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Placental responses to maternal perturbations are complex and remain poorly

understood. Altered maternal environment during pregnancy such as hypoxia, stress,

obesity, diabetes, toxins, altered nutrition, inflammation, and reduced utero-placental

blood flow may influence fetal development, which can predispose to diseases later in

life. The placenta being a metabolically active tissue responds to these perturbations

by regulating the fetal supply of nutrients and oxygen and secretion of hormones into

the maternal and fetal circulation. We have proposed that placental nutrient sensing

integrates maternal and fetal nutritional cues with information from intrinsic nutrient

sensing signaling pathways to balance fetal demand with the ability of the mother to

support pregnancy by regulating maternal physiology, placental growth, and placental

nutrient transport. Emerging evidence suggests that the nutrient-sensing signaling

pathway mechanistic target of rapamycin (mTOR) plays a central role in this process.

Thus, placental nutrient sensing plays a critical role in modulating maternal–fetal resource

allocation, thereby affecting fetal growth and the life-long health of the fetus.

Keywords: placental nutrient sensing, maternal–fetal exchange, mechanistic target of rapamycin, fetal

programming, syncytiotrophoblast, pregnancy

INTRODUCTION

Adverse maternal influences in pregnancy are linked to alterations in the intrauterine milieu, which
are associated with short-term complications including altered fetal growth and increased perinatal
morbidity, as well as long-term adverse consequences for the health of the offspring. This concept
of fetal programming or developmental origins of health and disease (Forsdahl, 1977; Barker and
Osmond, 1986; Barker et al., 1989; Hales et al., 1991; Ravelli et al., 1998; Armitage et al., 2004;
Gluckman and Hanson, 2004) suggests that successful prevention of adult metabolic disease relies
on interventions during pregnancy.

The placenta senses and responds to changes in the maternal environment by altering its
structure and function, which can lead to changes in blood flow, fetal nutrient supply, and secretion
of hormones and other signaling molecules. Changes in transplacental nutrient transport may
influence fetal nutrient availability, which determines fetal growth and body composition, and thus
may link maternal perturbations to fetal programming.

The mechanisms by which altered maternal environment during pregnancy may lead to
disease in the offspring are poorly understood. Here, we discuss maternal circulating factors that
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regulate placental function and highlight the role of placental
mechanistic target of rapamycin (mTOR) signaling as a placental
nutrient sensing signaling pathway that modifies placental
nutrient transport in response to a multitude of factors.

PLACENTAL NUTRIENT SENSING

The placental nutrient sensing model proposes that the
syncytiotrophoblast integrates maternal and fetal signals
to regulate placental function. The model emphasizes the
importance of changes in the maternal compartment (Gaccioli
et al., 2013; Jansson and Powell, 2013) to which the placenta
responds by matching fetal growth with the ability of the
maternal supply line to allocate resources to the fetus. Maternal
signals that provide information to the placenta may include
metabolic hormones, nutrients levels, and oxygen. In conditions
of compromised ability of the maternal supply line to deliver
nutrients and oxygen to the placenta, placental functions
including transplacental nutrient transport and placental
growth, may be inhibited, directly contributing to decreased fetal
growth. In contrast, in conditions of over-nutrition, placental
nutrient sensing may lead to enhanced placental function,
directly contributing to fetal overgrowth (Figure 1).

THE PLACENTAL BARRIER

The syncytiotrophoblast, the transporting and hormone-
producing epithelium of the placenta, constitutes the primary
barrier for maternal–fetal exchange. The syncytiotrophoblast is a
polarized epithelium with a maternal-facing microvillous plasma
membrane (MVM) and a fetal-facing basal plasma membrane
(BM). MVM and BM have distinct biological characteristics
including different membrane composition and their expression
of nutrient transporters. The expression and function of these
nutrient transporters influence the placental capacity to transfer
nutrients from themother to the fetus, an important determinant
of fetal growth.

Maternal factors including hormones, growth factors, and
some cytokines have been shown to regulate transplacental
nutrient transport. Insulin (Jansson et al., 2003; Roos et al., 2009),
insulin-like growth factor I (IGF-I; Fang et al., 1997; Roos et al.,
2009), leptin (Jansson et al., 2003), interleukin-6 (IL-6; Jones
et al., 2009a), and tumor necrosis factor alpha (TNF-α; Jones
et al., 2007) positively regulate system A, a transport system
that mediates non-essential neutral amino acid (AA) uptake.
Receptors for numerous hormones, including IGF-I, insulin, and
leptin are also present in the MVM (Desoye et al., 1994; Fang
et al., 1997; Ebenbichler et al., 2002) suggesting that maternal
hormones regulate trophoblast function. Concentrations of
maternal serum IGF-I (Holmes et al., 1997) and leptin (Yildiz
et al., 2002) are decreased in intrauterine growth restriction
(IUGR) while pregnancies associated with obesity and diabetes
have higher maternal serum IGF-I, insulin, and leptin (Lauszus
et al., 2001; Jansson et al., 2008). This suggests that maternal
factors can regulate the activity and expression of transporter
proteins in the syncytiotrophoblast, which may influence fetal
growth and health.

