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Coronavirus disease 2019 (COVID-19) is known as a contagious disease and caused

an overwhelming of hospital resources worldwide. Therefore, deciding on hospitalizing

COVID-19 patients or quarantining them at home becomes a crucial solution to manage

an extremely big number of patients in a short time. This paper proposes a model

which combines Long-short Term Memory (LSTM) and Deep Neural Network (DNN)

to early and accurately classify disease stages of the patients to address the problem

at a low cost. In this model, the LSTM component will exploit temporal features while

the DNN component extracts attributed features to enhance the model’s classification

performance. Our experimental results demonstrate that the proposed model achieves

substantially better prediction accuracy than existing state-of-art methods. Moreover,

we explore the importance of different vital indicators to help patients and doctors

identify the critical factors at different COVID-19 stages. Finally, we create case studies

demonstrating the differences between severe and mild patients and show the signs

of recovery from COVID-19 disease by extracting shape patterns based on temporal

features of patients. In summary, by identifying the disease stages, this research will

help patients understand their current disease situation. Furthermore, it will also help

doctors to provide patients with an immediate treatment plan remotely that addresses

their specific disease stages, thus optimizing their usage of limited medical resources.

Keywords: COVID-19, wearable data, neural networks, uncertainty quantification, pattern extraction

1. INTRODUCTION

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), manifests as a wide range of symptoms, including fever, cough,
fatigue, breathing difficulties, loss of smell and taste, and pneumonia1. It spreads rapidly from
infected people to others through close contact or small exhaled droplets. The pandemic is now
causing havoc in countries around the world, with more than 282 million cases and around 5.41
million deaths, as of late December 2021 reported by WHO (2021). This deluge of patients is
overwhelming hospitals everywhere, especially in some developing countries where vaccines are
not sufficient, and it is difficult to cope with the need to conduct extensive disease testing programs
and treat huge numbers of patients in a very short period. It is therefore vital for medical staff to be

1https://en.wikipedia.org/wiki/Coronavirus_disease_2019
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able to identify patients COVID-19 disease stages before making
the decision to hospitalize them. Severe patients need to be
hospitalized quickly and receive a higher priority in dedicated
treatment, while patients with milder symptoms might only need
to self-quarantine at home. Fast and reliable techniques to detect
and identify the disease stages are thus the focus of active research
by scientists and medical technologists.

Vaira et al. found that anosmia and ageusia associated with
fever (>37.5◦C) are common onset symptoms that can be an
early signal of a COVID-19 infection (discussed by Heerfordt
and Heerfordt, 2020; Ortiz-Martínez et al., 2020; Vaira et al.,
2020; Walker et al., 2020), therefore, investigated the use of
Google Trends to study the loss of smell and smoking cessation
and predicted COVID-19 incidence. Wang et al. (2020) built a
deep convolutional neural network model to detect COVID-19
from chest X-ray images. Most of the existing work focused on
early disease detection, but few works were proposed to identify
the disease stages and develop useful insights for patients who
must quarantine at home. We therefore propose to explore the
problem of disease stage identification, because this will help
doctors decide the most appropriate treatment plans for patients
at each stage, allowing them to optimize their usage of scarce
resources when the hospital is under pressure. Besides, since our
work would help create a low-cost, efficient self-monitor solution
that can be used by everyone, it is beneficial, especially for people
who are quarantined at home.

Interestingly, there have been some huge improvements in
wearable technologies over the last few years, with a number
of wearable devices being widely introduced that enhance our
everyday life. For example, smartwatches such as Fitbit2 are
helping us to track our sleep patterns and daily activities,
encouraging us to maintain a healthier lifestyle. Smart Shirt
is another example of this trend that is beginning to play an
important role in our information infrastructure, supporting
healthcare systems for monitoring vital signs efficiently and
cost-effectively with the universal interface of clothing (Park
and Jayaraman, 2003). The possibilities are seemingly unlimited:
chip-integrated sensors are being used to monitor a number
of physical medicine applications (Bonato, 2005). Sensors have
already been developed specifically for COVID-19 applications,
including an automatic sanitizer tunnel that detects a human
being using an ultrasonic sensor from a distance of 1.5 feet and
disinfects him/her using a sanitizer spray (Pandya et al., 2020).
Quer et al. (2020) used wearable sensors to differentiate COVID-
19 positive vs. negative cases in symptomatic individuals,
pointing out that wearable devices are easy to access for most
people. The fast development of wearable technologies makes
it possible to be utilized to identify COVID-19 disease stages.
However, existing studies are all either (i) mainly limited to
the detection of COVID-19, with no attempt to identify the
stages of the disease; (ii) not designed to analyze variations in
the associated factors per COVID-19 stage; or (iii) unable to
provide a comprehensive view of the disease for layman readers.
Therefore, we seized this opportunity to investigate data-driven

