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DNA alkylating agents like nitrogen mustard (NM) are easily absorbed through the skin and exposure to such
agents manifest not only in direct cellular death but also in triggering inflammation. We show that toxicity
resulting from topical mustard exposure is mediated in part by initiating exaggerated host innate immune
responses. Using an experimental model of skin exposure to NM we observe activation of inflammatory dermal
macrophages that exacerbate local tissue damage in an inducible nitric oxide synthase (iNOS)-dependent
manner. Subsequently these activated dermal macrophages reappear in the bone marrow to aid in disruption of
hematopoiesis and contribute ultimately to mortality in an experimental mouse model of topical NM exposure.
Intervention with a single dose of 25-hydroxyvitamin D3 (25(OH)D) is capable of suppressing macrophage-
mediated iNOS production resulting in mitigation of local skin destruction, enhanced tissue repair, protection
from marrow depletion, and rescue from severe precipitous wasting. These protective effects are recapitulated
experimentally using pharmacological inhibitors of iNOS or by compounds that locally deplete skin
macrophages. Taken together, these data highlight a critical unappreciated role of the host innate immune
system in exacerbating injury following exposure to NM and support the translation of 25(OH)D in the
therapeutic use against these chemical agents.
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INTRODUCTION
Mustard gas and mustard-related compounds are vesicating
agents that, on skin exposure, cause severe epithelial and
deep tissue injury characterized by blistering, acute inflam-
mation, induration, and edema (Requena et al., 1988;
Sharma et al., 2010a; Sharma et al., 2010b). Historically,
these powerful vesicants were exploited as chemical warfare
agents during World War I and later conflicts (Pearson, 2006).
Through its action as a DNA alkylating agent, nitrogen
mustard (NM) and related compounds like nitrosourea,

chlorambucil, and estramustine phosphate generate DNA
strand breaks with consequent cell death, a unique property
that was exploited and adapted in medicine as effective
therapy against rapidly proliferating cancer cells (DeVita and
Chu, 2008). However, its clinical utility is limited by its dose-
dependent toxicity (DeVita and Chu, 2008).
On exposure, NM is absorbed through skin and

re-deposited in subcutaneous fat to inflict tissue destruction
directly from the alkylating effects of NM. Injured tissue
creates an inflammatory foci (Keramati et al., 2013),
(Gunnarsson et al., 1991) to attract neutrophils, monocytes,
and macrophages (Jain et al., 2014). Persistence of the initial
inflammatory phase can amplify an immune response and
induce further tissue injury (Laskin et al., 1996a; Laskin and
Laskin, 1996; Laskin et al., 1996b; Kondo and Ishida, 2010).
NM-induced wounds generate oxidative and nitrosative stress
to exacerbate tissue destruction (Yaren et al., 2007; Zheng
et al., 2013). We and others have shown that inducible nitric
oxide synthase (iNOS)-producing hyper-activated macro-
phages delay wound repair and exaggerate wound pathogen-
esis (Cash et al., 2014; Das et al., 2014). Therefore therapeutic
intervention(s) targeting these inflammatory cells may be a
suitable strategy to subdue inflammatory damage. The use of
pharmacologic inhibitors of iNOS, though efficacious in
experimental animal models, has limited translation clinically
due to cytotoxicity and adverse off-target physiological effects
on circulatory function (Laskin et al., 1996b; Bogdan, 2001;
Malaviya et al., 2012). Consequently, we focused on
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Vitamin D3, a hormone that has acquired recognition as
an immunomodulator through direct inhibition of NFκB
activation and suppression of TNF-α and iNOS expression
(Cohen-Lahav, 2006; #9; Holick, 1993, 2003; Chen et al.,
2011; Lagishetty et al., 2011). Typically, the kidneys control
the rate limiting step in converting circulating 25-
hydroxyvitamin D3 (25(OH)D), the inactive form of vitamin
D3, into calcitriol, the active form (1,25α(OH)2D). The ability
of macrophages to perform this conversion by virtue of its
intracellular enzyme CYP27A1 (Mora et al., 2008) allowed us
to hypothesize that 25(OH)D should effectively block
macrophage-mediated iNOS upregulation and confer protec-
tion from exacerbated local and systemic tissue injury that
follows NM exposure.
This study investigates a NM skin wound model that

demonstrates a critical role for activated cutaneous macro-
phages in delaying wound healing and causing disruption of
hematopoiesis via iNOS production. The model emphasizes
the therapeutic efficacy of 25(OH)D intervention to counter-
act an acute immune response that exacerbates NM-mediated
pathology and enables repopulation of bone marrow (BM)
cells. We determine that topical application of NM activates
cutaneous macrophages to produce iNOS that traffic to the
BM and cause further disruption of hematopoiesis. A single
administration of 25(OH)D promotes survival by moderating
the immune response and restoring blood cell loss and BM
depletion.