DIVERSE MATERNAL SIGNALS IMPINGE
ON THE PLACENTA

A wide range of maternal factors impinges on the placenta,
providing critical information about the ability of the maternal
supply line to support pregnancy (Jansson et al., 2012; Gaccioli
et al., 2013; Jansson and Powell, 2013; Díaz et al., 2014).

Utero-Placental Blood Flow
The development of certain pregnancy complications,
particularly IUGR and preeclampsia, is associated with impaired
utero-placental blood flow. Impaired utero-placental blood flow
could cause “placental insufficiency”, i.e., impaired nutrient
and oxygen supply to the fetus. Placental insufficiency is often
assumed to be due only to a reduced placental blood flow
(Krishna and Bhalerao, 2011). However, the placental blood
flow reduction per se does not adequately explain the impaired
placental transfer in IUGR. For example, the primary limiting
factor for the transplacental transport of nutrients such as glucose
and AAs is their transport across the syncytiotrophoblast. We
have proposed that the placenta senses the decreased blood
flow or possibly hypoxia, and responds by down-regulating
key placental nutrient transporters, directly contributing to
IUGR. Moreover, the IUGR placenta has reduced intervillous
space volume, poorly developed peripheral villi and thicker
trophoblastic epithelium that decrease the nutrient exchange
area and compromise the exchange functions of the placenta
(Burton, 2010).

Animal models of impaired utero-placental blood flow show
decreased placental nutrient transport capacity. Transplacental
transport of glucose and AAs was decreased in IUGR following
uterine artery ligation in the rat (Nitzan et al., 1979),
however MVM system A activity in vitro (Glazier et al.,
1996) and placental expression of glucose transporters GLUT
1 and GLUT 3 (Reid et al., 1999) were unaffected. In the
guinea pig, IUGR induced by unilateral artery ligation was
associated with decreased transplacental AA transport (Jansson
and Persson, 1990). In a sheep model of IUGR induced by
maternal hyperthermia and decreased utero-placental blood flow,
transplacental transport of leucine (Ross et al., 1996), threonine
(Anderson et al., 1997), glucose (Thureen et al., 1992), and ACP
(branched-chain AA analog) (de Vrijer et al., 2004) was reduced.

In human IUGR associated with reduced utero-placental
blood flow, the activity of several placental AA transporters
is reduced whereas placental GLUT1 expression and activity
are unaffected (Jansson et al., 1993, 2002b). System A activity
is consistently lower in MVM isolated from IUGR placentas
(Mahendran et al., 1993; Glazier et al., 1997), especially in
preterm IUGR (Jansson et al., 2002b) and is related to the
degree of fetal compromise (Glazier et al., 1997). Similarly, the
activity of transporters of essential AAs, including system β

(taurine) and system L (lysine and leucine), is reduced in MVM
and/or BM of IUGR placentas (Jansson et al., 1998; Norberg
et al., 1998), consistent with the reduced placental transfer of
the essential acids leucine and phenylalanine observed in vivo
in IUGR pregnancies at term (Paolini et al., 2001). Decreased
transplacental AA transport to the fetus may account for the
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FIGURE 1 | Placental nutrient sensing model. The placenta integrates maternal signals with information from nutrient sensing signaling pathways such as

mechanistic target of rapamycin (mTOR) to regulate placental function. As a result, fetal growth is matched to the ability of the maternal supply line to allocate

resources to the fetus. Thus, the placental responses to maternal signals influence fetal growth and the long-term health of the offspring.

low plasma levels of certain AAs in growth-restricted fetuses
(Economides et al., 1989; Cetin et al., 1990). The activity of
lipoprotein lipase (LPL), an enzyme responsible for hydrolysis of
lipoproteins, is reduced in MVM of IUGR placentas (Magnusson
et al., 2004). IUGR is also associated with a reduced placental
expression of lipoprotein receptors, low-density lipoprotein
(LDL), and scavenger receptor class B type-I, key receptors for
cholesterol uptake from maternal LDL and/or HDL (Wadsack
et al., 2007). Thus, placental lipid transport may be impaired
in IUGR, possibly contributing to the decreased lipid stores in
the IUGR fetus (Padoan et al., 2004). Collectively, these data
suggest that the effect of reduced utero-placental blood flow on
fetal growth is mediated, in part, by decreased placental nutrient
transfer capacity.

