, Foxp2, Arid4b, Kdm5b and Gtf2i, which are the

potential critical events in the differentiation of progenitors and lead

to the activation of key regulators (e.g. Klf5, Hopx, Tead1 and

Runx1) in AT1 path and key regulators (e.g. Etv5) in AT2 path.

Attractively, a recent study demonstrated that Etv5 is essential for

the maintenance of AT2 cells and deletion of Etv5 from AT2 cells

produced gene and protein signatures characteristic of differentiated

AT1 cells (Zhang et al., 2017). In addition, several regulators (e.g.

Runx1, Foxn2, Foxn3, Klf5, Id3) have been shown to play critical

roles in differentiation (Logan et al., 2015; Ustiyan et al., 2012), but

no studies reported their roles in mouse lung epithelial specification

(see details in Supplementary Note 3).

3.3 scEpath reveals the myoblast differentiated

trajectory and pinpoints the timing of key

regulatory events
We applied scEpath to the differentiation of 271 primary human

skeletal muscle myoblasts (HSMM) captured using scRNA sequenc-

ing. scEpath identified four metacells including: two clusters (C1

and C4) that expressed markers of actively proliferating cells such as

CDK1 and CDC20, one cluster (C2) that expressed markers of myo-

genesis such as MYOG and ENO3, and finally one cluster (C3) that

lacked myogenic markers but expressed PDGFRA and PLD1

(Fig. 4B), suggesting that they are interstitial mesenchymal cells

(Chen et al., 2016; Trapnell et al., 2014).

The energy landscape of myoblast differentiation (Fig. 4C)

shows high heterogeneity, suggesting a complex interplay of cellular

processes including proliferation and differentiation. Statistical tests

indicate significant decreases of energy from C1 to C4 or C3

(Supplementary Fig. S18A). The scEnergy distance–scEnergy

plot suggests a transition path from C1, through C4, to C2

(Supplementary Fig. S18). scEpath predicted a branched lineage

starting from C1: with one branch corresponding to myoblast speci-

fication (C4 and C2), and the other proceeding from C1 to C3.

Analysis highlighted that C3 is composed of contaminating intersti-

tial mesenchymal cells, which were excluded from further analyses

in the original work (Trapnell et al., 2014) as well as other studies

(Guo et al., 2017; Ji and Ji, 2016). Thus, we remove C3 from further

analyses.

Fig. 3. scEpath reconstructed a branched lineage and their distinct transcriptional spectrum during lung epithelial specification. (A) Cells colored by unsupervised

clustering. (B) Expression levels of known markers. (C) Overall energy landscape view in 3D. (D) Zoom in on to cells surrounding the branching point on the energy

landscape; the oval indicates cells on a ‘flat’ part of the landscape, suggestive of a transition state. (E) Contour plot of the energy landscape. Dashed blue lines indicate

another possible path. (F) Cells visualized on the scEnergy distance–scEnergy space. Inset: Comparison of energy distribution. (G) scEpath revealed a branched line-

age path in which transition probabilities are shown. (H) Left panel: ‘Rolling wave’ plot of pseudotime-dependent genes (n¼ 2159) clustered into eight groups (I–VIII).

Right panel: Average expressions of the gene clusters along pseudotime in AT1 and AT2 path respectively. (J) Smoothed expression pattern of the identified TFs. TFs

indicated by a triangle have been previously described as relevant for lung epithelial specification (Color version of this figure is available at Bioinformatics online.)

2082 S.Jin et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty058#supplementary-data


scEpath revealed two gene clusters (IV and V) that strongly mark

for myoblast differentiation, by comparing expression patterns of

myogenic branch with cluster C3 (Fig. 4E, Supplementary Figs S19

and S20). Functional enrichment analysis identified established gene

function signatures (e.g. muscle development processes and muscle

cell differentiation) in gene clusters IV and V (see Supplementary

Note 4 and Fig. S18D). In addition, scEpath identified 31 TFs as

important for cell state transitions (Fig. 4F and Supplementary Fig.

S20B). Several regulators such as MYOG, MYF5, MYF6, HES6 and

ID2 have been previously demonstrated as critical in regulating

myogenic differentiation (Buckingham and Rigby, 2014; Trapnell

et al., 2014). Figure 4F shows that they were significantly upregu-

lated in muscle path while downregulated in non-muscle path.

