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Abstract: This study aimed to investigate if two weeks of working memory (WM) training on a
progressive N-back task can generate changes in the activity of the underlying WM neural network.
Forty-six healthy volunteers (23 training and 23 controls) were asked to perform the N-back task
during three fMRI scanning sessions: (1) before training, (2) after the half of training sessions,
and (3) at the end. Between the scanning sessions, the experimental group underwent a 10-session
training of working memory with the use of an adaptive version of the N-back task, while the control
group did not train anything. The N-back task in the scanning sessions was relatively easy (n = 2)
in order to ensure high accuracy and a lack of between-group differences at the behavioral level.
Such training-induced differences in neural efficiency were expected. Behavioral analyses revealed
improved performance of both groups on the N-back task. However, these improvements resulted
from the test-retest effect, not the training outside scanner. Performance on the non-trained stop-
signal task did not demonstrate any transfer effect. Imaging analysis showed changes in activation
in several significant clusters, with overlapping regions of interest in the frontal and parietal lobes.
However, patterns of between-session changes of activation did not show any effect of training.
The only finding that can be linked with training consists in strengthening the correlation between
task performance accuracy and activation of the parietal regions of the neural network subserving
working memory (left superior parietal lobule and right supramarginal gyrus posterior). These results
suggest that the effects of WM training consist in learning that, in order to ensure high accuracy in the
criterion task, activation of the parietal regions implicated in working memory updating must rise.

Keywords: working memory; training; neural efficiency; N-back task; stop-signal task

1. Introduction

Imagine being immersed in a program that promises to train your brain so as to
achieve augmented cognitive abilities. Some of the benefits you could expect are increased
working memory capacity—the ability to remember information relevant for the task at
hand irrespective of distractors—along with improved problem solving, reasoning, fluid
intelligence, and emotional control. Is this an endeavor worth time, effort, and money? The
“brain training” industry has seen a spectacular growth in the last decade with programs
targeted for the wider public. Some companies promise real results for those who undergo
regular training in the form of games, aimed to recruit and exercise working memory
(WM) and other cognitive functions. However, whether or not their promises are actually

Brain Sci. 2021, 11, 155. https://doi.org/10.3390/brainsci11020155 https://www.mdpi.com/journal/brainsci

https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-4534-9228
https://orcid.org/0000-0001-7722-4932
https://orcid.org/0000-0002-6244-6572
https://orcid.org/0000-0003-4809-4889
https://doi.org/10.3390/brainsci11020155
https://doi.org/10.3390/brainsci11020155
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/brainsci11020155
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/2076-3425/11/2/155?type=check_update&version=2


Brain Sci. 2021, 11, 155 2 of 21

based on empirical evidence has become one of the biggest controversies within the field
of neuroscience [1–5]. The first controversy pertains to the question whether such training
regimes really improve cognitive functions. The second one refers to the problem whether
the observed improvements are measured at the neural level, thus justifying the term
“brain training”.

1.1. Enhancement of Working Memory Capacity

Working memory is a psychological construct representing the cognitive function
responsible for short-term storage of information and simultaneous manipulation of
them [6,7]. Having replaced the formerly used notion of short-term memory [8], the
concept of working memory combines the purely mnemonic functions with active pro-
cessing of the temporarily stored information. It is therefore regarded to be at the core
of cognition, contributing to virtually every act of higher-order information processing,
such as thinking, reasoning, and problem solving [9], language processing [10], and lan-
guage comprehension [11]. WM is thought to have several sub-systems and it is best
understood as a framework for measuring and investigating cognition broadly, as opposed
to a specific ability or brain network [12]. Its general efficiency, called working memory
capacity (WMC) is regarded to be an individual trait: quite stable across various cognitive
tasks but differentiated between individuals [13]. Multiple studies showed that WMC
strongly predicts human intelligence, being its important cognitive substrate [14]. WMC
also predicts school and academic achievement, as well as learning disabilities [15]. It is
therefore not surprising that the neuroscience community have shown increasing interest
in brain training, as it would provide a suitable method to improve cognition. Testing the
validity of brain training is therefore not an ancillary, but a key objective.

Despite WM capacity being previously considered a stable characteristic of an indi-
vidual [16], recent studies [17–19] have revealed that training on certain tasks can improve
its functioning, on account of the brain’s plasticity. It is claimed that consistent and de-
manding engagement of these tasks would lead to a reinforcement of the WM neural
circuits, subsequently leading to improved performance. Strengthening the structural
connections in specific regions would facilitate other non-trained task that rely on the same
structures, resulting in transfer effects [17]. Therefore, if training aimed to reinforce the
WM network improved performance on an untrained task that relies on both WM and
other networks, and that measures a different cognitive function, this would constitute
evidence for transfer [18]. However, it is difficult to assess transfer effects, as improvements
recorded for the untrained task might be specific for the task and not for the cognitive
function it measures [19].

Research groups have focused on targeting specific functions which contribute to
general cognitive abilities, with the hope of isolating specific neural networks that can
be trained and improved. One such specific function, called working memory updating,
is responsible for the quick replacement of stored items that are already irrelevant to
the task at hand with more relevant ones. A laboratory task commonly used to assess
WM updating is called N-back task. It consists in serial presentation of stimuli that are
sometimes repeated at the given position, e.g., two (n = 2) or three (n = 3) elements after
the first appearance. Increasing the N value, as well as speeding up the pace of stimuli
presentation, makes the task more demanding. The N-back task is one of the most popular
methods to assess WMC. It is also commonly used in many training programs. For example,
Verhaeghen and colleagues [20] showed that 10 h of training on the N-back task results in
significantly decreased response time, along with improved focus of attention. Similarly,
Dahlin and co-workers [21] showed that by training participants on an updating task, they
improve their performance in other tests that rely on updating, such as the 3-back WM
task. Single-task training studies unanimously report improvements on the trained task,
but evidence for transfer to other tasks is limited by them relying, to a certain degree, on
overlapping brain regions and neural mechanisms. It is, however, unclear whether any or
only the same operations of a brain network transfer across tasks [22].
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Evidence for both transfer and its absence has been revealed in numerous papers,
adding to the ongoing debate surrounding the effectiveness of cognitive training. The
term ‘transfer’ can be interpreted as either improvement in: (1) operationally similar
tasks, (2) different tasks measuring the same function, (3) different tasks measuring other
functions, particularly fluid intelligence, or (4) everyday life, such as an increase in school
achievement or reduction of unhealthy food consumption. Depending on the similarity
between learning and testing situations, transfer effects are called near or far, although
this is a continuum rather than dichotomy [23]. Some researchers strongly support the
positive evidence for the potential of cognitive training to provide far transfer, including the
increase of fluid intelligence. Perhaps the most compelling transfer evidence comes from
Jaeggi and co-workers [24], who designed a dual N-back task and showed that training
results in dose-dependent transfer to measures of fluid intelligence. However, a small
sample size and the use of passive controls makes it likely for differential expectations to
contribute to dissimilarities between the two groups [5]. Further research, summarized
in a meta-analysis [25] allows for the conclusion that working memory training on the
basis of N-back task brings about substantial improvement of general mental ability in
healthy adults. Cognitive training leads to improved performance even in older adults, as
Buschkuehl and co-workers [26] revealed in a cohort of 80-year-old adults who achieved
increased memory performance on four different measures, compared to an active group.

