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Abstract 

Triple negative breast cancer (TNBC) is a highly metastatic and aggressive subtype of breast cancer and cases presenting with lymph 

node involvement have worse outcomes. This study aimed to determine the regions of copy number variation (CNV) associated 

with lymph node metastasis in TNBC patients. CNV analyses were performed in a study cohort of 23 invasive ductal carcinomas 
(IDCs), 12 lymph node metastases (LNmets), and 7 normal adjacent tissues (NATs); as well as in an independent cohort containing 70 

TNBC IDCs and the same 7 NATs. CNV-associated genes were analyzed using GO-enrichment and Pathway analysis. The prognostic 
role for genes showing CNV-based changes in messenger RNA expression was determined using the Kaplan-Meier plotter database. 
For the IDCs, there were a number of variations that were common in both the study and independent cohorts in the amplified 

regions of 1q, 8q, 19 (p and q), 2p, 5p and the deleted regions in 8p followed by 5q, and 19p. The most frequently amplified 

regions in the LNmets of the study cohort were 4q28.3, 2p, 3q24, 1q21.2, 10p, 12p11.1, 8q, 20p11.22-20p11.21, 21q22.13, 
6p22.1 and the most frequently deleted regions were in 1p36.23, 4q21.1 and 5q. A total of 686 (441 amplified and 245 deleted) 
genes were associated with LNmets. The LNmet-associated genes were highly enriched for “regulation of complement activation,”
“regulation of protein activation cascade,” “regulation of humoral immune response,” “oxytocin signalling pathway,” and “TRAIL 

binding” pathways. Moreover, 6/686 LNmet-associated genes showed CNV-based changes in their mRNA expression of which, high 

expression of ASPM and KIF14 was significantly associated with worse relapse-free survival. This study has identified several CNV 

regions in TNBC that could play a major role in metastasis to the lymph node. 
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Breast cancer is the second most common cancer among women
orldwide as well as a major cause of cancer-related deaths [1] . Triple
egative breast cancer (TNBC) is characterized by a lack of 2 hormonal
eceptors: progesterone receptor and estrogen receptor (ER), as well as a
ack of overexpression of human epidermal growth factor receptor-2 [2] . It
omprises about 15% to 20% of all the breast cancers cases [3] ; and is one
f the most aggressive breast cancer subtypes, as it metastasizes rapidly and
ften recurs within 3 to 5 years after diagnosis when compared to ER-positive
reast cancer, which typically recurs at later stages (beyond 5 years) [4–6] .

here is no biomarker that can discriminate between women who will do 
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well and those who develop recurrent disease, nor are there targeted therapies
for this breast cancer subtype. Therefore, chemotherapy and surgery are the
only options for the treatment of TNBC. Identification of target molecules is
essential to enable better prognostic indicators for this disease or new targets
for therapy in order to improve patient survival. 

Copy number variation (CNV) is a type of structural variation where the
DNA sequence, ranging from 1 kb to several megabases in length, is either
amplified or deleted compared to the normal copy. It is one of the major
sources of human genetic variation [7] , and it is associated with the initiation
of cancer and other diseases such as cardiovascular and complex neurological
illnesses [8–10] . CNVs contribute 4.8% to 9.5% of the variability in the
human genome [11] . One research finding suggests that 62% of highly
amplified genes in breast cancer exhibit at least a 2-fold increase in expression
[12] . 

Several studies have shown that TNBCs with lymph node involvement
have a higher probability of recurrence and worse survival [13–15] .
Additionally, in TNBC, some CNVs can predict poor outcomes and act
as prognostic factors [16–18] , and it is likely that some recurrent CNVs in
TNBC may be related to lymph node metastasis. The frequent amplification
of myeloid cell leukemia sequence 1 was found in ER + primary tumors with
lymph node metastasis but absent in primary tumors without metastasis as
determined by single cell sequencing [19] . Gains in CTAGE5 were associated
with LN metastases in breast cancer using TCGA and METABRIC data from
breast ductal carcinoma [20] , whereas in TNBC, there have been no previous
studies of CNVs that are associated with lymph node metastasis. 