HMGB2 exhibited immediate downregulation, consistent with pre-

vious findings that an HMGB2 knockdown inhibited myoblast pro-

liferation and stimulated differentiation (Zhou et al., 2016). We

predict several novel TFs to also be important here due to their simi-

larity in expression pattern with HMGB2, including HMGB3,

MYBL2, E2F7, POU5F1 and FOXM1. Moreover, we observed

switch-like inactivation of several TFs, such as MYF5, ID2 and

SOX11, which are the potential critical events in the muscle differ-

entiation and lead to the activation of key regulators (e.g. HES6,

MYOG and KLF5). A previous study showed that switch-like inacti-

vation of ID1 leads to the activation of MYOG (Trapnell et al.,

2014). More recently, it was demonstrated that Klf5 regulated

muscle differentiation by directly targeting muscle-specific genes in

cooperation with MyoD in mice (Hayashi et al., 2016), suggesting

that KLF5 is a promising regulator of primary human skeletal

muscle myoblasts. Thus, scEpath can pinpoint the timing of key reg-

ulatory events and identify novel regulators of differentiation.

3.4 Comparison of scEpath with existing algorithms for

pseudotime inference
We compared the performance of scEpath with four current pseudo-

time inference algorithms: Monocle 1/Monocle 2 (Qiu et al., 2017;

Trapnell et al., 2014), TSCAN (Ji and Ji, 2016) and DPT

(Haghverdi et al., 2016) on the four experimental datasets discussed

above. We use a combination of qualitative and quantitative

measures to assess method performance; no one measure is sufficient

when little is known about the biological truth. Applying current

methods to the two linear trajectories (HEE data and AT2 data), all

can successfully reconstruct the trajectories (Supplementary Fig.

S21). For LES, only scEpath and Monocle 1/2 can separate the AT1

and AT2 branches (Supplementary Fig. S22A). For the HSMM

data, only scEpath, Monocle 1/2 and TSCAN can isolate the mesen-

chymal cells from the myoblast lineage, while DPT failed

(Supplementary Fig. S22B). By comparing the pseudotime recon-

struction score (PRS) of the inferred pseudotime with the true time

orderings, where known, we can assess the accuracy of those meth-

ods. We found that scEpath outperformed Monocle 1 and DPT, and

produced trajectories that were overall comparable in accuracy with

Monocle 2 and TSCAN (Fig. 5A).

Next we used two measures (PRS and Pearson Correlation

Coefficient) to assess the agreement between pairs of pseudotempo-

ral ordering runs under repeated subsampling (50 times independ-

ently) of 90, 80, or 70% of the total number of cells in each dataset

(Fig. 5B and Supplementary Fig. S23). These results show that

Fig. 4. scEpath revealed the myoblast differentiated trajectory and pinpointed the timing of key regulatory events of myoblast differentiation. (A) Cells colored by

unsupervised clustering. (B) Expression levels of known markers in each cluster. (C) Overall energy landscape view in 3D. (D) Inferred lineage path in which transition

probabilities are shown. C3 was not shown because only path C1-C4-C2 differentiated into muscle cells while C3 contained contaminating interstitial mesenchymal

cells. (E) Comparison of expression patterns of pseudotime-dependent genes (n¼1116; clustered into five groups: I–V) between cluster C3 (left; cells are randomly

ordered) and muscle path (middle; cells are ordered according to pseudotime). Right panel: Average expressions of the five gene clusters along pseudotime in

muscle path. (F) Smoothed expression pattern of the important TFs delineated by scEpath (Color version of this figure is available at Bioinformatics online.)

Fig. 5. Comparison of scEpath with existing algorithms for pseudotime infer-

ence. (A) Comparison of the accuracy of pseudotemporal ordering, measured

by Pseudotime Reconstruction Score (PRS). (B) Comparison of robustness

(by PRS) of pseudotemporal ordering under repeated subsampling of the

cells from each dataset
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scEpath is more robust than Monocle 1/2 and TSCAN in all cases,

and comparable to DPT overall (insignificant differences for HEE

and AT2; outperforms DPT for LES; slightly underperforms against

DPT for HSMM). We also found that scEpath produced robust

results when varying the number of input genes for lineage recon-

struction (Supplementary Note 5 and Figs S4–S7), demonstrating

that feature selection is not required for successful inference here.