There is also abundant evidence for an absence of transfer effects following WM
training [27–29]. A very thorough analysis [5] highlighted that, while evidence for near
transfer is less disputed, evidence for far transfer is practically non-existent, particularly if
ecologically valid measures are adopted. A meta-analysis that included only the N-back
training tasks [18] showed that ‘the only noteworthy transfer effect was seen to untrained
N-back tasks’ (p. 1092). Moreover, a careful consideration of the limitations of many studies
is essential before the utility of WM training becomes established. WM training studies
do not commonly use active controls—participants that receive a training regime that is
significantly less demanding and therefore elicits no effects—and instead use waiting-list
or passive controls. However, a meta-analysis [30] shows that the overall effectiveness
of training, expressed as the effect size, does not depend on whether the control group
was active or passive. Also, using only one assessment task to demonstrate transfer gains
may be problematic, as the improvement may be specific to the assessment task and
not the broader cognitive ability it measures [31]. The general lack of consistency in the
experimental study design of WM studies makes a comparison of results difficult.

1.2. Neural Effects of WM Training

Neural consequences of WM training are also controversial. On one hand, there are
reports showing intensification of neural activity in regions involved in WM updating.
For instance, Buschkuehl and colleagues [32] showed training-related increments in blood
perfusion in the frontal and parietal regions implicated in N-back task performance. The
training-induced increase of activation in multiple brain regions are also reported in the
studies with children suffering from ADHD [33] and with adults who trained the dual N-
back procedure in order to improve their regulation of emotions [34]. The review published
by Constantinidis and Klingberg [35] suggests that neural activity in the prefrontal regions
is increased due to WM training, not only in humans but also in other primates. Moreover,
training tends to increase the strength of connectivity within the prefrontal regions, and
between prefrontal and parietal regions as well [35].

On the other hand, there are studies reporting decline in brain activity following
training [36–38]. For instance, Clark and co-workers [36] trained their participants with
the dual N-back task and found that such a procedure decreased neural activation in the
regions critical for WM functioning, with no transfer effects to fluid intelligence task. A
study by Chang and co-workers [39] is particularly important because of the relatively
large samples and follow-up measurement of WM training effectiveness. The authors
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found significant training related decrease of frontal activation in both HIV+ patients and
healthy controls, which lasted for at least six months after the completion of training.

Still other authors [40] report differential changes in brain activity: critically important
regions tend to get more activated after training, whereas other, relatively less important,
regions tend to respond with reduced activation [41]. This pattern of training-induced
neural changes is reported by Dahlin and co-workers [21]. Specifically, these authors
found decreased activation in the frontal and parietal regions, which are implicated in
WM activity, and decreased activation in the temporal and occipital lobes, as well as in
subcortical areas (striatum). As to striatum, there are contradictory findings reporting
increased activation of this structure following dual N-back training, with concurrent
decreased activation of fronto-parietal areas [42]. Such a differential effect of training may
reflect the phenomenon of neural efficiency. According to the efficiency hypothesis, the
process of learning results in more efficient usage of brain resources, to the effect that the
regions that are not critically important for task performance are less and less active as
the task gets performed smoothly. It is also suggested that the initial phases of learning
may be associated with increase of brain activation, whereas the later phases may show the
opposite effect of decreased activation [32]. In general, the neural consequences of WM
training are still not clear.

1.3. The Present Study

This study was motivated by the neural efficiency hypothesis [43,44]. According to
this hypothesis, originally formulated in the research into the neural underpinnings of
intelligence [45], highly able individuals demonstrate lower brain activation while doing
a cognitive task, e.g., an intelligence test or a WM task. Later publications showed that
such economizing on brain resources characterizes intelligent people only when the task
at hand is relatively easy [46] or moderate in difficulty [47]. In more demanding tasks,
intelligent people recruit even more brain structures than less intelligent ones, or recruit
them more intensely [46]. Another important issue is the role of learning in the neural
efficiency phenomenon. It has been suggested that the initial phases of skill acquisition
require strong activation of relevant brain structures but in the course of learning these
activations get weaker and weaker, or more focused [40,48].

Taking into account the above-mentioned evidence, we hypothesize that intensive
WM training on the basis of the N-back task would result in relative lowering the level
of brain activation in the neural structures subserving this task. By ‘relative lowering’ we
mean that brain structures underlying task performance, though weakening with training,
would be still activated above the baseline level. Next, we hypothesize that the degree
to which respective structures would decrease their activation due to training would be
moderated by individual differences, particularly the general mental ability (a.k.a. general
fluid intelligence). In concordance with the previous studies, we expect that the efficiency
effect would be particularly salient in the case of intelligent participants. Finally, we
hypothesize that the relative changes of brain activation due to training (either lowering or
heightening) would be moderated by the individual level of task accuracy. This expectation
is based on the studies showing that differential recruitment of brain structures involved in
task performance depends on the level of task performance [49].

In an attempt to verify these hypotheses, we devised a study in which participants
underwent ten sessions of working memory training on the basis of the N-back task [50].
The training task was adaptive, that is, its difficulty level automatically adjusted to the
individual level of performance. The same task was used during the scanning sessions,
although in this case the difficulty level was moderate and constant both for the training
group and the matched controls. We expected that the accuracy level of task performance in
the scanner would be rather high and, importantly, not differentiated between the groups.
An essential issue with verification of the efficiency hypothesis is levelling task’s demands.
In order to asses if two groups of people differ in relative consumption of brain resources,
they should not differ in accuracy. Only when both groups perform comparably well at the
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behavioral level, possible differences in activation of brain structures can be interpreted
in terms of neural efficiency. Apart from the N-back task, participants were supposed
to do another cognitive task that was not used in training. This task was introduced in
order to check possible transfer effects. We chose a simplified version of the Stop-signal
paradigm [51], which requires that an already activated behavioral tendency be contained
in response to the signal of stop. Apart from allowing to assess possible transfer effects, this
task also served as an estimation of the individual level of inhibitory control—a potential
moderator of possible efficiency effects. There were three testing phases within the scanner:
before training, between the fifth and the sixth training session, and after training. This
decision was motivated by reports suggesting that the process of learning first leads to the
increase of brain activation and only at its final stages may result in substantial decrements
of activation. Three scanning sessions should allow to capture possible curvilinear effects
of training. Finally, we applied the Raven’s matrices in order to assess the level of general
fluid intelligence.

2. Materials and Methods
2.1. Participants

Forty-six healthy right-handed volunteers participated in the study. They were re-
cruited via social media. First, we chose pairs of volunteering persons that were matched
for age, sex and level of education and next the persons from each pair were randomly
assigned to either the experimental or control group. The mean age of participants was
27.2 years (SD = 3.39). The female to male participants ratio was approximately 2:1. The
mean level of education in both groups was 6.5 (an education level of 5 corresponds to sec-
ondary education, 6—bachelor’s degree or equivalent, 7—master’s degree or equivalent).
Participants in the control group, who participated only in three fMRI scans, were paid
150 PLN (∼=35 €), that is, 50 PLN/scan. Participants in the experimental group were paid
300 PLN (50 PLN/scan and 150 PLN for training). Originally, 50 people were recruited but
two persons from the experimental group did not complete the whole training program;
consequently, their counterparts from the control group were excluded, too. Ethical ap-
proval for the study was obtained from the Committee for Ethics of Scientific Research,
Institute of Psychology, Jagiellonian University (Komisja ds. Etyki Badań Naukowych
IPs UJ) on 29 May 2019 (the approval code: KE/04/052019). All subjects gave their writ-
ten informed consent, including the information that they have the right to resign in
any moment.