2https://www.fitbit.com

approaches to COVID-19 through wearable technologies in an
attempt to bridge this gap. This paper introduces a wide-ranging
set of data-driven approaches to identify infected patients’ stages
using wearable technologies. Specifically, this work aims to
accurately and early infer from wearable data obtained from
sensing devices attached to COVID-19 patients whether the
COVID-19 patients are in mild, moderate, severe, or recovery
stages in an earlier stage. We achieved this by introducing a
model that utilizes a Long-short TermMemory (LSTM) network
and a Deep Neural Network (DNN) to aggregate and jointly
exploit temporal stream data from wearable devices and attribute
stream from characteristics of patients. It is worth mentioning
that our comprehensive experimental evaluation shows the
improved performance achieved by our model compared to
existing machine learning (ML) classification methods, which
can only use one of the data streams. By identifying these patients
in earlier stages, medical professionals will be able to take swift
action if the patient requires early hospitalization or if it is safe for
them to continue to self-quarantine at home. In addition, we also
compare the lifestyles between severe and mild patients, allowing
us to investigate and evaluate factors that impact the recovery of
the patients. Specifically, the work aims to address the following
three research questions (RQs):

• RQ1: Can we build an accurate ML model to predict COVID-
19 stages and identify whether a patient will progress to a more
severe stage in an earlier stage?

• RQ2:Which set of factors are associated with the severity of a
patients symptoms? What can we learn from these factors in
association with COVID-19 stages?

• RQ3:What signs signify recovery or deterioration in COVID-
19 patients?

Overall, three novel contributions are made in this research:

1. We develop a classification model with uncertainty
quantification to identify the major COVID-19 disease
stages. Our model is able to recognize patients’ disease stages
in a timely manner because we utilize data from the wearable
device, which is more responsive to disease stages than the
subject’s senses.

2. Our work provides useful insights into the progression of
COVID-19 disease and vital indicators at each stage. The
research input is from a data source (a wearable device like a
smartwatch) that everyone can access and use on their own.
Our approach is data-driven and can mitigate human bias
substantially.

3. We investigate factors associated with COVID-19 severity and
recovery. We also create case studies (1) demonstrating the
differences between severe and mild patients and (2) showing
the signs of recovery from COVID-19 disease using a shape-
based pattern extraction model.

The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 discusses our methodology, including
an overview of the data preparation, stage identification model,
feature importance, and pattern extraction model. Section 4
shows our evaluation and experimental results. Section 5 presents
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TABLE 1 | List of features specific to heart rate variability (HRV).

Feature name Meaning

bpm Heart rate

mxdmn Difference between highest and lowest cardio interval

values

sdnn Standard deviation of normal heartbeat intervals

rmssd Root mean square of successive differences for

consecutive intervals

pnn50 Percent of RR-intervals that fall outside a 50 ms range of

the average

mode Most common cardio interval length

amo Mode amplitude

lf Power of low frequency waves

hf Power of high frequency waves

vlf Power of very low frequency waves

lfhf Ratio of low to high frequency waves

total_power Total power of HF, LF, and VLF waves generated by the

heart

rr_data (time-based) Intervals in milliseconds between consecutive heart beats

some limitation in our study. Finally, we offer conclusions in
Section 6.

2. RELATED WORK

Here, we survey recent related studies on battling the COVID-19
crisis. These studies fall into two broad scientific areas: machine
learning (ML) and remote monitoring utilizing the Internet of
Things (IoT).

ML Research: Researchers have attempted different methods to
battle COVID-19. Assaf et al. developed a model that used white
blood cell count, time from symptoms to admission, oxygen
saturation, and blood lymphocyte count to predict if a patient is
at high risk for COVID-19. Their prediction model can be useful
for efficient triage and in-hospital allocation, better prioritization
of medical resources, and improving overall management (Assaf
et al., 2020). Ahamad et al. (2020) developed a model that
applies ML algorithms to reveal potential COVID-19 patients
by analyzing their age, gender, fever, and history of travel. By
extracting 11 blood indices through a random forest algorithm,
Wu et al. (2020) built an assistant discrimination tool that
can identify suspected patients using their blood test results.
Barstugan et al. (2020) and Elaziz et al. (2020) choose to use
image-based diagnosis (CT images) building Support Vector
Machine and K-Nearest Neighbors algorithms for predicting
suspected COVID-19 infection.

Remote monitoring research: However, these studies’ data
sources, such as CT images or blood test results, would often
need to be collected by trained professionals. With COVID-19
patients number rising, we see a shortage of medical resources
worldwide and make clinic visits bear more risk as suspected
patients gather for examination. Therefore, many people prefer
to use the Internet of Things (IoT) to diagnose COVID-19

to avoid the risk of infection. Singh et al. demonstrated that
IoT implementation could help infected patients with COVID-
19 identify symptoms rapidly and greatly reduce healthcare
costs (Singh et al., 2020). Islam et al. (2020) suggested that
wearable devices could provide real-time remote monitoring and
contact tracing features, which can be used to improve healthcare
systems’ current management schemes. For example, Maghdid
et al. (2020) designed an artificial intelligence-enabled framework
that analyzes signals from a smartphone’s sensor signal. It helped
to diagnose the severity of pneumonia to predict the COVID-19
infection.