These results show that tested against either accuracy or robustness,

scEpath performs at least as well as current methods, and if we con-

sider both measures together, then scEpath performs better than cur-

rent methods. scEpath is thus able to reconstruct pseudotime

robustly and (to the best of current knowledge) accurately, without

feature selection.

4 Discussion

Increasingly, distinguishing between cell types is fraught with diffi-

culty, as data reveal new phenotypes and different cell states move

closer to one another in phenotypic space (Moris et al., 2016; Tanay

and Regev, 2017). There is thus a pressing need for measures with

which to distinguish between cell states. Here, by introducing the

concept of single cell energy (scEnergy) and combining dimension

reduction with energy landscape construction we sought to charac-

terize such states along axes of development or lineage specification.

We were able to construct 3D energy landscapes of cells, and then in

combination with distance measure, we reconstructed lineages,

along with cell state transition probabilities, and ordered cells along

pseudotime. Downstream analyses by scEpath allow visualization of

the transcriptional dynamics, and demonstrate that gene clusters

(functional modules) are tightly regulated on different time scales.

These outputs allow for the discovery of common and specific gene

clusters, temporal dynamics and functional diversification along

branched lineages.

Using scEpath we identified a cell-cell communication network

implicated in early human embryo specification, involving three

transcriptional subnetworks (respectively for early, intermediate and

late stages) with strong inhibition between subnetwork motifs and

putative activation within each subnetwork. Applying scEpath to

mouse lung specification, distinct gene expression dynamics and

functional signatures of the two epithelial branches were revealed.

Finally, we applied our methods to myoblast differentiation, and

found that scEpath was able to isolate mesenchymal cells from the

myoblast lineage, and identify novel transcription factors (TFs) (e.g.

HMGB3, MYBL2, POU5F1) whose expression patterns closely fol-

low those of known TFs, as well as TFs whose inactivation is

strongly implicated in lineage choice (e.g. MYF5, ID2, SOX11).

scEpath is broadly unsupervised, requiring few parameters to be

set by the user. In the network construction, we investigated the

relationship between the number of nodes (genes)/edges and the

threshold, and then chose the highest threshold without a significant

reduction in the total number of genes of the constructed network

(Supplementary Fig. S2). This approach enables some network prun-

ing (to be more conservative in determining edges) while retaining a

large portion of the transcriptome for energy calculations (i.e. reduc-

ing information loss). Moreover, we systematically explored the

threshold, and found that within a certain range the results derived

using scEpath are most consistent and robust (Supplementary Note

6 and Figs S3–S7). Within this range, the networks exhibit approxi-

mate scale-free topology based on the degree distribution

(Supplementary Fig. S24). The reason behind this may be related to

the findings of (Teschendorff et al., 2015) that reveal relationships

between signaling entropy, network topology, and cell plasticity. As

an alternative approach to study gene networks, rather than con-

struct a network de novo, resources [e.g. BioGRID (Chatr-

Aryamontri et al., 2017)] could be used to input interaction network

information. We set two parameters (h1 and h2) to define

cells within a metacell; these thresholds, set for the energy and the

distance, respectively, are used to exclude outliers from the

metacell. We found that scEpath is robust to these parameters

(Supplementary Note 6 and Figs S25–S29), thus adjustment from

default values ought to be rarely required.

A crucial aspect of scEpath is its combination of energy-based

and distance-based measures, supported by an underlying interac-

tion network, in order to predict pseudotemporal ordering of cells

and cell state transition probabilities. Drawing on the success of pre-

vious methods that incorporates network information into the calcu-

lation of cellular quantities (in the case of SCENT, signaling

entropy) (Teschendorff and Enver, 2017), the scEnergy is calculated

within the context of a larger gene network. This makes the result-

ing inferences much less prone to perturbation-driven variation [e.g.

gene dropout (Pierson and Yau, 2015) or changes in the input gene

sets]. We assessed what benefits the incorporation of network infor-

mation could offer to scEpath, and found that both the discrimina-

tive ability and the robustness of pseudotemporal ordering were

improved (Supplementary Note 7 and Fig. S32). Resulting from this

network-based approach, scEpath achieves robust and accurate pre-

dictions of pseudotime without feature selection (Fig. 5 and

Supplementary Fig. S23).