2.2. Study Design

The groups received fMRI scans in three distinct sessions. The experimental group
underwent a cognitive training regime in between the three sessions. The participants
performed two tasks in the scanner, namely the N-back task (which the experimental group
trained on) and the stop-signal task (included to assess transfer), summarized in Figure 1.
The participants were instructed and practiced the tasks before entering the scanner. The
tasks were designed using Presentation (Version 18.0, Neurobehavioral Systems, Inc.,
Berkeley, CA, USA).
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before the next stimulus. Participants were instructed to press the button each time the 
figure presented on the screen matched the one presented N positions before in the se-
quence. The ‘targets’ presented on the wrong position (a.k.a. lures) were considered dis-
tractors. For instance, if the N number was set for 2, immediate repetitions (n = 1), as well 
as repetitions at the positions 3, 4 etc., should be ignored. Since the stimuli were con-
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events, because every new stimulus initially occupied the position n = 1, then the position 
n = 2, n = 3, and so on. 

The N-back task was essentially the same in the training sessions outside the scanner 
and during three scanning sessions. An important difference pertained to the N number. 
In the scanning sessions, the N level of the task remained constant (n = 2). This decision 
was deliberate: we assumed that a relatively moderate difficulty level would result in 
lack of differences in accuracy between the groups. Looking for differences in brain ac-
tivations, we decided to make the behavioral level of performance rather high and equal 
for both groups. In the scanning sessions, there were 128 stimuli presented in a sequence 
(run), including 16 targets, 15 lures (i.e., ‘targets’ repeated in a wrong position n = 1), and 
97 distractors proper (i.e., not repeated stimuli). Each scanning session consisted of 3 

Figure 1. Schematic representation of the tasks used in the three scanning sessions. (A) shows an example of the stimuli
the subject would see when performing the N-back task. (B) shows an example of the stimuli the subject would see when
performing the Stop-Signal task. (C,D) respectively show the variables recorded for each run of the N-back and Stop-signal
tasks (‘Outcome’ column), while also offering an explanation for when a response was considered correct.

2.3. Tasks
2.3.1. N-Back Task

The N-back task [50,52] required quick updating of working memory contents. The
stimuli consisted of 17 geometric figures and patterns (Figure 1). Participants were pre-
sented with each stimulus for 1500 ms and a fixation cross was presented for 1000 ms before
the next stimulus. Participants were instructed to press the button each time the figure
presented on the screen matched the one presented N positions before in the sequence. The
‘targets’ presented on the wrong position (a.k.a. lures) were considered distractors. For
instance, if the N number was set for 2, immediate repetitions (n = 1), as well as repetitions
at the positions 3, 4 etc., should be ignored. Since the stimuli were constantly appearing
and disappearing, participants had to update their mental sequence of events, because
every new stimulus initially occupied the position n = 1, then the position n = 2, n = 3,
and so on.

The N-back task was essentially the same in the training sessions outside the scanner
and during three scanning sessions. An important difference pertained to the N number. In
the scanning sessions, the N level of the task remained constant (n = 2). This decision was
deliberate: we assumed that a relatively moderate difficulty level would result in lack of
differences in accuracy between the groups. Looking for differences in brain activations, we
decided to make the behavioral level of performance rather high and equal for both groups.
In the scanning sessions, there were 128 stimuli presented in a sequence (run), including
16 targets, 15 lures (i.e., ‘targets’ repeated in a wrong position n = 1), and 97 distractors
proper (i.e., not repeated stimuli). Each scanning session consisted of 3 runs. In the
training session, on the other hand, the N number was adaptively changing according
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to an individual progress in performance. In other words, the difficulty level of the task,
defined in terms of the N number, increased or decreased depending on the participants’
actual performance (see Section 2.4.1). Such a decision was motivated by the need to keep
participants’ attention and effort at the highest possible level. The adaptive nature of
training task is regarded the golden rule in the cognitive training research.

2.3.2. Stop-Signal Task

The stop-signal paradigm [51] consists in quick responding to target stimuli. From
time to time (usually in 20% of trials) the already activated response tendency must be
terminated after an acoustic or visual signal of stop. The signal of stop occurs early after the
target, which makes the task quite easy, or with increasing amount of delay, which makes
the tasks rather demanding. An individual measure of inhibitory control is computed as
the value of delay that ensures 50% of correctly inhibited responses. In order to asses this
value, the time of delay is adaptively changing to a person’s performance. In this study, we
simplified this paradigm in order to make it more convenient for an fMRI investigation.
Specifically, we got rid of the adaptive nature of the task, instead providing the participants
with two preset values of delay: short and long. The participants were presented with a
sequence of stimuli—either X or O. They were asked to press as quickly as possible the
appropriate buttons: LEFT if X is displayed on the screen and RIGHT if O is displayed on
screen. However, occasionally, the sign ‘Do not press any button’ appeared in the frame.
The delay for the presentation of the above-mentioned frame was either 0 or 200 ms. A
correct inhibition of response was recorded as an ‘Inhibit-fast’ (following 0 ms message)
or ‘Inhibit-slow’ (following 200 ms message) response. A failure to inhibit response was
recorded as a ‘Fail-fast’ (following 0 ms message) or ‘Fail-slow’ (following 200 ms message)
response. Each symbol was presented for 1500 ms and a fixation cross was presented for
1000 ms in between each stimulus. The run consisted of 200 stimuli. There were three runs
in every scanning session.

The rationale for choosing the stop-signal task pertains to its being involved in one
of the basic executive functions, that is, inhibitory control [51]. Together with working
memory updating and switching, inhibition creates the commonly investigated set of
executive functions [53]. Moreover, the N-back task used in the training, as well as during
the scanning sessions, included lures that were supposed to be ignored. So, this version of
the N-back task recruits not only working memory updating but also inhibitory control.
We supposed that possible transfer effects would be more likely if two tasks would show
some resemblance concerning their underlying cognitive mechanisms. There exist other
inhibitory control tasks that could be chosen (e.g., go/no go or anti-saccades). We decided
on stop-signal because of its being relatively well elaborated at the theoretical level [51].

2.3.3. Paper-and-Pencil Instruments

We applied Raven’s Advanced Progressive Matrices, RAPM [54], in order to assess the
general intelligence level. This part of investigation took place during a separate session,
a few days before the first scanning session. We also used the Edinburgh Handedness
Inventory [55] in order to ensure that all participants were right-handed.

2.4. Procedure
2.4.1. The Training Procedure

The experimental group went through extensive training on a progressive version
of the N-back task. Each training session consisted of 10 runs, and each run consisted
of 40 stimuli. There were six targets (15% of stimuli) and six lures (15%) in every run.
The performance level was defined as the proportion of the number of hits (i.e., properly
detected signals) plus correct rejections to the overall number of trials in the given run. If
such an index surpassed 90% in the given run, the difficulty level (i.e., the N number) in
the next run increased. Conversely, if this index dropped down below the 75% level during
two consecutive runs, the difficulty level in the next run decreased. Participants started to
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train every day beginning from the difficulty level at which they completed the last run in
the preceding session. The training lasted for two weeks, five days per week. Each session
lasted 30–35 min. Time of task depended on the length of short breaks in-between runs
and individual reaction times (RTs), and remained stable across all 10 days of training.

2.4.2. The Scanning Procedure

Whole-brain images were collected using a 3T GE Discovery MR750 scanner. During
functional scans, a T2-weighted echo-planar image depicting blood oxygenation level-
dependent (BOLD) contrast was acquired every 2.3 s with 3 × 3 × 3 mm resolution.
Volumes consisted of a 64 × 64 × 41 matrix, 192 × 192 mm field of view, echo time (TE)
= 30 ms, repetition time (TR) = 2.3 s & flip angle = 90◦. The slicing acquisition order
was automatically determined using GE software and classified as either ‘interleaved’ or
‘descending’. Across subjects, the N-back runs were approx. 201 TR’s in length (i.e., 462 s),
and the stop-signal task was approx. 300 TRs in length (i.e., 690 s). EPI’s were collected
in three independent sessions, each beginning with three N-back runs and ending with
one stop-signal run. At the first session, an MPRAGE structural scan of 1ˆ3 mm resolution
was also collected for each participant with a 256 × 256 × 152 matrix, inversion time
(TI) = 600 ms, TE = 3.68 ms, TR = 9.24 s & flip angle = 10◦.