Most prior works were focusing on the early prediction or
detection of COVID-19 infection. As the epidemic escalates
dramatically every day, we want to further conserve healthcare
resources by identifying different stages of COVID-19 patients.
For example, diagnosed early and moderate stage patients
could adopt self-quarantine treatment in time, saving valuable
resources that can then be utilized by patients with severe
COVID-19 stage.

3. METHOD

3.1. Data Preparation
3.1.1. Dataset Description
We used an open dataset provided by Welltory 3 The dataset
comprises multivariate data records from 186 COVID-19
patients experiencing different stages. The data includes variables
such as heart rate, sleeping patterns, daily activities, heart rate
variability (HRV), blood pressure, patient demographics (age,
gender, country, etc.), environmental information, and other
patient facts (smoking, alcohol, other background diseases, etc.).
We focus on the HRV information measured using wearable
devices. HRV is also popular in many clinical and investigational
research such as diabetes (Benichou et al., 2018), brain emotion,
stress, anxiety (Goessl et al., 2017; Mather and Thayer, 2018), or
cardiology related (Sessa et al., 2018). Table 1 provides detailed
descriptions of HRV specific features, where rr_data (intervals
in milliseconds between consecutive heartbeats) is a sequence
data with a length of 100. In addition, we also selected ordered
categorical variables with values from 1 to 6 recording the
intensity of seven common COVID-19 symptoms that were in
the HRV survey dataset: breath, confusion, cough, fatigue, fever,
pain, and bluish.We believe these variables can better assist in the
task of prediction, but we only focus on the other HRV variables
for the subsequent analysis.

Since each patient may be recorded multiple times, the stage
of disease may be different from one recording period to the
next. For example, some patients who were mild patients at the
beginning of the record may become severe patients a week later.
So, in the task of predicting the stage of disease, we remove
the user code and predict the disease status for each record. All
patients have a total of 1,480 complete records. Each record will
be associated with a label by a survey from Welltory, identifying
the corresponding patient’s current stage. Figure 1 summarizes
the number of stages per disease stage category.

3https://github.com/Welltory/hrv-covid19
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FIGURE 1 | Distribution of four disease stages. Each patient may span

multiple disease stages due to the progression of the disease.

3.1.2. Feature Expansion
To make the most of the information in the data, we enrich our
feature set based on temporal and statistical properties. First,
for the variable time series, intervals in milliseconds between
consecutive heartbeats (represented by rr), we computed a variety
of statistics for this sequence, such as its variance (rr_var),
skewness (rr_skew), kurtosis (rr_kurt), maximum (rr_max),
minimum (rr_min), median (rr_median), mean (rr_mean),
interquartile range (rr_iqr), etc. These features are popular and
widely used in many research such as heart rate analysis (Bolanos
et al., 2006) or brain waves recognition (Campisi and La Rocca,
2014). Besides, we divide each day into four periods and further
create four one-hot variables: morning, day, evening, and night.
That is, if a row of data for a patient is recorded in the morning,
then the variable morning for this record is 1, while the other
three variables are all 0. Another variable we created is called
day_after_test (days a.t.), and its value depends on the number
of days each patient has been infected with COVID-19.

In addition, we obtain two new temporal sequence data using
the transformation of rr_data. Suppose the original heartbeat
interval is RR = {x1, x2, ..., xT}, we transform this time series
by computing lag difference (DI) and the absolute deviation
from the mean (DM), in order to remove temporal dependency
and to eliminate the trend and seasonality of the time series.
Mathematically, the two newly constructed time-series are as
follows:

DI = {x2 − x1, x3 − x2, ..., xT − xT−1},

DM = {|x1 − x|, |x2 − x|, ..., |xT − x|},
(1)

where T = 100 and x is the mean of the original rr sequence.
To make these three sequences (RR, DI, and DM) have the same
length 100, we add the average of the last three numbers of the
DI sequence at the end of the DI sequence. All the features we
expanded are listed in Table 2. Thus, we end up with a total

TABLE 2 | List of self-generated features (time-based and statistical features).

Domain Feature name Source

Time-based DI Lag difference of rr sequence

DM Absolute deviation from the mean of rr sequence

Statistical rr_var Variance of rr sequence

rr_skew Skewness of rr sequence

rr_kurt Kurtosis of rr sequence

rr_max Maximum of rr sequence

rr_min Minimum of rr sequence

rr_median Median of rr sequence

rr_mean Mean of rr sequence

rr_iqr Interquartile range of rr sequence

morning One-hot variables Imorning

day One-hot variables Iday

evening One-hot variables Ievening

night One-hot variables Inight

daysa.t. Number of days of COVID-19 infection

of 32 attribute features and 3 temporal features for the task of
predicting disease stages.