In contrast to most current methods for pseudotime inference

[such as Monocle 2, TSCAN, DPT, Bayesian GPLVM (Campbell

and Yau, 2016)], scEpath seeks to infer the initial state and the

direction of the trajectory without prior knowledge such as marker

gene expression. Entropy-based approaches for single-cell analysis—

such as SCENT and SLICE (Guo et al., 2017; Teschendorff and

Enver, 2017)—can also infer initial states. While scEpath predicts

an initial state in the majority of cases, we observed in the human

embryonic dataset that there was no significant scEnergy difference

between clusters C1 and C2. We found higher entropies for C1

(compared with C2) using SCENT and SLICE, although these differ-

ences were also not significant (Supplementary Fig. S30A). This is

probably due to the small number of cells (each cluster has only 12

cells). Automatically defining the initial state with confidence thus

remains challenging in some cases, and better methods are required.

Here, when differences in scEnergy are not significant, other

approaches to discriminate these states include using signaling

entropy (SCENT), or using marker genes to identify the most plausi-

ble initial state biologically, or indeed using other means altogether.

There may also be cases for which the initial state is not unique,

depending on the biological system and the question of focus (e.g. in

the case of quiescent and cycling stem cells).

The cellular energy landscapes constructed in scEpath imply a

clear direction of flow from peaks to troughs. Comparing scEnergy

with entropy-based measures (e.g. SCENT, SLICE, StemID) that

have been used to successfully quantify developmental trajectories,

we find high correlations between the measures proposed by

SCENT and SLICE (Supplementary Fig. S30), although the tran-

scriptomic entropy proposed in StemID seems to be less closely cor-

related with developmental states (especially for the HEE and AT2

data). Of note, in some cases only SCENT finds significant differen-

ces between cellular states, where other methods including scEpath

cannot; for example the bipotent (C3) and AT1 (C4) populations of

lung epithelium, which we expect biologically to be different

(Supplementary Fig. S30C). These strengths of SCENT motivate us
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to use this measure to discriminate between cell states for which we

do not find significant differences using scEpath alone, ameliorating

the lineage inference capabilities in scEpath. Our analyses suggest

that scEnergy can discriminate between pluri/multi-potent cells and

less potent cells using four different datasets (Supplementary Note 8

and Fig. S31). These results support the rationale—motivated by

previous works (Banerji et al., 2013; Teschendorff and Enver,

2017)—behind the use of a network-based measure to discriminate

between more and less potent states (with respectively, greater or

fewer signaling interactions).

Additional challenges for scEpath offer much potential for future

work. For HSMM data, scEpath (as well as other methods tested)

inferred a link between proliferating cells and mesenchymal cells

(not biologically supported). How to automatically detect and iso-

late contaminating cells—or in general any cells that are derived

from a different source—remains challenging. A limitation of

scEpath (shared by most current methods as far as we are aware) is

the inability to describe trajectories involving multiple different pro-

genitor cell populations, i.e. multiple initial states. We propose to

add this capability by combination of multiple energy landscapes

(this will require careful normalization). Its success will permit us to

describe more complex biological processes, for example cancers

including breast, oligodendroglioma and squamous cell carcinoma,

for each of which multiple progenitor species are implicated

(Tsoucas and Yuan, 2017). Here heterogeneity is known to com-

pound analyses, and thus careful analysis of gene expression profiles

for validation—as well as biological discovery—will be necessary.

scEpath reports such gene expression profiles associated with pseu-

dotime, and we find that overall there is excellent agreement

between scEpath-predicted expression patterns and experimental

evidence, where is it available. In addition, scEpath achieves robust-

ness by using the full distribution of cell energies—rather than a

mean value (e.g. SLICE)—to calculate differences between states.

This permits generalization to more general biological processes

where the energy might not be monotonically decreasing (e.g. direct

reprogramming), by decreasing the significance level a in Eq. (6)),

thus permitting bidirectional probabilistic graphs. The use of

scEnergy to construct energy landscapes and thus infer transition

probabilities is therefore warranted, and can reveal differentiation

trajectories with fidelity and robustness.
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