RESULTS
25(OH)D prevents NM-mediated tissue destruction by
antagonizing macrophage-derived iNOS
We established a NM-skin contact model characterized by
topical (percutaneous) application of NM to an 8mm
diameter (50mm2) circular template on the dorsal skin of
C57BL/6J mice, herein referred to as wound area. Working
on the hypothesis that elevated macrophage-derived iNOS is
the stimulus for exacerbated tissue injury following NM
exposure led us to explore whether 25(OH)D can effectively
counteract NM-induced iNOS. One hour following NM
exposure, an intraperitoneal (i.p.) bolus of 5 ng 25(OH)D
was administered. We show that NM-induced wound appears
on the first day and increases progressively over time.
Treatment with 25(OH)D or a specific pharmacological
inhibitor of iNOS (compound 1400W, 10mg kg−1) delays
hemorrhagic crust formation and eventually resolves wound
by day 19 (data not shown) (Figure 1a). In both treatment
intervention groups, the surrounding skin appeared healthy
with full recovery of hair regrowth and a small residual scar by
day 40. Gross wound images correlated with a percentage
wound area size relative to the initial 50mm2 template
(Figure 1b). Histological examination of skin at the corre-
sponding time point in mice not treated with either 25(OH)D
or 1400W intervention reveal full-thickness necrosis, robust
inflammation, and edema following NM contact. Skin from
NM+25(OH)D mice displayed a milder histological pheno-
type with diminished inflammatory infiltrates, skin necrosis
limited to the epidermis and superficial dermis with preserva-
tion of deep skin structures including hair follicles,

subcutaneous fat, and panniculus carnosus (Figure 1c).
Furthermore, a similar protection from exacerbated skin
damage was also observed with iNOS inhibition using
compound 1400W (Figure 1a–c). The protective effect of 25
(OH)D is not strain specific, as similar results were observed
using BALB/c mice (Supplementary Figure S1a–c online).
Exacerbation of skin necrosis was associated with elevated
levels of skin specific iNOS and TNFα mRNA 48 hours post
NM exposure, that was significantly reduced by intervention
with 25(OH)D (Figure 1d, Supplementary Figure S1d online).
This was consistent with results using nos2− /− mice, which
exhibit mild inflammatory response to NM with preservation
of the skin layers, deep skin structures and minimal tissue
destruction (Supplementary Figure S1e online). Since iNOS
is primarily produced by inflammatory macrophages and
monocytes, confocal microscopy was performed to co-
localize F4/80+/iNOS+ macrophages infiltrating the wound
bed that were significantly diminished with 25(OH)D inter-
vention (Figure 1e).
To demonstrate a role for dermal macrophages in delaying

wound healing, the latter were depleted by intradermal
injection with liposomal clodronate 1 hour after NM exposure
(Ward et al., 2011). We observed dramatic reduction of skin
wound with sparse inflammation and edema (Figure 1f)
corresponding to accelerated skin wound healing. Consistent
with reduced skin wound area, clodronate treatment pro-
tected animals from disruption of skin architecture (Figure 1g)
and mice exhibited significantly diminished iNOS (Figure 1h)
and TNFα (Supplementary Figure S1f online) mRNA expres-
sion, supporting the hypothesis that hyperactive dermal
macrophages may be the source of exacerbated cutaneous
destruction.