Previous studies from our laboratory were performed to explore gene,
miRNA, and methylation changes, aimed at identifying potential biomarkers
of progression in TNBC [21–23] . Differentially expressed genes in tumor and
lymph node metastasis compared to normal adjacent tissues (NATs) were
identified and 39% of the genes were associated with altered methylation
levels, whereas a large proportion of the differentially expressed genes
(61%) were not associated with altered methylation levels in invasive ductal
carcinomas (IDC) versus NAT [21] . Since CNVs are a frequent event in
cancer, the differential expression of these genes in TNBC may be due to
a variation in copy number. 

Thus, with the availability of methylation array data from the previous
study, this study focuses on performing CNV analysis using methylation
data to define regions of copy number gain or loss in TNBC. Moreover,
genes overlapping the regions of CNV were compared with their messenger
RNA (mRNA) expression levels. By comparing CNV-based genes in lymph
node positive TNBCs and lymph node metastases (LNmets), common genes
were identified which were associated with the progression of this disease to
LNmet. 

Methods 

Study and independent cohorts 

In total 23 IDCs, 12 LNmets, 3 pool NAT and 1 singular NAT from
TNBC cases previously used for methylation analysis were used for CNV
analysis [21 , 22] . Of the 3 pooled NAT samples, there are 2 pooled NAT
samples that contain 3 NAT samples from individual patient tumors in
each pool and 1 pooled NAT sample that contained 4 NAT samples from
individual patient tumors, totaling to 11 NAT samples. One pooled NAT
sample (mix of 4 NAT samples) was removed in this CNV analysis after it
failed quality control analysis, leaving 7 NAT samples in total for the analysis.
Of the 23 IDCs in the study cohort, 13 are LN- and 10 are LN + , these
were used to determine CNVs associated with LNmet. The LN + IDC are
the primary disease with positive lymph node status. The clinicopathological
characteristics including grade and tumor size are similar between LN +
IDC and LN- IDC (Supplementary Table S1). The sample size used in the
study cohort is low for CNV analysis and this is a limitation of this study.
owever, TNBCs represent a small proportion of all breast cancer cases and 
ases with matched, LNmet and NATs are a unique and powerful resource
hat have been very well characterized in our previous analyses [21–23] . An
ndependent cohort was used for copy number analysis and contained 70 IDC 

NBC samples from the Australian Breast Cancer Tissue Bank, which have 
een previously described [21] and these were compared to the same 7 NAT
amples used in the study cohort. These 70 TNBC samples are homogenously 
istributed in terms of grade and tumor staging [21] . 

thics declarations 

All procedures performed in studies involving human participants 
ere in accordance with the ethical standards of the institutional and/or 
ational research committee and with the 1964 Helsinki declaration and 

ts later amendments or comparable ethical standards. Ethical approval 
as obtained from the Hunter New England Human Research Ethics 
ommittee (Approval number: 09/05/20/5.02). In accordance with the 
ational Statement on Ethical Conduct in Research Involving Humans, 
 waiver of consent was granted for the study cohort by the same ethics
ommittee that approved the study. Informed consent was obtained from all 
ndividual participants included in the independent cohort [21] . 

NA extraction 

As previously described, the Gentra Puregene Tissue Kit 
Qiagen,Venlo,Limburg, the Netherlands) was used to extract DNA 

rom FFPE tissues [21] . 

llumina Infinium HD FFPE methylation arrays 

Methylation analysis was performed using Human Methylation 450K 

eadChip arrays (Illumina) as previously described [21] . The results were 
eposited in Gene Expression Omnibus (Accession No. GSE78751). 

ene expression microarray analysis 

Human Gene 2.0 arrays were used for gene expression analysis as 
reviously described [23] . The gene expression results were deposited in Gene 
xpression Omnibus (Accession No. GSE61723). 

NV analysis 

The Illumina Human Methylation 450K BeadChip arrays previously used 
o screen for methylation differences in the same cohort was used in this study
21] . These arrays can also be used to detect CNVs as they have a dense SNP
rray backbone [24] . In the current study, we performed CNV analysis using
ignal intensity data generated from our previous methylation data in Partek 
enomic Suite 7.0. 