3.1.3. Data Pre-processing
There are somemissing values in the dataset. It is either due to the
network issues when the data is collected or the users choose not
to answer some survey questions for any reason. To fill out the
missing values, we used MissForest (Stekhoven and Bühlmann,
2012), a non-parametric iterative imputation technique based
on the Random Forest algorithm which is proved capable of
handling missing values of different data types. Additionally,
we normalized the data to avoid scales influencing between
features. Letmin{Xi,1 :N} andmax{Xi,1 :N} are the minimum and
maximum values of the attribute feature Xi for all N samples.
The min-max normalization values of feature Xi is computed as
follows:

X
′

i,j =
Xi,j −min{Xi,1 :N}

max{Xi,1 :N} −min{Xi,1 :N}
, j = 1, 2, ...,N (2)

Where N = 1,480 is the sample size.
Similarly, for the temporal sequence features, we use min-max

normalization to normalize the data for all samples at each time
point. Letmin{Xk,t,1 :N} andmax{Xk,t,1 :N} are the minimum and
maximum values of the temporal feature Xk for all N samples
at time t. The min-max normalization values of feature Xk is
computed as:

X
′

k,t,j =
Xk,t,j −min{Xk,t,1 :N}

max{Xk,t,1 :N} −min{Xk,t,1 :N}
, j = 1, 2, ...,N,

t = 1, 2, ...,T
(3)

Where N = 1,480 is the sample size and T = 100 is the length of
the temporal sequence.
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3.2. Model for Disease Stage Identification
3.2.1. Theoretical Model
We formulate the problem of identifying disease stages as amulti-
class classification problem. From a feature matrix X of a patient,
we need to build a classifier f that classifies whether the patient is
inMild, Moderate, Severe, or Recovery stage.

In this task, our classification model utilizes two data streams
described in Section 3.1: temporal stream and attribute stream.
A temporal stream has temporal characteristics or sequential
order. The temporal streams can be real-time, so if our model
is embedded in wearable devices in the future, it will be
very helpful for early-stage detection. The attribute stream has
no temporal characteristics such as demographic information,
patient’s background disease, etc. Formally, assume that the
datasetD of sizeN is defined asD= {(Xi,Yi), i = 1, ...,N}, where
Yi is the class label and Xi = (Xt

i ,X
a
i ), represents the i-th sample

of the combination of the temporal stream (denoted as Xt) and
attribute stream (denoted as Xa). The developed classification
model f parameterized by θ will classify disease stages based on
input streams as the following equation:

stages ≃ f (θ ,H2(8(H1(X
t),Xa))), (4)

where H1 and H2 are latent feature extractors, which are two
types of neural networks in our model, 8 is an aggregation
function that fuses the latent features from H1(X

t) with attribute
stream data Xa.

3.2.2. Network Design and Data Fusion Strategy
As mentioned earlier, the two input streams of the model are the
temporal stream and the attribute stream. The LSTM network
is suitable for temporal stream since it is a type of recurrent
neural network (RNN) and addresses the problems of vanishing
and exploding gradient in general RNNs. Hochreiter (1998).
Therefore, in Equation (4), we choose H1 as an LSTM based
network to learn latent features from the temporal stream Xt . For
the attribute stream Xa, after combining them with the outputs
of the LSTM based network, we use H2, a network of multiple
fully-connected layers (DNN), to extract their latent features
for the final disease stage classification. The DNN is chosen to
force the network to explore all the possible relationships of both
attribute streams and temporal streams. This is also an approach
to combining DNN with LSTM to obtain a novel end-to-end
neural network.

Figure 2 shows the overall model which composes of two
subnetworks, LSTM and DNN. The two subnetworks are merged
to predict the final disease stages. Suppose each patient has D
input sequences with a common time length T. An LSTM passes
forward over the entire temporal data sequences. We use the
hidden size H = 1 in the LSTM, so later we can use an affine
layer to map the hidden outputs to one-dimensional data of the
same dimensional size as the attribute data. The LSTM unit is
composed of a cell state ct , a so-called memory cell, a hidden state
ht , an input gate i, a forget gate f , an output gate o, and an input
modulation gate g. They are called gates because they control the
flow through the LSTM. The four gates will be computed at each
time step for cell and hidden state updates. The following is the

outline formula of LSTM:
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ct = f ⊙ ct−1 + i⊙ g

ht = o⊙ tanh (ct)

(5)

where σ and tanh are the sigmoid function and tanh function,
respectively. W is the weight matrix. ct , ht , and xt are the cell
state, hidden state, and temporal input at time step t, respectively.
⊙ represents element-wise multiplication.