25(OH)D rescues mice from systemic effects of NM
Injury from NM exposure is known to cause systemic damage
especially to adipose-rich tissue such as the BM leading to
morbidity and mortality (Schein et al., 1987). Our experi-
mental model of NM exposure (26.6 mg kg− 1) was developed
based on a dose response (Supplementary Figure S2a online).
Daily evaluation of animal well-being showed that by day 4,
NM caused severe morbidity including hunched posture and
statistically significant precipitous loss of body weight by
almost 30% (Figure 2a). At this exposure dose, mortality
(either observed or meeting weight loss criteria for compas-
sionate euthanasia) was observed in 90% of mice between
days 4 and 13 in contrast to mice that received 25(OH)D
intervention (Kaplan–Meier survival plot), (Figures 2b,
Po0.001, log-rank test). Examination of whole blood by
complete blood count (CBC) analysis (Table 1) shows acute
anemia and lymphopenia with visible loss of cells on
peripheral blood smears (Figure 2c). Intervention with 25
(OH)D or 1400W restored blood cell counts comparable to
healthy controls (Figure 2c, Table 1). Disruption of the
hematopoietic compartment was characterized by acute loss
of cellularity selectively in the BM (Figure 2d) with no
observed overt histologic abnormalities in the visceral organs
(Supplementary Figure S2b online), suggesting compartmental
specificity of NM-mediated effects in our experimental model.
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Figure 1. 25(OH)D protects mice from NM-induced skin erosions. Circular mouse skin (50 mm2) biopsies were obtained 48 hours following topical NM
exposure in presence and absence of 25(OH)D and compound 1400W for (a) representative images of NM-induced skin injury, (b) wound sizes measured
relative to 50mm2 circular template (*p=0.042) (n=5) (c) histological images to assess NM-mediated skin necrosis and (d) detection of iNOS mRNA expression
(n= 9; Po0.003), (e) detection of activated macrophages by co-localization of iNOS (red) and F4/80+ (green) macrophages (indicated with arrows) using
confocal microscopy. Mice were injected with clodronate liposomes or PBS liposomes following topical application of NM and 48 hours post exposure (f) imaged
for wound regression, (g) histological assessment of skin injury and (h) detection of iNOS mRNA expression (n=4; Po0.043). All data presented as means± SEM.
Scale Bar= 100 μm.
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Depletion of BM cells was not mouse strain specific as BALB/
c mice exhibited similar BM histopathology (Supplementary
Figure S2c online).

25(OH)D intervention facilitates recovery of BM cells from
acute lymphopenia
Acute loss of BM cellularity on day 5 post exposure prompted
us to examine the BM compartment immediately following
cutaneous NM exposure. Enumeration of BM cells revealed
that very early on, the alkylating effects of NM precipitates in
an acute drop of cellularity by days 1 and 2 irrespective of
intervention with 25(OH)D. Days 3 through 5 mark a
recovery of total BM cell numbers in animals with 25(OH)D
intervention (Figure 3a). Examination of BM cells by flow
cytometric analysis show significant loss of nucleated cells in
the leukocyte gate on day 5 post NM exposure, in contrast to
animals that received intervention with 25(OH)D (30.4±
9.8% vs. 85.2± 1.1%; Figure 3b). Furthermore a relative
increase (2.5-fold) in F4/80+ macrophages was observed in
NM exposed mice compared with controls (54.5± 3.71% vs.
24.8± 2.48%; Figure 3c). Taking into account that NM
exposure results in global loss of BM cells, enumeration of

absolute numbers of F4/80+ cells reveal fewer cell counts
from NM compared with other treatment conditions
(Supplementary Figure S3 online). 25(OH)D treatment effec-
tively reduced the percentage of F4/80+ numbers back to
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Figure 2. 25(OH)D prevents systemic toxicity and mortality in C57BL/6 mice subsequent to topical application of NM. C57BL/6 mice were subjected to wound
formation by cutaneous exposure to NM followed by a systemic dose of 25(OH)D. (a) Mice were weighed to record percentage loss in body weight up to day 4
(n= 6, Po0.0007) (b) Kaplan–Meier survival curve was plotted up to day 13. Censored refers to animals that were alive at the end of the study. P-values are
determined by log-rank test (n= 34 for NM, n= 22 (NM+25OHD), Po0.001). Five days following NM exposure mice were killed and sternum and blood
collected for analyses of (c) Peripheral blood smears, (d) H&E sections of sternums in presence and absence of 25(OH)D. All data presented as means± SEM.
Scale Bar= 100 μm.