The idat files were imported into Partek Genomic Suite 7.0 Software. 
he probe intensity data were parsed from the idat files. Copy number was

reated using 7 NAT samples as a reference baseline (described in "Study and
ndependent cohorts") and values were converted to log2 ratios. Following 
hat, the values were adjusted for local GC content at a window size of 1 Mb
o reduce genomic waviness [25] . A genomic segmentation algorithm was 
sed for copy number detection to identify copy number changes between 
 neighboring regions. Following the optimization of the segmentation 
rocedure as suggested by Partek, this algorithm was used with the optimal 
ut-off value of minimum genomic markers ≥40, signal to noise ratio = 0.3 
or the magnitude of significant region differences relative to the noise level 
n each sample and a P value threshold = 0.001 for significance between
ifferent regions. A segment was considered as amplified if the mean copy 
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number was log2 ratio ≥ 0.2, and a deletion if the mean copy number was
log2 ratio ≤ -0.3. A false discovery rate of 0.05 was applied to the P value to
account for multiple testing. 

The CNV regions with amplification and deletion across the genome
shared by at least five samples were selected for further analysis in IDCs of
the study cohort and the same proportion of cases for selection were used
for IDCs in the independent cohort [26 , 27] . Ensembl Transcript release 75
database was used to determine the genes located within those CNV regions.
GO-enrichment and pathway analysis within Partek Genomic Suite was used
to identify enriched GO terms and pathways from the list of copy number
altered genes. Enrichment scores > 3 were considered significant and a q-
value of < 0.05 was applied to the P value for multiple test correction. The
list of copy number altered genes in IDCs and LNmets of the study cohort
were compared with gene expression data previously performed on the study
cohort to determine if there were CNV-based changes in expression of the
genes [23] . A detailed copy number workflow is shown in Supplementary
Figure 1. 

Kaplan-Meier survival analysis 

The Kaplan-Meier plotter database was used for relapse-free survival
(RFS) analysis which contains 255 TNBC samples [28] . High and low
expression groups of genes of interest were divided according to “Auto select
best cut-off” which is the cut-off value of most statistically significant from
all possible cut-off values computed between lower and upper quartiles of
the expression. Hazard ratio with 95% confidence interval, and log-rank P
values were calculated within the database. In addition, RFS was performed
in the TCGA (n = 117 TNBCs) and METABRIC datasets (n = 258 TNBCs)
downloaded from cBioPortal. Samples were classified based on the presence
of an alteration or no alteration of genes. The alteration of genes includes
amplification and deletion in this analysis. Log-rank P values were calculated
within the GraphPad Prism 9.0 ( http://cbioportal.org). 

Results 

CNVs in IDCs and LNmets compared to NAT samples 

First, to identify total CNV segments in each sample group, a genomic
segmentation algorithm was used which revealed 4709 CNV segments in
IDCs when compared to NAT, with 65% associated with gains and 35%
with losses (Supplementary Table S2). Similarly, in LNmets, a total of 1725
CNV were identified with 58.9% gains and 41.1% losses (Supplementary
Table S3), which were not present in NATs. 

Similarly, in the independent cohort, 15,597 CNV segments were
identified with 61.59% being gains and 38.4% losses, compared against NATs
(Supplementary Table S4). 

Gene annotation of CNVs in IDCs of the study and independent cohorts

Next, the CNVs that were frequent in IDCs and the genes associated
with those regions were calculated. In IDCs of the study cohort, the most
recurrent amplified regions were located on 8q (Supplementary Table S5.a),
followed by 1q, 10p, 12p13.1-12p12.3, and 2q33.1. Gene annotation data
were mapped to the CNVs revealing 594 genes in 8q, which were amplified
in over 50% of the 23 samples (Supplementary Table S5.b). In Figure 1 a,
the majority of samples were amplified across the 8q region, whereas only
78 genes in 1q, 7 in 2q33.1, 29 in 10p15.1-10p15.3 and 10 in 12p13.1-
12p12.3 were frequently amplified in over 50% of the 23 samples. The
most recurrent deleted regions were 14q24.1, followed by 14q21.1, 19p13.3,
4q34.1, 5q13.2, and 5q32 (Supplementary Table S6.a). Figure 1 a shows the
higher distribution of deletions (blue) across the q regions of chromosome 4,
5, 14, and 19p compared to all other chromosomal regions. However, deleted
egions were shared less among the samples compared to that of the amplified
egions. Four genes in 14q24.1, 2 in 14q21.1, 2 in 19p13.3, 2 in 4q34.1, 2
n 5q13.2, and 5 in 5q32 were recurrent, observed in more than ~40% of the
amples (Supplementary Table S6.b). 