Pre-processing of the imaging data were performed using Statistical Parametric Map-
ping software (SPM12) and implemented in MATLAB 2018 (The Mathworks, Inc., Natick,
MA, USA). Each EPI run was slice time corrected, (accounting for the acquisition order),
followed by motion estimation and correction. After that, the mean EPI of each run was
co-registered to the high-resolution structural scan. Then the structural volume was first
segmented to different tissue types, and then spatially normalised to the Montreal Neuro-
logical Institute MNI152 stereotactic standard brain template according to the 12-parameter
affine transformation and 16 nonlinear iterations. Using the T1 deformation matrix the
realigned and unwarped functional volumes were normalised to the same standard space.
Finally, functional volumes were smoothed using an 8ˆ3 full-width half-maximum isotropic
Gaussian kernel in order to reduce the inter-subject variability.

All functional sessions were modelled using SPM12 and the massive generalized
linear model (GLM) approach. Where the association of each voxel, BOLD time-series and
the experimental factors are independently modelled while controlling for realignment
parameters as nuisance variables (i.e., adding the temporal displacement parameters
estimated at the pre-processing stage as covariates in the model). For each session, we
modelled all three runs from the N-back experiment together using the run constant
as an implicit baseline, and the four N-back conditions (i.e., hits, misses, false alarms
and no response) as experimental variables. At this level, three contrasts were defined:
‘Hits’, ‘Correct rejections’, and ‘Correct vs. Incorrect’. The first contrast (‘Hits’) represents
differences in brain activations between correct identification of targets and all other types
of responding (i.e., misses, false alarms, and correct rejection of distractors). The second
contrast represents differences between the correct rejection of distractors and all other
types of responding (i.e., hits, misses, ad false alarms). The third contrast refers to the
difference between two types of correct responding (i.e., hits and correct rejections) versus
two types of incorrect behaviour (i.e., misses and false alarms).

The stop-signal task was modelled independently, again using the constant as an
implicit baseline and the six conditions (i.e., hits, misses, slow fails, fast fails, slow inhibition
and fast inhibition) as experimental variables. Two contrasts were created: ‘Go vs. Stop’
and ‘Stop vs. Fail’. For both tasks (i.e., N-back and stop-signal) a 2nd group-level model
was created, where contrast volumes from each group (trained vs. control) were collapsed
to the session level (i.e., the within-session improvement was ignored) and the positive
main effect of each of the contracts were examined.
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2.4.3. Data-Driven Region of Interest (ROI) Clustering

The resulting activation maps were cluster corrected using FDR (q < 0.05) and were
segmented into independent ROIs [56] using an in-house implementation of the watershed
transform [57] used to further investigate training effects.

3. Results

The effects of training, both behavioral and neural, will be analyzed in the ANOVA
2 × 3 factorial model with two independent variables. The between-subjects variable
Group pertains to assignment of participants into training or control conditions. The
within-subjects variable Session refers to three phases of fMRI scanning. According to
the standard methodology of cognitive trainings [58], possible effects of intervention are
usually expressed in terms of statistically significant interaction between Group and Session,
to the effect that increments in the experimental group are expected to be more salient
than those found in the control group. The latter may also improve their performance due
to repeated measurement. The effects of individual differences will be analyzed in the
GLM model with individual dimensions treated as continuous covariates. Also, contrast
estimates will be correlated with individual dimensions across participants.

3.1. Behavioral Results

First, we checked if the training group improved their N-back task performance across
ten training sessions. The number of hits per day during the second phase of training,
consisting of sessions 6–10, was significantly higher than the number of hits per day
during the first phase of training, including the sessions 1–5 (ANOVA repeated measures,
M1 = 754.87, SD = 246.82, M2 = 1013.17, SD = 351.47, F{1,22} = 30.44, p < 0.001, partialled
η2 = 0.581). Since the task was adaptive, adjusting its difficulty level according to every
participant’s progress, the average N number during the two phases of training was also
examined. It appeared that the average N level was significantly higher during the second
stage of the training in comparison to the first stage (M1 = 3.95, SD = 0.91, M2 = 5.53,
SD = 1.85, F{1,22} = 32.51, p < 0.001, partialled η2 = 0.596). These findings, particularly
the values of size effect, symbolize a huge improvement of the N-back task performance
across ten training sessions. In order to check whether the progress took place in both
phases of the training, we computed the difference measures by subtracting the number of
hits in the preceding session form the number of hits in the following session (e.g., 2−1,
3−2, and so on). We found that these difference measures were significantly greater than
zero in both the first and the second phase of the training (t{1,22} = 7.37, p < 0.001, and
t{1,22} = 9.03, p < 0.001, respectively). These findings justify a conclusion that the training
was effective in terms of heightening the level of performance in the trained task. The
so-called mere practice effects are not particularly important per se, but they imply that the
training regime was effective, and the study was internally valid.

Having checked for the mere practice effects, we analyzed the near transfer effects.
For that, we analyzed the results of the same N-back task performed in the scanner, and
the results of the non-trained Stop-signal task, also performed in the scanner. The general
linear model with 2× group (between-subjects) and 3× scanning sessions (within-subjects)
revealed that, if the number of hits was regarded, only the effect of session was statistically
significant (F{2,88) = 22.20, p < 0.001, partialled η2 = 0.335). The observed increase took
place only between the first and second session; the third scanning sessions brought about
similar results as the second one. As to the number of correct rejections, again only the
effect of session appeared significant (F{2,88) = 12.41, p < 0.001, partialled η2 = 0.220) and
the analysis of contrasts revealed that the progress took part not only between session one
and two (p < 0.001) but also between session two and three (p = 0.035). The effect of group
and the interaction effect were not significant. Basic descriptive statistics for these analyses
are included in Table 1. Generally, the findings suggest lack of any training effects; such
effects could be claimed only if the group by session interaction would obtain statistical
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significance. Since both groups increased their performance in consecutive sessions in a
similar pattern, one can speak only about the effect of repeated measurement (test-retest).

Table 1. Descriptive statistics concerning the N-back task. The number of hits (max = 16) and correct
rejection of lures (max = 15) for two groups and three scanning sessions.

Hits Correct Rejections

Group Mean SD Mean SD

Session 1 Control 11.42 3.11 12.82 3.04

Training 10.78 2.20 12.67 2.79

All 11.10 2.69 12.75 2.89

Session 2 Control 13.97 1.60 14.25 1.22

Training 12.86 2.78 13.75 1.61

All 13.41 2.31 14.00 1.43

Session 3 Control 13.87 1.75 14.48 0.63

Training 12.41 3.05 14.16 1.15

All 13.13 2.57 14.32 0.93

The same conclusion can be drawn on the basis of the Stop-signal task. Its easy version
(zero-delay of stop) produced a ceiling effect: most participants did not commit any error
and only some committed 1–3 false alarms. Therefore, data from this version were not
subjected to inferential statistics. As to the hard version (signal of stop delayed 200 ms),
there was enough variance to perform inferential analyses: the great mean was 23.78 of
correct inhibitions per run consisting of 31 such events (SD = 4.99, range 11.33–30.33). Still,
performance in the hard version of the Stop-signal task did not depend on group, neither
on the group by session interaction. Even the main effect of the session was insignificant,
suggesting a lack of test-retest impacts.