Table 1. CBC analyses of 25(OH)D treated mice on
day 5 post NM exposure 1400W (n= 9)

Control NM NM+25(OH)D NM+1400W

WBC
(×103 μl− 1)

13.53± 4.83 3.62± 2.25* 10.35± 4.53* 6.95± 7.28

HCT (%) 43.13± 4.06 24.47± 6.27* 41.17± 6.41* 37.36± 4.52*

LYM
(×103 μl− 1)

10.65± 4.10 2.65± 1.65* 7.43± 3.08* 4.68± 4.38

MONO
(×103 μl− 1)

0.70± 0.24 0.21± 0.16* 0.65± 0.28* 0.45± 0.50

GRAN
(×103 μl− 1)

2.18± 0.68 0.70± 0.49* 2.27± 1.41* 1.83± 2.47

Abbreviations: 25(OH)D, 25-hydroxyvitamin D3; CBC, complete blood
count; GRAN, granulocytes; HCT, hematocrit; LYM, lymphocytes;
MONO, monocytes; NM, nitrogen mustard; WBC, white blood cell.
*Po0.01.
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baseline levels (Figure 3c), with increased absolute numbers
indicating an overall recovery of cells in the marrow
(Supplementary Figure S3 online). On the basis of the
observation that skin inflammation and necrosis were
exacerbated with elevated iNOS from F4/80+ macrophages
we next examined whether NM-induced disruption of BM
was similarly associated with increased iNOS. A robust 26-
fold increase in iNOS mRNA expression in NM-exposed mice

was observed that was significantly suppressed with 25(OH)D
intervention (Figure 3d).

Inflammatory macrophages from skin promote BM disruption
Given that iNOS expression is inextricably linked to macro-
phages, we tested the hypothesis that skin macrophages may
be tracking to the BM to contribute to high expression of
iNOS. Liposome-encapsulated dialkylcarbocyanine dye (DiI)
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Figure 3. 25(OH)D facilitates recovery of BM cellularity of NM exposed mice with decrease of iNOS expression. (a) Total BM cell counts were recorded daily
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was injected subcutaneously at the wound site to allow for
its phagocytosis by skin macrophages thus enabling localiza-
tion. Five days post NM exposure, sternum sections were
examined for iNOS producing dermal activated macro-
phages. Using confocal microscopy, we triple co-localized
a small population of F4/80+DiI+iNOS+ macrophages in
the sternum (Figure 4a). Treatment with 25(OH)D strongly
reduced iNOS expression and detected a large population of
F4/80+ DiI− iNOS− macrophages, consistent with the BM
cellular recovery process from 25(OH)D intervention. Flow
cytometric analysis confirmed the increased percentage of
F4/80+DiI+ BM macrophages compared with that found
in NM+25(OH)D-mice (8.31± 1.74% vs. 1.42± 0.23%;
Figure 4b). Quantification of absolute cell numbers in NM
mice injected with DiI show increased F4/80+DiI+ macro-
phages with a modest increase in F4/80+/DiI− cells (Figure
4c and d). In contrast, mice treated with 25(OH)D demon-
strate no significant increase in F4/80+DiI+ macrophages
with a concurrent significant increase in F4/80+/DiI−
macrophages (Figure 4c and d). We next used complimentary
imaging techniques to confirm the presence of skin macro-
phages in the BM. Mice were injected subcutaneously with a
pH-dependent fluorescent dye conjugated with bacteria
(pHrodo) at the NM wound area to allow for phagocytosis
by infiltrating macrophages (Aziz et al., 2013; Miksa et al.,
2009). Following phagocytosis, pHrodo is activated by the
acidic pH within phagolysosomes of macrophages resulting in
emission of a wavelength that can be visualized by Maestro
imaging of whole organs. Consistent with the DiI labeling
studies, 5 days following NM skin exposure, the sternum of
mice demonstrated marked increase in fluorescence of
pHrodo compared with controls and mice treated with 25
(OH)D (Figure 4e). Cumulatively these data confirm that the
increase of activated iNOS-expressing macrophages localized
in the marrow of NM mice originate partly from inflamed
injured skin. This increase in F4/80+/DiI+ macrophages
in BM on day 5 is unique to NM exposure and cannot
be solely attributed to passive transfer of labeling agents
from increased vascular permeability, as compared with
other models of inflamed skin using UVR, mechanical
tape-stripping, or chemical injury with depilating agents
(Supplementary Figure S4 online).

Dermally activated macrophages contribute to NM-mediated
pathology in the BM
To confirm that dermally derived macrophages contribute to
exacerbated pathology observed in the marrow, liposome-
encapsulated clodronate was injected at the site of the skin
wound. Compared with NM mice injected with control PBS
liposome, depletion of skin macrophages with clodronate
liposome resulted in decreased percentage of F4/80+ macro-
phages in BM (Figure 5a) with a corresponding reduction
in iNOS expression. (Figure 5b). In addition, liposomal
clodronate-treated animals demonstrated rapid cellular recov-
ery, maintenance of body weight (Figure 5c), restoration of
CBC values comparable to healthy controls by day 5 (Table 2)
correlating with histological images of the sternum presenting
recovery of the BM (Figure 5d).