To investigate if genes within the CNVs in IDCs of the study
ohort were associated with specific functional groups and pathways, 
O-enrichment and Pathway analysis was used. The enrichment scores, 

production of molecular mediator of immune response,” “antigen binding,”
immunoglobulin production,” and “complement activation” were the most 
nriched GO-terms (Supplementary Table S7.a) and “ribosome biogenesis in 
ukaryotes” was the most enriched pathway from the list of genes contained
ithin the amplified regions (Supplementary Table S7.b). The list of genes
verlapping the deleted regions were highly enriched in GO-terms such as
neuron differentiation,” “Cardiac ventricle morphogenesis,” and “regulation 
f hormone levels” (Supplementary Table S7.c). 

In the independent cohort, the most frequent amplified regions were
q24, 2p15, 6p22.1, 8q, 1q, 10p15.3, and 4q28.3 ( Figure 2 ; Supplementary
able S8.a). While at the gene level, 47 genes in 8q, 43 in 1q, 15 in 10p15.3,
 in 4q28.3, 3 in 3q24, 1 in 2p15, and 1 in 6p22.1 were amplified in ≥50%
f samples. The most frequent deleted regions were 17p13.1 and 3p21.31.
nly 8 genes in 17p13.1 and 7 in 3p21.31 were observed to be frequently

eleted in more than 39% of the samples (Supplementary Table S8.b). 
Similar to the study cohort, in IDCs of the independent cohort, the

ignificantly overrepresented GO-terms in the list of amplified genes were
antigen binding,” “immunoglobulin production,” “production of molecular 
ediator of immune response,” and “complement activation,” whereas 

ribosome biogenesis in eukaryotes” was a significantly enriched pathway 
Supplementary Table S9.a and S9.b). In the list of deleted genes, “neutrophil
ediated cytotoxicity,” “neutrophil mediated killing of symbiont cell,”

nd “neutrophil mediated immunity” were the most enriched GO-terms 
Supplementary Table S9.c). 

Interestingly, 29% of the CNV-associated genes in the study cohort were
etected in the independent cohort. Of the 2601 genes, 2535 were amplified
nd 66 were deleted in both cohorts. About 1599 of 2535 (63%) amplified
enes were associated with chromosome 1q, followed by 303 in 8q, 282 in
9(p and q), 114 in 2p, 68 in 5p while in the remaining regions fewer genes
ere distributed across 3q, 4q, 6p, 7(p and q), 10p, 12p, 17q, 18p, and 20q

Supplementary Table S10.a). Of the 66 deleted genes in both cohorts, 37
ere associated with 8p followed by 22 in 5q, 3 in 19p13.3, while the rest were
ssociated with 3p21.31, 4q32.3, 14q13.2, and 17p13.1 (Supplementary 
able S10.b). 

The most enriched GO-terms were “immunoglobulin production” and 
antigen binding” and “ribosome biogenesis in eukaryotes” in the list of 
mplified genes (Supplementary Table S11.a and S11.b). In the list of
eleted genes, neutrophil mediated cytotoxicity, “cellular extravasation” and 
regulation of chemokine biosynthetic process” were the most enriched GO- 
erms (Supplementary Table S11.c). 

ene annotations of CNVs in LNmets 

The most frequently amplified regions in the LNmets were 4q28.3, 2p,
q24, 1q21.2, 10p, 12p11.1, 8q, 20p11.22-20p11.21, 21q22.13, 6p22.1 
Supplementary Table S12.a, Figure 1 b). At the gene level, 2p contained
he highest number of amplified genes (105) (Supplementary Table S12.b)
nd accounted for more than 50% of cases; followed by 19 in 8q and 15 in
0p11.22-20p11.21; whereas 3 in 1q21.2, 6 in 10p15.3, 5 in 12p11.1, 2 in
1q22.13, 4 in 3q24, 6 in 4q28.3, 3 in 6p22.1 were frequently observed in
ver 50% of samples. The most frequently deleted regions were 1p36.23,
q21.1, and 5q in more than 39% of the samples. Similar to IDCs, the
umber of deleted regions shared among the multiple samples was less than
hat of the amplified regions. There were 28 genes in 5q, 7 in 4q21.1, and