After running the forward of the LSTM network, T hidden
state outputs, {h1, h2, ..., hT}, are returned and evenly sampled
with a 20% probability to enhance generalization capability and
avoid overfitting, that is, we uniformly sample T1 hidden states
from the T hidden states and T1 = 1/5 T. Next, the combined
hidden states are flattened to the temporal latent features thanks
to the subsequent Affine layer to concatenate with the attribute
stream. The temporal latent features have a final projected size
T0 = 5, which is equivalent to putting the temporal latent
features into 5 additional latent attribute features. Let’s define
ht = H1(X

t) as the final 5 latent features of the temporal stream
and xa as the sample values for the original attribute stream Xa.
The concatenation of these two streams is defined as follows:

hc = 8(ht , xa) = ht ⊕ xa (6)

where ⊕ is the concatenation operator. Then, the concatenated
stream hc is fed into a deep neuron networkH2 which consists of
five fully connected layers with number of neurons 1,024, 1,024,
2,048, 1,024, and 1,024, respectively. The output of the model is
the predicted probability of being in each disease stage for each
sample. Finally, the predicted classification of disease stages y is
obtained by the following:

y = argmax f (θ ,H2(h
c)) (7)

The network uses Leaky ReLU activation function and dropout
rate of 30% to enhance the robustness of the model and reduce
the computational cost. The learning rate is set to 0.001 and
the batch size is set to be the same as the sample size. We use
the Adam optimizer, gradient descent algorithm, and softmax
cross-entropy loss function to optimize the network.

3.2.3. Uncertainty Quantification of the Model
We perform resampling from our existing samples to quantify
the built predictive model’s uncertainty. This method is also
known as Bootstrap, published by Bradley Efron in Efron (1979).
We employ the Bootstrap method because 1) it is invariant
under re-parametrization; 2) it does not require the population
distribution assumption; 3) it is driven by repeated resampling
of data and does not depend on theoretical calculation; 4) it
can provide the point estimation and assess the accuracy of the
estimation when the traditional statistical method fails.
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FIGURE 2 | Overview of COVID-19 stage classification model, where N=1,480 represents the sample size, T=100 represents the common length of temporal

sequence, D=3 represents the number of temporal sequences, H=1 represents the size of hidden state output by LSTM, T1=20 represents sampling size of the T

hidden states, T0=5 represents the final projected size of temporal features in the time dimension, and V=32 represents the number of attribute features.

We present details of the uncertainty quantification algorithm
inAlgorithm 1. Overall, the intuition of the algorithm is to create
new samples, then obtain the prediction output. This process is
repeated many times to result in a distribution of output which
helps to quantify the model’s uncertainty. In order to generate
new samples, bootstrapping technique which was introduced by
Efron (1979) is utilized. Here, we summarize its workflow in
Figure 3:

• Treat the original sample as if it were the population.
• Draw from the sample, at random with replacement, for B

times (B is the number of bootstraps).

Given the value of confidence interval (C.I) α%, we will
retrain our model from the newly generated samples, perform
classification, and obtain a α% confidence interval of the
predicted outcomes.

3.2.4. Baseline Models and Comparison Metrics
To verify the effectiveness and advantages of our proposed
approach, we compare the classification results on the test dataset
with several classical ML and deep learning models using a
five-fold cross-validation approach. The baseline models are as
follows:

1. Logistic regression (Logit): a multinomial logistic regression
model was used to predict the probabilities of different
outcomes for our multi-class problem (Kwak and Clayton-
Matthews, 2002).

Algorithm 1 Bootstrap method to construct 95% C.I.
(Confidence Interval)

function compute_boot_CI ()
Input: Input Train dataset X, label y, Test dataset X∗, model f
Output: 95% C.I. (lc, uc), c = 1, 2, 3, 4 and c is the class index.

1. For Bootstrap j = 1, ...,B

• Generate bootstrap sample Xj, yj from dataset X and label y
with replacement.

• Train model f with bootstrap sample Xj, yj.
• Feed test dataset X∗ to the above trained model and

calculate the prediction outputs
pjc, c = 1, 2, 3, 4.

2. Let lc and uc be the 0.025 and 0.975 percentile of (p1c, ..., pBc)

return (lc, uc), c = 1, 2, 3, 4

2. Support vector machine (SVM) (Chang and Lin, 2011):
various types of kernels were tried and the kernel with the best
result was finally chosen.

3. Attribute-based K-nearest neighbors (KNN) (Peterson, 2009):
various number of the k nearest neighbors were tried and the
k with the best result was finally chosen.

4. Long short-term memory: a popular extension of artificial
recurrent neural network (RNN) architecture. It was first
introduced by Hochreiter and Schmidhuber (1997).
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FIGURE 3 | Workflow of bootstrap method to construct 95% confidence intervals.

5. Deep Neural Network: it consists of five fully connected
layers with a number of neurons 1,024, 1,024, 2,048,
1,024, and 1,024 respectively, and with the same
activation function, dropout rate, learning rate,
batch size, optimizer, algorithm, and loss function as
our model.

For comparison metrics, we use standard metrics such as
accuracy, precision, recall, f1-score, and multi-class AUC (area
under ROC curve) to compare the performance of the
models. It is worth noting that the inputs to these traditional
models above can only be one of the data types and they
cannot directly utilize both temporal data and attribute data
jointly, so our model is expected to perform better than
these models.