3.2. Imaging Results

The cluster maps provide focused ROIs suitable for analyzing the main effect of change
across sessions and the session × group interaction. In the ‘Hits’ contrast (Figure 2A), the
change in activation across sessions in the two groups is focused predominantly on regions
of the frontal and parietal lobes. Three clusters of activation appeared significant after the
FDR correction: one frontal (superior frontal gyrus) and two parietal (superior parietal
lobule and supramarginal gyrus posterior). The coordinates of the overlapping ROIs,
together with their anatomical labels and corresponding Brodmann’s area numbers are
shown in Table 2. Although these activations are strong enough and confirm the well-
established findings concerning the neural substrate of working memory [52,59,60], the
peak voxel mean activation of the significant clusters shows no significant effect of training.
In the ROI 1 (superior parietal lobule) activation initially increased between the first two
sessions and then it dropped down between sessions two and three, but this is only a trend
(F{2,88) = 2.54, p < 0.085, partialled η2 = 0.056). Most importantly, a lack of interaction
with the group indicates that these changes were due to repeated measurement rather than
training. ROI 2 (supramarginal gyrus posterior) did not show any significant effect. As to
the ROI 3 (superior frontal gyrus), a very weak effect of session (F{2,88) = 2.69, p < 0.073,
partialled η2 = 0.059) indicates that activation in this region was weaker and weaker with
consecutive scanning sessions. Lack of interaction with the group factor, however, suggests
that this tendency resulted from repeated measurement, not from training outside the
scanner. Altogether, these findings clearly demonstrate that, as far as the ‘Hits’ contrast is
regarded, no neural effects of cognitive training were observed.
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Figure 2. Contrast maps showing changes in brain activation associated with the correct identification
of targets (‘Hits’, 3A), corrects rejection of distractors (‘Correct rejection’, 3B), and accuracy of N-back
task performance (‘Correct vs. Incorrect’, 3C). Only the significant ROIs that survived the FDR
correction are shown. (A) 1—superior parietal lobule; 2—inferior parietal lobule (SMG posterior);
3—superior frontal gyrus. (B) 1—superior parietal lobule; 2—superior frontal gyrus (paracingulate
gyrus); 3—inferior parietal lobule (SMG posterior). (C) 1—superior parietal lobule; 2—inferior
parietal lobule (SMG posterior); 3—superior frontal gyrus (paracingulate gyrus). Coordinates are
presented in Table 2.

Table 2. Summary of analysis results corresponding to the significant clusters of activation for N-back task. The coordinates
of the overlapping ROIs are also included, together with their anatomical label and corresponding Brodmann’s area number.

ROI Id X Y Z Hemisphere p Value
(FDR Corrected) Name WFU Anatomical Label

1 −42 −46 47 Left p = 0.07 BA.40 Superior Parietal Lobule

2 −39 −52 44 Left p = 0.011 BA.40 Inferior Parietal Lobule
(SMG posterior)

3 −6 20 47 Left p = 0.007 BA.08 Superior Frontal Gyrus

1 −30 −55 47 Left p = 0.044 BA.07 Superior Parietal Lobule

2 −6 8 56 Left p = 0.001 BA.06 Superior Frontal Gyrus
(paracingulate gyrus)

3 36 −49 41 Right p = 0.001 BA.40 Inferior Parietal Lobule
(SMG posterior)

1 −39 −46 47 Left p = 0.001 BA.40 Superior Parietal Lobule

2 36 −52 44 Right p = 0.102 BA.40 Inferior Parietal Lobule
(SMG posterior)

3 −6 8 59 Left p = 0.001 BA.06 Superior Frontal Gyrus
(paracingulate gyrus)
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In the ‘Correct rejection’ contrast, the change of activation was also observed in the
frontal and parietal regions. Specifically, three clusters of activation remained significant
after the FDR correction (Figure 2B): paracingulate gyrus, superior parietal lobule, and
supramarginal gyrus posterior (see Table 2). The examination of session, group, and the
interaction of both factors, showed lack of any statistically significant effects. These results
pertain to all clusters of activation mentioned above. Again, a preliminary conclusion may
be drawn that no neural effects of training appeared at all, as far as the ‘Correct rejection’
contrast is concerned.

Exactly the same clusters of activation appeared significant for the contrast ‘Correct
vs. Incorrect’ (Figure 2C). ROI 1 (superior parietal lobule) showed a curvilinear pattern of
change: after the increase between the first and the second sessions the activation dropped
down in the third session, but this is only a trend (F{2,88) = 2.72, p < 0.071, partialled
η2 = 0.060). Again, a lack of any significant interaction with the between-subjects factor of
the group suggests that these changes resulted from repeated measurements, not training.
Of course, three consecutive measurement sessions also provided learning opportunity but
this is not was we hypothesized. ROI 2 (supramarginal gyrus posterior) did not show any
systematic relationship with the factors of session, group, or interaction between both. As
to the ROI 3 (paracingulate gyrus, Table 2) we found a significant decrement of activation
between sessions (F{2,88) = 4.12, p < 0.020, partialled η2 = 0.087). It appeared that the
activation in this region dropped down between the first and the second session, as well as
between the second and the third. Thus, a trace of neural efficiency occurred. However,
lack of the session x group interaction suggests that this trend depended on repeated
measurement rather than cognitive training.

As to the stop-signal task, changes in activation concerning the ‘Stop vs. go’ contrasts
can be observed mainly in the inferior frontal cortex and pre-supplementary motor areas
(Table 3), confirming previous reports [61–63]. The peak voxel mean activation of the
significant clusters shows no significant differences between the training and control
groups across the three sessions. Non-significant trends of increased activation can be
observed in the training group, while changes in activation are less evident in the control
group. The significant clusters of activation associated with the ‘Stop vs. fail’ contrasts are
focused in cortical motor areas. No significant trends can be observed across groups or
sessions. The results of the second-level full-factorial analysis for the significant clusters of
activation in the stop-signal task support the conclusion about lack of any transfer effects
of training observed at the neural level of analysis.

Table 3. Summary of coordinates and analysis results corresponding to the significant clusters of
activation for Stop-signal task.

Coordinates p Value p Value Anatomical

(X, Y, Z) (Uncorr.) (FDR-Corr.) Labels

‘Stop vs. Go’

(36, 26, −4) p < 0.001 p = 0.986 Right Insula

(−3, −28, 62) p < 0.001 p = 0.986 Left Paracentral Lobule

(−45, 26, −1) p < 0.001 p = 0.986 Left Paracentral Lobule

(18, −64, 5) p < 0.007 p = 0.986 Right Calcarine

‘Stop vs. Fail’

(−15, 23, 47) p < 0.01 p = 0.98 Left Superior Frontal G.

(45, −19, 50) p < 0.005 p = 0.98 Right Postcentral Gyrus

3.3. Individual Differences

The analyses reported in Section 3.2 are based on the ANOVA factorial model with
one within-subjects variable (session) and one between-subject factor (group). The results
clearly demonstrate that the first hypothesis (training-induced neural efficiency) did not
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obtain empirical support. However, lack of general effects of efficiency does not exclude a
possibility that interesting trends of activation change may be connected with individual
variables. We took into account three such variables: (1) general mental ability, measured
with Raven’s matrices, (2) inhibitory control, measured with Stop-signal task, and (3) WM
updating, measured with N-back task accuracy. Variables (2) and (3) have been computed
as the average scores across three scanning sessions. N-back accuracy was operationalized
in two ways: as the number of hits and the number of correct rejection of lures. In order to
check for possible moderation caused by these variables, we included every one of them
into the general linear model as continuous co-variables.