http://cbioportal.org
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Fig. 1. Karyogram view of significantly amplified (red) and deleted (blue) regions across 22 chromosomes of the study cohort containing 23 IDCs (Top) and 
12 LNmets (below). Histogram heights on either side of the chromosome correspond to the number of samples that share either amplification or deletion 
at the particular region. The higher the histogram height, the higher the number of samples amplified or deleted at that particular region. This karyogram 

profile was generated using a genomic segmentation algorithm with the number of minimum genomic markers > = 40, P value = 0.001, and signal to noise 
ratio = 0.3. A false discovery of 0.05 was applied to the resulting P values to correct for multiple testing. (A) CNV profile in IDC samples where amplification 
in 8q, 1q, 2q, 10p, and 12p is shared by > 50% of samples. Deletion in 4q, 5q, 14q, and 19p is shared by > 39% of samples. (B) CNV profile in LNmet 
samples where amplification in 1q, 4q28.3, 2p, 3q, 6p, 8q, 12p, 20p, and 21p is shared by > 50% of samples, whereas the deletion in 1p, 4q, and 5q is shared 
by > 39% of samples. 
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Fig. 2. Karyogram view of significantly amplified (red) and deleted (blue) regions across 21 chromosomes of 70 IDCs in the independent cohort. Histogram 

heights on either side of the chromosome correspond to the number of samples that share either amplification or deletion at the particular region. The higher 
the histogram height, the higher the number of samples that are amplified or deleted at that particular region. This karyogram profile was generated using a 
genomic segmentation algorithm with the number of minimum genomic markers > = 40, P value = 0.001, and a signal to noise ratio = 0.3. A false discovery 
of 0.05 was applied to the resulting P values for multiple testing. CNV profile in IDCs sample where amplification in 3q, 2p, 6p, 8q, 1q, 10p, 4q is shared by 
> 50% of samples. Deletion in 17p and 3p is shared by > 39% of samples. 
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5 in 1p36.23 deleted in more than 39% of samples (Supplementary Table
S12.c). 

The most enriched GO-terms were “Production of molecular mediator
of immune response,” “Immunoglobulin production,” “antigen binding,”
and “regulation of complement activation” and “ribosome biogenesis in
eukaryotes” in the list of amplified genes (Supplementary Table S13.a and
S13.b). The list of deleted genes showed highest enrichment in GO-terms
for “flavonoid glucuronidation,” “flavonoid metabolic process,” and “cellular
glucuronidation.” Other highly enriched pathways in the list of deleted
genes were mainly involved in metabolism such as “Pentose and glucuronate
interconversions,” “steroid hormone biosynthesis,” “drug metabolism,” and
the “estrogen signaling pathway” (Supplementary Table S13.c and S13.d). 

Interestingly, while comparing the CNVs in IDC and LNmets, 41%
of CNV associated genes in IDCs were also observed in LNmets. The
overlapping genes were mainly associated with amplification in chromosomal
regions including 1q, 2(p and q), 6p, 7q, 8q, 10p, 12p, 19p, 21q and deletion
in regions including 1p, 3p, 4(p and q), 5q, 8p, 14q, 15q, 17q, and 19p. 

Genes within CNV regions associated with the progression from IDC to 
LN metastasis 

We next determined the genes associated with CNVs in LNmets to
identify changes related to the progression of primary TNBC to metastasis
in the study cohort. For this, first, we identified total CNV regions of lymph
node positive IDC (LN + IDC) and lymph node negative IDC (LN- IDC)
and the genes associated with that region. Then we compared the amplified
nd deleted genes among the 3 groups using Venn diagrams. Group 1: LN +
DC (n = 10), Group 2: (LN- IDC) (n = 13) and Group 3: LNmets (n = 12).

ith this comparison, we aimed to identify genes in common with CNVs
n LN + IDC and LNmets, that were not present in LN- IDC, that were
otentially associated with metastasis ( Figure 3 a and b). 

We identified 441 amplified genes located in chromosome 1q, 5p, 6(p
nd q), 7q, 8(p and q), 17q and 20q that were in common with LN +
DC and LNmets. Interestingly, 365 of 441 (83%) genes were associated
ith the q region of chromosome 1, while 30 of 441 (7%) genes were

ssociated with chromosome 6 and 26 of 441(6%) genes in the 17q region
Supplementary Table S14.a). Two hundred forty-five deleted genes were 
ocated on chromosome 5q, 6p, 8p, 12q, 14q, 17q, and 19p and were
ommon to both LN + IDC and LNmets. Here, 146 of 245 (60%) deleted
enes were located in 8p, followed by 50 in 5q (20.4%), 32 in 14q (13.06%),
ith the other regions encompassing less than 10 genes (Supplementary Table
14.b). 