3.3. Feature Importance
To measure the importance of features, we perform the
permutation feature importance algorithm on all the temporal
and attribute features in turn to break the relationship
between the feature and the true outcome. The permutation
feature importance algorithm is described in Algorithm 2. This
algorithm is based on our proposed classification model f .
The general idea is that if a feature is essential for a stage,
then shuffling or removing its values increases the model error
for that stage because in this case, the model relied on the
feature for the prediction. On the other hand, a feature is
unimportant for a stage if shuffling or removing its values
leaves the model error for that stage unchanged because, in this
case, the model ignored the feature for the prediction (Fisher
et al., 2019). Therefore, we can rank the losses of the built
models after removing one variable at a time to select the
most influential features. This approach is applied in Section
4.2 to uncover factors associated with different COVID-19
disease stages.

Algorithm 2 Permutation feature importance

function compute_feature_importance ()
Input: Feature X, label y, model f
Output: Output Feature importance FI

1. Estimate the original model error eorig = L(y, f )
2. For feature j = 1, ..., p

• Generate feature matrix Xperm by removing feature j in the
data X. This breaks the association between feature j and
true outcome y.

• Estimate error eperm = L(y, f (Xperm)) based on the
predictions of the permuted data.

• Calculate permutation feature importance FIj =

eperm/eorig .

3. Sort features by descending FI.

return FI

3.4. Model in a Case Study: Shape-Based
Pattern Extraction Model for Signs of
Recovery
In the classification of time series, a subsequence is called
Shapelets (Ye and Keogh, 2009) if it maximally represents a
class in some sense. Grabocka et al. (2014) introduced an
implementable method to learn time-series shapelets. In one
of our case studies 4.4, we try to find shapelets from HRV
data that can differentiate between unrecovered patients and
recovered patients. For signs of recovery, the patterns are two
groups of shapelets that can linearly separate the recovered from
unrecovered patients. Suppose xi, i = 1, 2, . . . ,N is the i − th
original time series data of length T, and sk, k = 1, 2, . . . ,K is one
of the proposed shapelets with length l. It is easy to know that in
a time series, there are exactly T − l + 1 segments as long as the
starting index of the sliding window is incremented by one. The
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distance between xi and sk is defined as follows:

d(xi, sk) = min
t∈{1,2,...,T−l+1}

||xi,t : t+l − sk||
2
2, (8)

where xi,t : t+l is the subsequence of xi from time t to time t + l.
Since, in our study, the classification task is binary (recovery and
unrecovered). Let us define the target variable, i.e., the patient’s
recovery status Yi, i = 1, 2, . . . ,N:

Yi =

{

1 if the i− th patient has recovered

0 if the i− th patient has not recovered,
(9)

Then, the predicted status of the i− th patient is as follows:

Ŷi = W0 +

K
∑

k=1

d(xi, sk)Wk, (10)

where Wk, k = 0, 1, . . . ,K, are the weights of learning,
representing the classification hyperplane. By minimizing the
logistic loss function with weight regularization terms, we
can learn both the optimal shapelet and the optimal linear
hyperplane. The loss function is shown in Equation (11):

L =

N
∑

i=1

l(Yi, Ŷi)+ λ||W||22, (11)

where

l(Yi, Ŷi) = −Yilogσ (Ŷi)− (1− Yi)log(1− σ (Ŷi)), (12)

and σ is the sigmoid function.
In the optimization process, a stochastic gradient descent

(SGD) approach is adopted. Note that because SGD needs all the
functions to be differentiable, an approximation of the minimum
function (8) is used. This function is called the Soft Minimum
function (Grabocka et al., 2014) and is shown in Equation (13).

d̂(xi, sk) =

∑T−l+1
t=1 di,k,te

αdi,k,t

∑T−l+1
t′=1 eαdi,k,t′

, (13)

where

di,k,t = (xi,t : t+l − sk)
2. (14)

By applying the above method to the patient’s HRV time series
data, we aim to find a sequence pattern that can show signs of
patient recovery to the greatest extent possible. Our results are
shown in Section 4.4.

4. EXPERIMENTAL RESULTS

4.1. Infected Stage Classification
Performance Evaluation
We randomly split up the data prior to modeling so that all
models can use the same data splits. Each time, the models are
trained on 4-folds (80% of the data) and tested on 1-fold (20% of

the data). These 5-folds take turns being the test dataset to ensure
that each sample can be classified. We perform a comprehensive
comparison of model classification results. We add up the
confusion matrices of the five experiments to obtain the total
confusion matrix, which is therefore based on the result of all
samples, as shown in Figure 4. For the five evaluation metrics,
accuracy, precision, recall, f1-score, and multi-class AUC, we use
the average results of the five experiments as the final evaluation
results, which are listed in Table 3.

On the one hand, we can see the improvement in
classifications of our proposed model from the confusion matrix.
Our model has less misclassification of disease stages compared
to othermodels. On the other hand, the detailed results inTable 3
also show the advantages of our model. To be specific, the three
models Logit, KNN, and SVM are comparable, having accuracy
scores of about 0.66 to 0.79 and AUC of about 0.74 to 0.84. The
LSTM model gives poor results due to the fact that it only uses
temporal data. DNN model is the second-best model with an
accuracy score of 0.903 and AUC of 0.924. Our proposed method
has the highest scores under all five metrics, with an accuracy
score of 0.914 and AUC of 0.935.