To exclude that appearance of dermal DiI labeled
macrophages in the BM as a result of cellular leakage from
inflamed capillaries in NM mice, the BM was examined at
earlier time points. Day 2 post NM exposure shows non-
significant changes in F4/80+DiI+ macrophages in the
marrow across all conditions (Figure 5e) with significance
observed only on day 5 (Figure 5e and f). We further
performed co-injection experiments with liposomal DiI and
liposomal clodronate at the NM wound site to deplete local
skin macrophages and further exclude the possibility of
systemic distribution of DiI. Sternum sections on days 2 and 5
post exposure reveal significantly diminished F4/80+DiI+
cells in liposomal clodronate-treated animals, consistent with
our previous observation of cellular recovery of the marrow in
the absence of activated pathogenic dermal macrophages
(Figure 5e and f). Taken together, these experiments suggest
that the appearance of DiI labeled cells on day 5 is not due to
increased cellular leakage but marks a specific homing of
macrophages back to the marrow.

DISCUSSION
NM is a chemical agent that has recently come under the
purview of intense investigation mostly due to its DNA
alkylating property in the treatment of multiple diseases
including childhood and adult cancers (Shepherd and Harrap,
1982; Sharma et al., 2010a). Treatment of skin diseases such
as mycosis fungoides with topical NM has been in practice for
over five decades (Haserick, 1983) with response rates
reported to be 83% of patients with early stage disease
(Chung et al., 2003). The amount of NM that patients
are exposed to varies according to frequency of application,
amount of body surface area treated, and differing
formulations of topical preparations with only recent FDA
approval of a 0.02% gel formula (Talpur et al., 2014).
Nonetheless, adverse skin reactions in 30–80% cases are the
most common side effects, with intolerance requiring
cessation of therapy in some patients (de Quatrebarbes
et al., 2005). Clinically, treatment of leukemia and refrac-
tory lymphoma with NM derivatives such as nitrosourea or
bendamustine is limited by dose-dependent toxicity where
patients exhibit signs of myelosuppression characterized by
anemia and neutropenia early in treatment followed by
thrombocytopenia at later time points (Bertoncello et al.,
1988; (Heimfeld et al., 1991; Zaja et al., 2013). Whereas
studies have demonstrated that cutaneous exposure to NM
causes acute skin injury leading to vesication, little has been
studied on the mechanism of systemic toxicity following
breach of the skin epithelial barrier. Consistent with previous
reports our study demonstrates that pharmacologic inhibition
of iNOS using compound 1400W conferred protection to
mice from NM-induced tissue injury and attenuated local and
systemic tissue destruction (O'Neill et al., 2011; Sunil et al.,
2012). Furthermore, our study demonstrates that vitamin D,
a safe and well tolerated drug, accelerates wound healing
and promotes recovery from NM-induced disruption of
hematopoiesis potentially by augmenting host immune
responses. These findings have translational potential in
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ameliorating the unwanted adverse effects for cancer patients
undergoing treatment with NM and NM derivatives.
The observation that calcitriol inhibits NFκB, a critical

transcription factor for TNFα and iNOS expression, prompted
treatment with 25(OH)D as a countermeasure for macrophage

activation following vesicant-induced skin injury (Mahon
et al., 2003; Di Rosa et al., 2012). The deleterious effect of
dysregulated macrophages is not restricted to skin injury but
has also played a critical role in other organ injuries,
including the lungs and liver. In this study we focus on skin
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Table 2. CBC analyses of clodronate treated mice on day 5 post NM exposure (n= 8)
Vehicle NM+PBS Liposomes NM+Clodronate Liposomes