GO-enrichment and Pathway analysis, revealed a series of amplified 
enes showing the highest enrichment in GO-terms in pathways associated
ith “regulation of complement activation,” “protein activation cascade,”

regulation of acute inflammatory response,” and “regulation of protein 
rocessing and maturation” and the highest enrichment in pathways 

ncluding “complement and coagulation cascades” and “oxytocin-signalling 
athway” (Supplementary Table S15.a and S15.b). Whereas for CNV 

oss, “TRAIL binding” was the most enriched GO-term with “estrogen 
ignalling pathway” and “cytokine-cytokine receptor interaction” significantly 
ssociated with these deleted regions (Supplementary Table S15.c and S15.d).
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Fig. 3. Venn diagram showing genes associated with LNmet. The gene lists 
were identified by overlapping the significant CNV regions that are shared 
by at least 22% of multiple samples. The number of genes for: lymph 
node positive IDC (LN + IDC), lymph node negative IDC (LN- IDC), 
and LNmets are shown in brackets both for amplification and for deletion 
and n refers to number of samples in each group. (A) 441 amplified genes 
highlighted in bold were common in both LN + IDC and LNmets. (B) 245 
deleted genes highlighted in bold were common in both LN + IDC and 
LNmets. 
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Integration of CNVs with gene expression analyses 

CNV data were integrated with previously published gene expression data
(GEO Accession: GSE61723) to determine whether the change in mRNA
expression was a result of the CNVs [23] . However, very few differentially
expressed genes were linked to the CNVs in the study cohort. 

In the study cohort, 33 of 185 (18%) differentially expressed genes
in IDC vs NAT were copy number altered, where 29 upregulated and 4
downregulated genes were amplified and deleted respectively ( Figure 4 a and
b). In the LNmets, 18 of 165 (10.9%) differentially expressed genes in
LNmet vs NAT showed copy number alterations, where 5 upregulated and
13 downregulated genes were amplified and deleted respectively ( Figure 4 c
and d). 

Our previous study identified 28 TNBC specific genes that were
differentially expressed in IDCs vs NAT of the study cohort, but not in
non-TNBC IDCs [23] . In the current study, 3 of 28 TNBC-specific genes
whose expression was upregulated were amplified in IDCs of the study cohort
(ANKRD36BP1, ANP32E, MYBL1), while TBC1D9 and TMEM144 were
deleted in the IDCs. 

Additionally, we investigated if the 441 amplified and 245 deleted genes
in both LN + IDC and LNmets in our current study also showed differential
expression in LN + IDC vs NAT. For this, we compared these genes with
the total 104 genes that were differentially expressed in LN + IDC vs NAT.
The total 104 genes are the result from the previous study [23] and are
hown in the Supplementary Table S16. Only 3 amplified (ASPM, KIF14, 
nd LEMD1) genes were upregulated and 3 (SNORD113-2, SNORD113- 
, and SNORD113-4) deleted genes were downregulated in LN + IDC vs 
AT ( Table 1 ). 

he genes associated with CNVs in LNmets that also showed a change 
n mRNA expression are associated with outcome in TNBC 

We assessed the prognostic value of the 6 CNV-based genes (ASPM, 
IF14, LEMD1, SNORD113-2, SNORD113-3, and SNORD113-4) 
 Table 1 ) that also showed corresponding changes in their gene expression
n 125 TNBC patients using the Kaplan-Meier plotter online database. 
he outcome data of the study cohort were not used because of the small

ample size. Interestingly, the survival analysis revealed that high expression 
f ASPM and KIF14 were significantly associated with worse RFS, while 
igh expression of LEMD1 showed a nonsignificant trend in increased RFS 
 Figure 5 ). No survival information was available for the 3 (SNORD113-
, SNORD113-3, and SNORD113-4) deleted genes. Furthermore, we 
valuated the prognostic value of these genes in TNBC patients of TCGA 

nd METABRIC datasets using cBioPortal database. However, there was no 
ignificant difference in RFS with altered and nonaltered status of genes. 

iscussion 

TNBC is very heterogeneous and associated with a higher burden of 
NVs compared to other subtypes [29] . There are no studies that have
erformed analysis of CNVs that are associated with LNmet in TNBC, we 
imed to identify CNVs which may play a role in metastases of this subtype.
e have identified the most frequent CNVs in IDCs and LNmets and the
NV-based genes which are LNmet-associated by comparing the groups of 
N + IDCs, LN- IDCs, and LNmets. 