Figure 5 are box plots that present uncertainty quantification
of the disease stage predictions of our proposed model for
some randomly selected patients (Patient 151, 110, 29, and 182).
The narrow box plot indicates the narrow 95% C.I., which
presents low uncertainty in the prediction. We observe that for
patient 29, all the C.I.s are quite narrow, while for all other
patients, the C.I.s for certain stages are wider, which shows high
prediction uncertainty. Even though there is high uncertainty in
the prediction of certain disease stages, the 95% CI for each stage
classification has shown that the probability of the classified stage
(final prediction on each patient) always has a higher probability
value than other stages. It means that our predictive model
successfully identifies the disease stages with the performance
results provided in Table 1.

4.2. Uncovering Factors Associated With
COVID-19 Disease Stages
In this section, we focus our analysis on features from wearable
data instead of other factors which have been discussed through
news channels such as background diseases or body symptoms.
We use a random permutation of values shown inAlgorithm 2 to
calculate feature importance values for each feature based on the
ratio of the model’s errors between permutations. After obtaining
the importance values, these values are rescaled to the range [0–1]
to make them comparable. The results are shown in Figure 6. For
each stage, the important features are ranked from high to low.
The high importance feature means that prediction performance
is highly dependent on this feature.

Figure 6 shows that for mild andmoderate stages, the number
of days from onset symptoms (days a.t.) is the most important
since it ranks top among all variables. It means for mild and
moderate patients, HRV variables have not yet shown very
obvious characteristics, while the number of sick days can best
determine the patients at this stage. This phenomenon is more
reliable for mild patients since the number of sick days is far
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FIGURE 4 | Total confusion matrix for COVID-19 disease stage classification based on 5-fold cross-validation.

TABLE 3 | Infected stage classification results of models based on 5-fold cross-validation.

Model Accuracy Precision Recall F1-score AUC

LSTM Only 0.397 0.410 0.397 0.355 0.556

Logit 0.661 0.666 0.661 0.650 0.741

KNN 0.763 0.761 0.763 0.759 0.816

SVM 0.792 0.791 0.792 0.787 0.839

DNN Only 0.903 0.905 0.903 0.903 0.924

Our Model (LSTM+DNN) 0.914 0.917 0.914 0.914 0.935

The bold values indicate the best result for each metric.

FIGURE 5 | 95% confidence interval of the prediction probabilities for the current stage of COVID-19 patients.

more important than the second-ranked variable. This result can
be explained that in the early days of COVID-19 infection, most
people have mild symptoms. For severe patients, the number
of sick days is no longer important, the average time between
each heartbeat, rr_mean, occupies the most important position,
even though it is very unimportant in other stages. It indicates

that the rr_mean of severe patients is very different from those
patients in other stages. In other words, if the condition of a
patient gets worse, it will be most clearly reflected by rr_mean.
For recovery patients, the total power of waves generated by
the heart (total_power) and the number of sick days (days a.t.)
are important variables. This shows that, on the one hand,
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FIGURE 6 | Feature importance for COVID-19 stages. The higher the value is, the more important the feature is.

it takes a certain number of days for patients to recover; on
the other hand, a significant change in the total power of the
waves generated by the heart is most indicative of the recovery
phase.

If we focus on different frequency wave power generated
by the heart (high-frequency: hf , low-frequency: lf , very-low-
frequency: vlf ), we can also find something valuable. In the mild
stage, no such variables are important. However, in moderate
stage, the importance of all the three along with the ratio of low
to high frequency waves (lfhf ) rank relatively high. Therefore,
compared to the patients in the mild stage, the wave power of
each frequency of patients in the moderate stage has changed
obviously. Besides, for severe patients, the frequency waves that
aremost different from other stages are low-frequency waves (vlf ,
lf ). While for recovered patients, the frequency wave that is most
different from other stages is a high-frequency wave (hf ).

4.3. Case Study: Severe Patients vs. Mild
Patients
Since heart rate variability (HRV) is popular in many healthcare-
related research, we chose to explore it to compare daily patterns
of severe patients vs. mild patients. The variables for comparison
are the average time between each heartbeat (rr_mean), the
percent of RR-intervals that fall outside a 50 ms range of the
average (pnn50), and the total power of high-frequency waves,
low-frequency waves, and very-low-frequency waves generated
by the heart (total_power). All the data is normalized with the
min-max technique to make them comparable. In addition, we
choose data from 5 days before the onset of symptoms to 16
days after the onset of symptoms to show the difference between
different stages in the most critical time. We use polynomial
regression to do curve fitting and trending analysis separately.
At the same time, 95% confidence intervals of fitted curves are
shaded. We can find something interesting in the results shown
in Figure 7.