WBC (×103 μl−1) 7.77± 0.83 3.88± 0.76* 6.57±0.41#

LYM (×103 μl−1) 5.93± 0.61 2.82± 0.53* 4.64±0.30#

MONO (×103 μl−1) 0.46± 0.06 0.28± 0.54* 0.48± 0.05

GRAN (×103 μl−1) 1.39± 0.22 0.78.±0.19* 1.46±0.12#

HCT (%) 38.5± 3.53 23.6± 2.74* 30.49±2.15

HGB (g dl−1) 13.7± 1.08 8.52± 0.93* 11.06± 0.63#

Abbreviations: CBC, complete blood count; GRAN, granulocytes; HCT, hematocrit; HGB, hemoglobin; LYM, lymphocytes; MONO, monocytes;
NM, nitrogen mustard; PBS, phosphate-buffered saline; WBC, white blood cell.
*Po0.01, #Po0.04.
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injury and demonstrate that hyper-activated macrophages
from skin contribute to disruption of hematopoiesis in the BM.
Our results demonstrate that a single dose of systemically
administered 25(OH)D is sufficient to reduce skin inflamma-
tion and necrosis and accelerate wound healing subsequent
to topical application of NM. Repeated dosing of vitamin D
may improve outcome of other epithelial surfaces or vital
organs that are vulnerable to NM exposure. In our experi-
mental model, the contribution of other innate immune cells
such as neutrophils acting at earlier time points cannot be
eliminated as neutrophils are rapid responders in skin injury
and may have a role in amplifying macrophage accumulation
in the skin (Wilgus et al., 2013).
Intervention with 25(OH)D rescued mice from local and

systemic pathology by mitigating the activation of the host
immune system characterized by elevation of dysregulated
expression of reactive species mostly in macrophages (Laskin
and Laskin, 1996; Korkmaz et al., 2006). Work by Correa–
Costa is consistent with our findings that macrophage
depletion using clodronate ensures substantial protection
from organ damage in a tubulo-interstitial nephritis model
(Correa-Costa et al., 2014). Thus in addition to direct toxicity
of NM, our study demonstrates that local NM exposure
provokes an immune reactive response that delays local
healing and exacerbates systemic pathology. The appearance
of skin-labeled macrophages in the marrow at later time
points cannot be explained solely by passive migration of
macrophages due to increased skin permeability. Compared
with other models of skin injury, only NM exposure induces
translocation of skin labeled macrophages in the marrow. Our
studies show that the damage in BM is rapid, presumably via
direct toxic effects of NM, resulting in decreased cell counts
as early as 24 hours. This initial damage to the marrow may
provide a chemotactic signal for inflammatory tissue macro-
phages to infiltrate the BM where they further promote tissue
destruction or suppress recovery. Using 25(OH)D or liposo-
mal clodronate intervention in the BM recovery process, we
delineate the small subset of inflammatory tissue macro-
phages to be distinct from macrophages and monocytes
within the BM and future studies will focus on further
phenotyping this cell population.
In summary, these data reveal a critical role for cutaneous

activated macrophages in tissue destruction and immune
activation and as a link between local and systemic
pathogenic responses following NM exposure. Vitamin
D-related compounds have the potential to be developed as
a therapy for mitigating the unwanted toxic effects of mustard
agents.

MATERIALS AND METHODS
Mice
Six to eight-week-old pathogen-free female C57BL/6J mice and nos2
knockout mice were obtained from Jackson Laboratories (Bar Harbor,
ME). All animals received standard laboratory diet. All animal
studies have been approved by Case Western Reserve Institutional
Animal Care and Committee. Under BSL2 guidelines, all mice were
caged individually for experiments in one-time use disposable
polystyrene cages.

NM application
NM (ClCH2CH2)2NCH3×HCl was obtained from Sigma-Aldrich
Chemical Company (St Louis, MO). For generating skin wounds,
mice were anesthetized by intraperitoneal injection of avertin, the
dorsal fur removed with clippers and depilating cream and 48 hours
later NM (20 ul of a 2.0% solution in 1X PBS) was applied over a
circular template of 8 mm diameter measuring about 50mm2 area on
the dorsal surface of each mouse. Following recovery from
anesthesia during which time the applied NM is completely absorbed
into the skin.

Local inflammation on skin
Local inflammation including erythema of skin was induced by three
methods–tape stripping, UVR and chemical injury using depilating
agent. Following hair depilation as described before, mice were
anesthetized and tape stripping was performed by using 10 strokes of
duct tape as described (Guiducci et al., 2010), or exposed to a
submaximal dose of 100mJ of UV (Toichi et al., 2008), (Metz et al.,
2006), or subject to a hair depilating agent smeared on their shaved
backs for 24minutes to induce inflammation from chemical injury
(Angel et al., 1992), (Karegoudar et al., 2012).

Vitamin D
25(OH)D (Sigma-Aldrich) was reconstituted in ethanol and diluted in
mineral oil for intraperitoneal injections at 5 ng of 25(OH)D, 1 hour
following NM exposure.