In our study, from both study and independent cohorts, common CNVs 
ssociated with amplified regions in 1q, 8q, 19(p and q), 2p, 5p and deleted
egions in 8p followed by 5q, and 19p were found. Moreover, common CNVs
n IDC and LNmets of the study cohort were also observed which were
ssociated to amplification in chromosomal regions including 1q, 2(p and 
), 6p, 7q, 8q, 10p, 12p, 19p, 21q and deletion in regions including 1p,
p, 4(p and q), 5q, 8p, 14q, 15q, 17q and 19p. Similar to our results, other
tudies have also found frequent amplification in 1q, 3q, 8q, 10p, and 12p
nd deletion in 5q and 17p in TNBC [30–33] suggesting these CNV regions
ay have a significant role in increasing genomic aberrations in TNBC. 

Furthermore, we have identified a total 441 amplified and 245 deleted 
NV-based genes which were observed in both LN + IDCs and LNmets and

hat were not present in LN- IDCs; and thus, are associated with metastasis
o the LN. This implies that certain CNVs are shared between the primary
umor and the metastasis, which could be involved in driving metastatic 
rogression. We observed that the majority of the LNmet-associated genes 
ere located in 1q amplified and 8p deleted regions in our study. The gain in
q has also been associated with metastasis in breast cancer [19 , 34] . Amplified
enes in the chromosome 1q region identified included CD55, CR1, CR2, 
D46, and C4BPB, also known as complementary regulatory proteins, that 

re known to be overexpressed in cancer cells and promote LN metastasis in
arious cancer types such as nasopharyngeal, gastric, and pancreatic [35–38] . 
e have identified the highest number of LNmet-associated deleted genes 

ocated in 8p region. The deletion of 8p was also associated with metastasis
n hepatocellular carcinoma [39] . Moreover, loss of 8p was significantly linked 
o the presence of LN metastasis in breast cancer [40] . This suggests that the
ain in 1q and deletion of 8p may have a significant role in metastasis. 

Furthermore, regulation of “complement activation cascade” and 
humoral immune response” were highly enriched in the LNmet-associated 
enes that were amplified indicating the genomic imbalance in complement 
ctivation and humoral immune response may assist the tumor to escape 
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Fig. 4. Venn diagram showing genes with CNV and change in gene expression. Total 33 of 185 (18%) differentially expressed genes in IDC vs NAT were 
also CNV altered in the IDCs of study cohort where (A) 29 upregulated genes were amplified and (B) 4 downregulated genes were deleted. Total 18 of 165 
(10.9%) differentially expressed genes in LN vs NAT were also CNV altered in LNmets of study cohort where (C) 5 upregulated genes were amplified and 
(D) 13 downregulated genes were deleted. 
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immune attack leading to its progression and metastasis. CD55 and CD46
which are amplified in our study were found to regulate the immune response
[41 , 42] but the alteration of these proteins may dysregulate the immune
mechanism which could enhance metastasis [43] . We observed “TRAIL
binding” was highly enriched within the list of deleted genes. Upon binding
to TRAIL Receptor 2 (TRAIL-R2), TNF-related apoptosis-inducing ligand
(TRAIL) and agnostic mAbs have been shown to act as a metastasis suppressor
in an orthotropic model of TNBC [44] . Deletion of TNFRSF10C (TRAIL-
R3), also identified in our study, was associated with distant metastasis and
positive nodal disease in colorectal cancer [45] . Overall, our results suggest
he dysregulation of the immune response and the apoptotic pathway may
lay a significant role in regulating metastasis of the primary tumor. 