We noticed that the highest value of the total_power curve
and its confidence interval did not exceed 0.3. This range of
total_power is relatively narrow since we have scaled all the
data to the unit interval. It indicates that for people who have
COVID-19 symptoms, whether he or she is in the mild stage
or the severe stage, the total power of waves generated by the
heart is lower approximately a few days before and 2 weeks

after the onset. For these three comparative variables, rr_mean,
pnn50, and total_power, their curves have a similar pattern.
In general, after the symptom onset date, all three variables
of severe patients are higher than those of mild patients. The
higher value of average time between each heartbeat of severe
patients means that their average heart rate is slower than that of
mild patients. Furthermore, severe patients usually have higher
pnn50. In other words, for severe patients, the outlier heartbeats,
heartbeats whose intervals are farther apart from the average
interval, occupy a larger proportion. It reveals that the heart
rhythm of severe patients is more irregular than that of mild
patients. Besides, compared to mild patients, heart-generated
wave power of severe patients is stronger.

Following the time dimension, we can also find the different
development of the above variables during the illness of mild and
severe patients. Curves of patients in severe stage show a trend
of increasing after decreasing. The curve of patients in mild stage
also decreases at the beginning, while gradually stabilized after
the curve rose and then again has a decreasing trend at about 12
to 14 days. This may be because the immune regulation of mild
patients does not allow them to rise endlessly, which may also be
a feature of gradual recovery. We can also see that after about 13
days, the 95%CI of the curves of both severe andmild patients are
relatively narrow, which gives us more confidence to believe that
severe and mild patients have indeed evolved in two directions.

4.4. Case Study: Signs of Recovery
In this case study, we try to find the most discriminate
patterns that classify best the recovered stage and other stages.
These patterns will signify the sign of recovery instead of the
progressing disease. In addition, HRV data for the evening hours
is used for analysis to avoid the influences of daytime activities
of patients. We use the HRV sequence variables, which are the
interval between consecutive heartbeats(RR), its lag difference
sequence(DI), and its sequence of absolute deviation from the
mean(DM) to extract the patterns. The methods for creating DM
and DI can be found in Section 3.1.2. All three time series are
normalized and combined to explore the discriminate patterns of
recovery signs (See Section 3.4).

Figure 8 presents the extracted patterns that best discriminate
the sign of recovery (top two subplots) and sample patterns from
the patients (bottom four subplots). First, the heartbeat interval
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FIGURE 7 | Comparison of mild vs. severe patients based on three variables: Total power, Mean RR, and PNN50.

FIGURE 8 | Signs of recovery. The left and right columns present time series shapelets that differentiate between unrecovered patients and recovered patients,

respectively. The red shapelet (RR) is the original heartbeat interval. The yellow shapelet (DI) is the differencing transformation of the heartbeat interval. The blue

shapelet (DM) is the deviation of the heartbeat interval from the mean value.

data RR (in red) shows a decreasing trend for recovery cases
than an increasing trend for other stages. Second, the heartbeat
interval differencing data DI (in yellow) shows a sine-shaped
pattern in the recovered group while it is a concave-parabola
shape for unrecovered samples. Last, the absolute deviation from
the mean data DM (in blue) shows a gradually decreasing trend

in the recovered stage compared to a convex parabola shape in
unrecovered situations. We can conclude a frequent change from
these shapelets and an inconsistency of the COVID-19 patients.
On the other hand, it shows an overall decreasing trend of the
HRV data for the recovered patients in the evening. The subplots
of the four patients show portions highlighted by different colors
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representing different time series. These portions are the ones
that are closely similar (having short Dynamic Time Warping
(DTW) (Sakoe and Chiba, 1978) distance in latent space) to
the extracted shapelets and contribute to identifying signs of
recovery.

5. LIMITATION

There are a few limitations in our study coming from the selected
dataset. The number of patients in the study is 186, and they
are not randomly selected. So, they are not representative of
the entire population. However, this situation usually happens
in healthcare data science research since it is time-consuming
and expensive to obtain full data from a large population for
the initial study. In addition, the uncertainty quantification
of the model is down with the assumption that the set of
observations is from an independent and identically distributed
population. Moreover, some of the recorded data like coughing,
having diabetic disease, etc., are self-reported, which have their
own limitation. Self-reported information may not be accurate,
depending on how honest the patients were when they did the
survey.

6. CONCLUSION

In this work, we propose a novel predictive model to categorize
COVID-19 patients into multiple stages (mild, moderate, severe,
and recovered), using a wearable device dataset. Our predictive
model exploits temporal stream data and attribute stream data
simultaneously for disease stage classification and is able to
identify severe patients in an earlier stage even if the symptoms
seem to be “mild” or “moderate.” In addition, we apply
bootstrap methods to perform uncertainty quantification for

the predictive model, and the experimental results demonstrate

our predictive model’s higher classification accuracy than other
existing baseline approaches. Furthermore, we investigate each
feature’s importance to uncover its association with COVID-19
using a model-agnostic approach. Lastly, we investigate two cases
in detail: 1) the first one is used to illustrate the comparisons
between mild patients and severe patients. 2) the second one is
used to analyze the signs of recovery. We observe that there are
fluctuating HRV patterns in severe patients, but a more stable
pattern and a clear trend in mild patients or recovering patients.
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