1400W
1400W (hydrochloride) (Sigma-Aldrich) was reconstituted in ethanol
and diluted in 1X PBS. 10 mg kg− 1 of 1400W were injected intra-
peritoneally 1 hour following NM exposure.

Wound and weight measurements
Wounds were measured with a digital caliper every other day by
length and width inside the 50mm2 circular template. Weights were
recorded every other day using a Model CS 200 scale (Ohaus
Corporation, Parsipanny, NJ).

Realtime PCR
RNA was isolated using Trizol (Invitrogen, Carlsbad, CA) following
manufacturer’s instructions. RNA (100 ng) was used for quantification
of TNF-α, iNOS mRNA expression using TaqMan Gene Expression
Assays and the Taqman RNA-to-CT 1-Step (Life Technologies,
Grand Island, NY). Samples were analyzed using a Step-One System
(Applied Biosystems, Grand Island, NY) based on manufacturer’s
recommendations. Gene expression was expressed as fold changes
normalized to the 18S RNA housekeeping gene.

Blood smear
A drop of blood was collected on a glass slide following tail snip,
smeared using a microscope slide, fixed in 100% methanol, and
stained with Wright–Giemsa to observe cell types.

H&E staining of bone marrow
Sternums were removed and fixed overnight in 10% formalin diluted
in PBS. Samples were embedded in paraffin, sectioned, and stained
with hematoxylin and eosin.
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Complete blood count
Blood (20 ul) was obtained in an EDTA coated capillary tube
following tail snip. CBC were determined using a HemaTrue
Hematology Analyzer (Heska Corporation, Loveland, CO) at
the Mouse Physiology Phenotyping Center at Case Western Reserve
University.

Immunofluorescence staining
For immunofluorescence staining of skin and sternum OCT-
embedded sections were sectioned 8 μm thick and subjected to
staining as described before (Das et al., 2014). Primary antibodies
used in 10% goat serum are the following: anti-mouse F4/80 antigen
Alexa-488; rat IgG2a isotype—Alexa 488 (eBioscience, SanDiego,
CA, 1:100); rabbit-anti-mouse iNOS (Upstate Temecula, CA); isotype
rabbit IgG (R&D Systems, Minneapolis, MN). Secondary antibodies:
goat anti-rabbit Alexa Fluor 647 conjugated (1:2,000 in 1X PBS) (Life
Technologies). Labeled sections were imaged using a UltraVIEW VoX
spinning disk confocal microscope (Leica DMI6000B).

Flow cytometry
Tibiae and femurs of mice were isolated by removing skin and soft
tissue. BM cells were isolated as described before (Horak et al.,
1983), stained with rat anti-mouse F4/80 Ab or rat IgG2a isotype
(Alexa Fluor488) and analyzed by Accuri C6 flow cytometer with
fluorescence detected on the FL1 channel.

Liposomes
Liposomes (obtained through www.clodronateliposomes.org,
Amsterdam, Netherlands) suspended in 1X PBS (pH 7.4) were loaded
with either PBS, clodronate or the DiI dye. Mice received
subcutaneous injections of PBS-liposomes for control, clodronate-
liposomes or DiI-liposomes 1 hour after NM application on the
50mm2 dorsal region onto which NM was applied.

Co-injection studies
NM mice were subjected to 200 ul intradermal injection of a 1:1
mixture of liposomal clodronate and liposomal DiI at the doses
indicated above, 1 hour following NM exposure. Two and five days
post exposure mice were killed for detection of F4/80+DiI+
macrophages in the BM. and sternums sectioned for colocalization
of DiI (red) and F4/80 (green) macrophages. DAPI (blue) stained for
cellular nuclei.

Maestro imaging
The Escherichia coli-conjugated pHrodo dye (Life Technologies) was
injected subcutaneously at the wound site 1 hour post NM. Five days
later, the biodistribution of pHrodo in the sternums of mice was
analyzed using Maestro fluorescence imaging with green excitation
(503–548 nm) and emission (560 nm longpass) filters and a 5,000ms
exposure time.

Statistical analysis
A two-sided unpaired Student’s t-test was used to determine
statistical significance. Data are shown as mean± SEM, and P-values
≤ 0.05 were considered statistically significant. The Kaplan–Meier
method was used to plot the survival distributions of the two groups
(NM and NM+25(OH)D), which were then compared using the log-
rank test.
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