Moreover, we found 6 of the 686 LNmet-associated genes present in both
N + IDC and LNmets also showed CNV-based changes in their expression.
f the 6 LNmet-associated genes, SNORD113-2, SNORD113-3, and 

NORD113-4 were both deleted and downregulated in LN + IDC vs NAT.
hese 3 genes belong to a group of noncoding RNA (ncRNA) molecules
hich play a role in the ribosomal RNA biogenesis [46 , 47] . However, the

ole of them has not been studied in TNBC. One study has shown that
he downregulation of SNORD113-1, which belongs to the same family of
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Table 1 

List of 6 LNmet-associated genes which were associated with CNVs in both LN + IDC and LNmet and showed CNV-based change 

in expression at mRNA level in LN + IDC vs NAT 

Genes 

Amplification 

deletion 

Average copy 

number value in 

LN + IDC 

Average copy 

number value in 

LNmets 

Fold change 

(Description) 

Fold change (LN + 

IDC vs NAT) 

KIF14 Amplification 0.325523 0.280932 Upregulation 1.69073 

ASPM Amplification 0.325706 0.320 0 08 Upregulation 1.6279 

LEMD1 Amplification 0.313497 0.335521 Upregulation 1.54211 

SNORD113-2 Deletion -0.406205 -0.633017 Downregulation -2.82983 

SNORD113-3 Deletion -0.406205 -0.633017 Downregulation -2.15659 

SNORD113-4 Deletion -0.406205 -0.633017 Downregulation -1.65026 

Fig. 5. Kaplan-Meier plots for relapse-free survival curves of the patients with high expression (red) and low expression (black) for (A) ASPM, (B) KIF14, 
and (C) LEMD1. The 255 TNBC samples were divided into high or low expression groups based on best cut-off expression value of each gene and compared 
by Kaplan-Meier survival analysis. A log-rank P value ≤ 0.05 was considered significant. HR, hazard ratio. The red curve represents high expression, and the 
black curve represents low expression. 
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snoRNAs, is associated with worse RFS in hepatocellular carcinoma [48] .
The remaining 3 LNmet-associated genes (ASPM, KIF14, and LEMD1)
were both amplified and upregulated in LN + IDC vs NAT, where the high
expression of ASPM and KIF14 was associated with worse RFS in TNBC
using Kaplan-Meier plotter analysis [28] . ASPM is known for its role in
spindle microtubule organization in cell division [49] . The high expression of
ASPM was also observed in several other cancers such as bladder cancer [50] ,
ovarian cancer [51] , and prostate cancer [52] , where the increase in expression
was mostly associated with tumor grade, early recurrence, tumor metastasis,
and worse survival. KIF14 is responsible for mitotic spindle formation and
cytokinesis and has been associated with decreased disease-free survival in
breast and lung cancer [53 , 54] . High expression of KIF14 has also been found
in other cancers such as prostate cancer [55] and ovarian cancer [56] where it
is associated with tumor growth and worse survival. LEMD1 overexpression
was associated with nodal metastasis and worse prognosis in oral squamous
cell carcinoma numbered and in gastric cancer [57] . Overall, these genes
with CNV-associated changes in expression have a significant role in multiple
cancers and may also play a greater role in increasing disease aggressiveness in
TNBC. Although for many of the 686 genes there was no association between
CNV and gene expression, this may be due to the various factors including
the degree of overlap of CNVs in genes, distance to transcription start sites
and types of genes. One study showed that the genes associated with the
regions amplified discontinuously are downregulated suggesting partial gene
amplification may acts as a silencer to downregulate gene expression [58] . 

Overall, a series of CNVs have been identified that appear to be associated
with LNmets and which contains genes that have a central function in
maintaining a number of key pathways, which, if perturbed, result in an
increased departure from the normal mechanisms that are associated with
mammary homeostasis. However, this study is limited by the small sample
size of LNmets and lack of validation cohort. Because of the small sample size
of the study cohort, prognostic significance of key genes was performed using
publicly available databases. Moreover, Infinium arrays have a high resolution
to detect alterations in coding loci; however, their design is more gene-centric
and thus may omit the alterations present outside the genes which could limit
the results of CNV analysis using Infinium arrays. Additionally, for future
studies, the key genes that are LNmet-associated and which showed a change
in mRNA expression need to be validated by using alternate techniques
such as ddPCR or quantitative PCR. After validation in larger cohort, the
sensitivity and specificity testing of the genomic markers should be performed
using a receiver operating characteristic curve to investigate their predictive
value in TNBC and add to their clinical value. 

Conclusions 

This study has identified several regions of CNV in TNBC that could
play major role in metastasis to the LN. Further validation of these CNVs
in a larger cohort and functional studies are necessary to understand their
important role in the progression of TNBC. 
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