In the first contrast (‘Hits’), we did not find any significance of intelligence and
inhibitory control for relative change of brain activation. An interesting and quite strong
effect of N-back accuracy, measured with the number of correct rejection of lures, appeared
in the left superior parietal lobule (ROI 1, Table 2): the more accuracy the higher the
activation in this region (F{1,43) = 11.71, p < 0.001, partialled η2 = 0.214). The accuracy
variable also interacted with session (F{2,86) = 3.25, p < 0.044, partialled η2 = 0.070): the less
accurate participants showed a tendency to reduce the activation in this region, whereas
the more accurate ones kept this region relatively active, particularly in the second and
third session (see: Figure 3). In the right supramarginal gyrus posterior (ROI 2, Table 2),
the effect of accuracy was quite similar (F{1,43) = 6.03, p < 0.018, partialled η2 = 0.123).
However, the interaction effect was insignificant.
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accuracy in the N-back task. Contrast 1 (‘Hits’). Visualization has been prepared independently of
the statistical computations, in which the accuracy variable was kept continuous.

In the second contrast (‘correct rejections’) we found a significant interaction between
inhibitory control, measured with the number of correctly inhibited responses in the
Stop-signal task (hard version), and the factor session (F{2,86) = 4.90, p < 0.010, partialled
η2 = 0.102). This effect pertained to the ROI 2 (paracingulate gyrus). It appeared that people
scoring low in the stop-signal task reduced activation in this region in the final scanning
session, whereas those who performed relatively better increased their activation in this
session. No further effects have been observed in this cluster of activation. As regards two
other clusters (superior parietal lobule and supramarginal gyrus posterior), we did not
find any relationships between relative change of activation and individual differences.

As to the third contrast and ROI 3 (paracingulate gyrus), we found an interesting
interaction between inhibitory control, measured with the number of correctly inhib-
ited responses in the difficult version of the Stop-signal task (200 ms delay), and session
(F{2,88) = 3.72, p < 0.028, partialled η2 = 0.078). It appeared that less accurate participants
lowered their activation in the third session down (contrast estimates not differing from
zero, whereas more accurate participants kept their activation at the level significantly
higher level. This result suggests that it is good for inhibitory control to keep the paracin-
gulate gyrus active enough even in the third approach to the stop-signal task. Those who
responded with lowering its activity earned fewer number of correctly inhibited responses.
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This interaction is the only effect we found in the frontal region. In particular, intelligence
did not predict anything. In the parietal regions, we found that only N-back task accuracy
predicted relative changes in brain activation. Specifically, accuracy operationalized as the
number of correct rejection of lures predicted brain activation in the ROI 1 (superior parietal
lobule): (F{1,43) = 7.52, p < 0.009, partialled η2 = 0.149); in the ROI 2 (supramarginal gyrus
posterior) the significance of this effect seems problematic (F{1,43) = 3.50, p < 0.068, par-
tialled η2 = 0.075). Anyway, these relationships show the increase of brain activation with
rising level of task accuracy. Moreover, an interaction appeared significant (F{2,86) = 3.66,
p < 0.030, partialled η2 = 0.078), to the effect that less accurate participants responded with
lower and lower activation across consecutive sessions in superior parietal lobule (ROI 1),
whereas more accurate participants increased their activation in this region in the second
session and kept it at this heightened level in the third session (Figure 4). In ROI 2, this
interaction was insignificant. Importantly, the effects reported in this paragraph occurred
only if lure rejection was regarded the index of task accuracy; if the number of hits was
taken into account, they did not cross the level of statistical significance. Also, neither
intelligence nor inhibitory control brought about any significant results.

Analyses performed at the group level may suggest lack of any training-related
effects. However, brain activations in the ROIs that survived the false discovery rate
(FDR) correction depended on individual characteristics of participants, particularly on
the N-back accuracy measured with the number of correct rejection of lures. The question
arises if accuracy is linked with brain activations not only across sessions, as visualized in
Figures 3 and 4, but also within sessions. To check this possibility, we conducted a series
of correlational analyses, in which individual levels of brain activation were regressed
on chosen individual variables. Only the significant ROIs were taken into account (see
Table 2). Since most of the variables did not conform with the normal distribution, we used
Spearman’s r coefficient.

First, we checked the correlations between two measures of N-back task performance,
the number of hits and the number of correct rejection of lures (i.e., targets in the “wrong”
position) with relevant brain activations. The time of performance was matched, that is,
we correlated the number of hits and correct rejections in the first session with activations
only in the first session, and so on. We found that the number of hits did not enter in any
correlation with strength of activation in the ROIs that are included in Table 2. The number
of correct rejection of lures, on the other hand, correlated positively and significantly with
strength of activation in ROIs 2 and 3 (contrast ‘Hits’, see Figure 2), and also with activation
in ROIs 1 and 2 (contrast “Correct vs. Incorrect’, see Figure 2). However, these relationships
took place only in the third scanning session, that is, after training. After splitting the data,
these correlations disappeared in the control group but became even stronger in those who
underwent training. The results referring to the third contrast are included in Table 4.
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accuracy in the N-back task. Contrast 3 (‘Correct vs. Incorrect’). Visualization has been prepared
independently of the statistical computations, in which the accuracy variable was kept continuous.
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Table 4. Spearman’s correlation coefficients between brain activations in contrast 3 (‘Correct vs.
Incorrect’) and two measures of accuracy in the N-back task: the number properly detected targets
(Hit) and the number of correct rejections (Reject).

All (n = 46)

Hit 1 Reject 1 Hit 2 Reject 2 Hit 3 Reject 3

RoI 1 0.062 −0.17 0.202 0.082 0.07 0.452 **
p = 0.683 p = 0.259 p = 0.177 p = 0.588 p = 0.646 p = 0.002

RoI 2 −0.053 −0.089 0.103 −0.065 −0.068 0.389 **
p = 0.727 p = 0.557 p = 0.497 p = 0.669 p = 0.651 p = 0.008

RoI 3 0.095 −0.029 0.177 0.109 −0.168 0.12
p = 0.532 p = 0.847 p = 0.238 p = 0.469 p = 0.264 p = 0.426

Training (n = 23)

Hit 1 Reject 1 Hit 2 Reject 2 Hit 3 Reject 3

RoI 1 0.141 −0.076 0.315 0.204 0.183 0.554 **
p = 0.512 p = 0.731 p = 0.144 p = 0.351 p = 0.404 p = 0.006

RoI 2 −0.034 −0.164 0.248 0.088 0.05 0.491 *
p = 0.879 p = 0.455 p = 0.254 p = 0.689 p = 0.822 p = 0.017

RoI 3 0.026 0.046 0.197 0.407 −0.108 0.1
p = 0.907 p = 0.835 p = 0.367 p = 0.054 p = 0.624 p = 0.651

Control (n = 23)

Hit 1 Reject 1 Hit 2 Reject 2 Hit 3 Reject 3

RoI 1 0.06 −0.227 0.09 −0.082 −0.163 0.377
p = 0.784 p = 0.297 p = 0.682 p = 0.708 p = 0.459 p = 0.076

RoI 2 −0.098 −0.086 −0.013 −0.179 −0.226 0.371
p = 0.656 p = 0.698 p = 0.953 p = 0.415 p = 0.219 p = 0.082

RoI 3 0.14 −0.106 0.075 −0.157 -0.404 0.113
p = 0.525 p = 0.629 p = 0.732 p = 0.474 p = 0.056 p = 0.608

Note: RoI—region of interest; RoI 1—left superior parietal lobule; RoI 2—right supramarginal gyrus posterior;
RoI 3—left paracingulate gyrus; Hit 1—the number of hits in session 1, etc.; Reject 1—the number of correct
rejections in session 1, etc.; p values are two-tailed; ** p < 0.01, * p < 0.05.

Interestingly, these two parietal regions (left superior parietal lobule and right supra-
marginal gyrus posterior) changed systematically with training session as far as their
general activation level is concerned. Although these patterns of change did not show any
symptoms of being affected by intensive N-back training outside scanner, they suggest the
influence of repeated measurement on activation of parietal parts of the network subserv-
ing N-back task performance. Now we can see that the effect of training may amount to
the positive correlation between the number of correct rejection of lures and the activation
change. It seems as if the training group learned how to ensure successful rejection of lures
through increasing brain activation in the parietal parts of the frontal-parietal network that
subserves the functioning of working memory. The frontal part of this network did not
show such a pattern of change following training.

4. Discussion

We investigated the neural consequences of working memory training. Young healthy
volunteers underwent the training regime consisting of ten sessions during which they
practiced an adaptive version of the N-back task. The same task but in its nonadaptive
version was also used in three scanning sessions that took place before training, after five
training sessions, and after termination of training. Randomly assigned control volunteers
were also scanned three times but they did not undergo any organized training in between
of scanning sessions. The trained task’s performance improved substantially as an effect
of training but no transfer effects in the untrained stop-signal task’ scores have been
found. We were also unable to identify any change of activation in the task-related brain
clusters, which could be linked to training outside the scanner. Such changes appeared,
however, as a consequence of mere repetition of measurement within scanner. We found
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that the activation in the frontal areas subserving N- back task performance (superior
frontal gyrus) tended to decrease their activation linearly between the first and the last
session, whereas the parietal areas (left superior parietal lobule) showed a curvilinear
relationship, first increasing its activation and next becoming relatively less active. We
also found that activation in the parietal regions depended on task accuracy: participants
who obtained high level of accuracy, measured with the number of correct rejections of
luring distractors, responded with increased activation in left superior parietal lobule and
right supramarginal gyrus posterior, and those with lower accuracy indices responded
with decreased activation. This tendency was particularly visible in the second and third
scanning session. General mental ability (intelligence) did not show any moderation on
task-related brain activity. We also found that activation in the above-mentioned parietal
regions was positively correlated with accurate rejection of luring distractors. However,
these relationships were evident only on the third scanning session and were substantially
stronger in the training group, in comparison to the controls.

First of all, we suggest excluding the possibility that the training regime was not effec-
tive enough. We found very large scaled practice effects that justify the conclusion that the
training group really improved their N-back scores during training. These improvements
took place throughout the whole training program, meaning that they were not limited
to initial phases of the process. It seems that the training procedure was effective and the
experimental manipulation was successful, hence the whole study was internally valid.
Therefore, a lack of training-induced effects measured both at the behavioral and neural
levels of analysis, as well as lack of any symptom of transfer to the untrained stop-signal
task, should be regarded as an argument against the position claiming the existence of
significant ‘brain training’ effects. Thus, we have to reject the first hypothesis that pre-
dicted training-related decrease of neural activation in the regions involved in the N-back
task performance. This conclusion is consistent with some findings [64], although it is
inconsistent with others [32,36–38].

Another possibility that we would like to exclude pertains to the supposedly low
difficulty level of the tasks that the participants performed while being scanned. It has
been found in the research on intelligence [47] that neural efficiency occurs if a task at hand
is moderate in difficulty. If it is too easy, everybody performs correctly without spending
much effort and neural resources. If it is very demanding, even the most able individuals
have to perform with the highest possible engagement. Only if the task is moderately
difficult are those who are comparatively more endowed able to work with a relatively
lesser amount of engaged brain resources. In our study, the level of intelligence did not
yield any significant results, but a similar line of reasoning may be applied in reference
to skill acquisition. One can speculate that only the moderately difficult task allows for
differentiation in recruitment of relevant brain clusters between those who train and those
who do not. If the task is too easy or too difficult, one should not expect training-induced
effects of neural efficiency. It seems, though, that our scanning task was moderate in
difficulty. Notwithstanding certain symptoms of the ceiling effect, there was enough room
for accuracy improvement between the scanning sessions (Table 1). We deliberately set the
N number at the relatively low level (n = 2) expecting lack of between-group differences
in accuracy (indeed, they did not occur) and thus being able to concentrate on possible
neural effects of training. However, the n = 2 level still ensured enough variance to assess
between-session differences in accuracy. In our opinion, only the n = 1 level would make
the task trivial.

The second hypothesis did not obtain empirical support, either. The level of intel-
ligence, assessed with the advanced version of Raven’s matrices, did not enter in any
relationship with task-related changes in brain activation. The same finding pertains to
inhibitory control, measured with accuracy in the harder version of the stop-signal task
(200 ms delay between target and stop). Investigation of inhibitory control was exploratory,
since there is no evidence in the literature that this dimension of individual differences
has been investigated in the context of the neural efficiency hypothesis. Moreover, the
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stop-signal paradigm is not a test, but an experimental procedure devised to investigate
cognitive control processes. Although it has been used in some psychometric investiga-
tions, its properties as a test are dubious. Therefore, these preliminary results should be
treated with caution. Raven’s matrices, on the other hand, are well-established and reliable
instrument to assess human general mental ability. A lack of any significant symptoms of
neural efficiency connected to intelligence may be accounted for in terms of differences
in methodology. The neural efficiency hypothesis in intelligence has been verified mostly
in studies using PET [45] or EEG [44,47]. Maybe the efficiency phenomenon is difficult to
capture with the fMRI methodology. Another probable explanation, pertaining to possible
attenuation of intelligence scores, seems not viable because our sample did not differ
from the general population in Raven’s scores. However, the small sample size may be
responsible for lack of the neural efficiency symptoms related to intelligence.

As to the third hypothesis, we found that accuracy with which the participants
performed the N-back task predicted brain activation in the left superior parietal lobule.
The main effect shows that heightened levels of accuracy are associated with increased
activation in this region. The interaction effect, visualized in Figures 3 and 4, amounts to
decreasing activation in the left SPL with consecutive scanning sessions by less accurate
people; the more accurate ones increased the left SPL activation in the second and third
sessions. However, these effects were not modulated by the group factor, meaning that
participation in the N-back training outside scanner did not contribute anything. Therefore,
the third hypothesis should also be excluded. We hypothesized that task accuracy would
moderate the training-induced effects of efficiency, but such effects are lacking. However,
three consecutive scanning sessions also provide an opportunity to train the N-back task.
This is not the training we expected to occur but it seems fairly possible that the participants
learned how to deal with the task taking the opportunity to do it three times with one-week
break in between the sessions. If so, the effect shown in Figures 3 and 4 may reflect the
joint effect of the process of learning and task accuracy. Some participants might have
learned how to improve their performance thanks to the increased activity in the left
parietal region. Others did not improve their performance, probably due to decreasing
activation in this region. Why the training proper, taking place outside the scanner and
much more intensive in terms of intensity and learning time, did not bring about similar
results remains problematic. Perhaps the training gains were limited to the mere practice
effects; potential improvement in the same task but performed in different conditions
should be interpreted in terms of near-transfer effects, that did not emerge. Although near
transfer is usually defined as potential improvement in a different task engaging the same
cognitive function, it seems that a task identical with the trained one but performed in
different conditions (i.e., within scanner) should be regarded different enough to justify the
term ‘transfer’. Still, even this kind of ‘nearest transfer’ did not occur in our study.

Unexpectedly, we found that activation in the parietal regions were positively cor-
related with task performance accuracy, measured with the number of correct rejection
of lures. So, the impact of accuracy on brain activation in selected regions occurred not
only between subjects (low vs. high accuracy) and between scanning sessions, as can
be seen in Figures 3 and 4, but also within subjects. In other words, accuracy generally
increased these activations, particularly in the last two sessions, but also predicted the
selected activations on the individual level. These two tendencies probably work indepen-
dently, as it is theoretically possible to find such correlations without the main effect or vice
versa. Importantly, these correlational relationships occurred only in the third scanning
session and were substantially stronger in the training group in comparison to the controls.
It seems as if the training group learned how to ensure high level of accuracy through
heightening the level of activation in left superior parietal lobule and right supramarginal
gyrus posterior. In fact, this is the only training-related effect that we were able to find,
as far as the training outside scanner is concerned. To our knowledge, such effects have
not been reported so far. Their interpretation is therefore quite difficult, the more so that
other measures of accuracy, i.e., the number of hits, did not show such a relationship. The



Brain Sci. 2021, 11, 155 18 of 21

version of N-back task that we have used is a bit dualistic nature: it needs quick reaction to
targets and efficient inhibition of non-targets. Only the second component brought about
significant correlational effects. Moreover, these effects did not occur in the frontal regions
involved in the task performance. Perhaps further research will help to confirm these
findings and suggest suitable interpretation.

We were unable to find empirical support for the neural efficiency hypothesis, ac-
cording to which the process of learning causes decreased activation of brain structures
implicated in cognitive task performance [43–46]. Maybe neural efficiency is an empty
notion and the relevant empirical findings can be interpreted alternatively [65]. It seems
that, instead of general lowering brain activations following learning, one should expect
differential weakening and strengthening of brain activations. Such differential changes
may result either from the process of learning (such as WM training) or from individual
differences. Our results suggest the second possibility.

Conclusions resulting from our study are limited in several ways. Firstly, these
conclusions are restricted to working memory training based on the N-back task. Research
with other tasks may bring about more positive results, although it is worth to underscore
that contemporarily the N-back task epitomizes the function of working memory updating,
which is crucial for WM efficiency. Also, more complex tasks, particularly commercial
games, may show increased effectiveness as a mean to train cognitive functions. Being
rather complex, and engaging wide variety of cognitive processes, commercial games
are probably more advisable from the practical point of view. However, their complexity
precludes precise assessment what kind of mental process makes a cognitive training
work, if at all. Secondly, our conclusions refer to the brain functions rather than structures.
There are studies reporting that working memory training improves white matter integrity
in task-related cortical areas and in the corpus callosum [66,67]. Similar effects have
been observed in the investigation of neural consequences of playing commercial real-
time strategy games [68]. Functional connectivity has also been demonstrated to change
after working memory training [66]. Thirdly, these conclusions pertain to healthy young
volunteers. Such a sample was deliberately recruited for this study in order to eliminate
possible contribution from the side of aging or behavioral disorders. Studies with senior
citizens or children, particularly with developmental disorders such as ADHD, have
already demonstrated that working memory training can affect the functional aspects of
neural organization [32,33].

One can also raise criticism for duration of training that our participants underwent.
Although their training regime was quite intensive and comparable to procedures adopted
in other studies, it was nevertheless rather short-term. Hampshire and co-workers [1] found
evidence of near transfer after very long time of brain training (months or years). It may be
the case that much longer-term training is required to produce substantial scaled transfer,
even to the most similar tasks. Another caveat pertains to the fact that the control group
was not active. Making the controls train on another task, possibly not very demanding
for working memory, could allow for stronger conclusions. Still better solution would be
to recruit two control groups: one passive and one active, as is the case in some training
studies [27]. However, this issue may not be that important as the meta-analysis published
by Karbach and Verheaghen [30] showed that, in working memory trainings, the active
and passive control conditions give ‘indistinguishable’ results. Finally, the sample size
is an issue. Although many other neuroimaging studies on WM training are based on
comparable or slightly bigger samples [33,35,41,66], forty-six participants is a number that
may put into question the conclusions concerning individual differences.

5. Conclusions

The key finding of this study amounts to the conclusion that accuracy in the N-back
task performance is associated with a bilateral increase of activity in parietal regions
involved in task performance. The relationships between accuracy and relative level of
activation in the left superior parietal lobule and right supramarginal gyrus posterior
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occurred in both between subject comparisons (high vs. low accuracy people) and within
subject correlational analyses. Moreover, N-back training resulted in an increased positive
correlation between accuracy and activation in these parietal regions. We conclude that the
training group learned how to improve their task performance through increasing brain
activation in the selected parts of the parietal cortex.
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68. Kowalczyk-Grębska, N.; Shi, F.; Magnuski, M.; Skorko, M.; Dobrowolski, P.; Kossowski, B.; Marchewka, A.; Bielecki, M.;

Kossut, M.; Brzezicka, A. Real-time strategy video game experience and structural connectivity—A diffusion tensor imaging
study. Hum. Brain Mapp. 2018, 39, 3742–3758. [CrossRef] [PubMed]

http://doi.org/10.1016/j.dcn.2011.10.001
http://doi.org/10.1523/JNEUROSCI.2305-15.2016
http://doi.org/10.1016/j.neuroimage.2006.05.065
http://doi.org/10.1016/j.neubiorev.2009.04.001
http://www.ncbi.nlm.nih.gov/pubmed/19580915
http://doi.org/10.1016/0160-2896(88)90016-5
http://doi.org/10.1016/j.intell.2013.09.005
http://www.ncbi.nlm.nih.gov/pubmed/24489416
http://doi.org/10.1016/j.intell.2015.04.004
http://doi.org/10.1016/j.neuroimage.2011.06.090
http://doi.org/10.1016/j.intell.2008.12.004
http://doi.org/10.1002/hbm.20131
http://doi.org/10.1006/cogp.1999.0734
http://doi.org/10.1016/0028-3932(71)90067-4
http://doi.org/10.1093/scan/nsm006
http://doi.org/10.1038/d41586-018-07043-3
http://www.ncbi.nlm.nih.gov/pubmed/30327523
http://doi.org/10.1093/cercor/8.8.743
http://doi.org/10.1098/rstb.1998.0334
http://www.ncbi.nlm.nih.gov/pubmed/9854254
http://doi.org/10.1523/JNEUROSCI.1300-09.2009
http://doi.org/10.1523/JNEUROSCI.4682-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16510720
http://doi.org/10.1006/nimg.2000.0685
http://doi.org/10.1523/JNEUROSCI.2832-16.2017
http://doi.org/10.1016/j.dcn.2014.06.001
http://doi.org/10.1016/j.neuroimage.2016.03.028
http://doi.org/10.1523/JNEUROSCI.4611-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20203189
http://doi.org/10.1002/hbm.24208
http://www.ncbi.nlm.nih.gov/pubmed/29923660

	Introduction 
	Enhancement of Working Memory Capacity 
	Neural Effects of WM Training 
	The Present Study 

	Materials and Methods 
	Participants 
	Study Design 
	Tasks 
	N-Back Task 
	Stop-Signal Task 
	Paper-and-Pencil Instruments 

	Procedure 
	The Training Procedure 
	The Scanning Procedure 
	Data-Driven Region of Interest (ROI) Clustering 


	Results 
	Behavioral Results 
	Imaging Results 
	Individual Differences 

	Discussion 
	Conclusions 
	References