Hypoxia
Despite compensatory mechanisms such as fetal polycythemia,
transplacental transfer of oxygen decreases in maternal hypoxia,
which typically is associated with IUGR (Giussani et al., 2007).
Women residing at high altitude with reduced oxygen tension
have higher risk to deliver IUGR babies than women living
at sea level (Zamudio and Moore, 2000; Mehta and Mehta,
2008). Nelson and co-workers reported that hypoxia caused a
reduced system A transporter expression and activity in cultured
primary human trophoblast cells (Nelson et al., 2003), suggesting
that adequate oxygen supply is important for the function
of nutrient transporters. Furthermore, high altitude hypoxia
decreases the expression of GLUT1 in the syncytiotrophoblast
plasma membrane (Zamudio et al., 2006).

Maternal Hormones
Maternal hormones can influence fetal health by altering
placental function (Fowden et al., 2015). Maternal IGF-I
promotes placental nutrient uptake and transport (Sferruzzi-
Perri et al., 2011a). In animal models of IUGR, elevatingmaternal
IGF concentrations improved fetal growth (de Boo et al., 2008).

Acute maternal IGF-I treatment in the late pregnant ewe is
associated with enhanced glucose delivery to the fetus (Liu et al.,
1994). This was also observed in a mouse model of IUGR
where placental glucose transporter expression was increased
following intraplacental injection of adenovirus-mediated IGF-
I (Jones et al., 2013) restoring fetal weights (Keswani et al.,
2015). In human trophoblasts, IGF-I increases GLUT1 expression
(Baumann et al., 2014) and stimulates glucose and system A-
mediated AA uptake (Karl, 1995; Roos et al., 2007). Also,
reduced maternal circulating IGF-I is associated with small-
for-gestational age and growth-restricted babies (Hernandez-
Valencia et al., 2001). IGF-I receptor protein levels were reduced
in IUGR (Laviola et al., 2005) and elevated in pregnancies
complicated by macrosomia (Jiang et al., 2009).

Insulin and leptin stimulate placental system A activity (Karl
et al., 1992; Jansson et al., 2003; von Versen-Hoynck et al.,
2009) while adiponectin inhibits insulin-stimulated AA transport
(Jones et al., 2010; Rosario et al., 2012; Aye et al., 2014a,
2015). Administration of maternal corticosteroids to pregnant
mice during mid-gestation down regulates placental system
A transport (Audette et al., 2011) leading to reduced fetal
weight (Vaughan et al., 2012). Therefore, maternal hormones
influence fetal growth by altering the activity of placental nutrient
transporters and placental secretion of hormones (Sferruzzi-Perri
et al., 2011a).

Maternal Nutrition
Fetal growth is greatly influenced by maternal nutrition, and
is believed to be mediated, in part, by changes in maternal
metabolism and hormone levels.

In a rat model of maternal protein restriction, maternal
insulin, IGF-I, and leptin levels were decreased (Rosario et al.,
2011) and similar changes were observed in a mouse model
of calorie restriction (Sferruzzi-Perri et al., 2011b). Maternal
corticosterone levels were also increased in this mouse model
(Sferruzzi-Perri et al., 2011b). In contrast, pregnant mice on
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a high fat diet showed increased levels of maternal leptin and
decreased adiponectin (Jones et al., 2009b). Consistent with these
observations, levels of maternal insulin and leptin were elevated
in obese pregnant mice on a high-fat/high-sugar diet (Rosario
et al., 2015b).

Maternal endocrine and metabolic changes in response to
altered nutrition are similar in experimental models and women.
In human IUGR, maternal serum concentrations of IGF-I,
insulin, and leptin are decreased (Jansson et al., 2006) while obese
pregnant women and pregnancies complicated with gestational
diabetes have higher serum levels of leptin, insulin, IGF-I, and
decreased levels of adiponectin (Lauszus et al., 2001; Jansson
et al., 2008; Aye et al., 2013a, 2015).

Because hormonal regulation of placental nutrient transport is
well established, one keymechanism by whichmaternal nutrition
alters placental function and fetal growth could be through
modulating placental nutrient transport. Consistent with this
hypothesis, various animal experimental models of maternal
undernutrition show decreased placental nutrient transport. For
example, maternal calorie restriction in the baboon caused
IUGR and showed decreased expression and in vitro activity
of key AA transporters, decreased in vivo transplacental AA
transport as well as lower fetal levels of essential AAs (Kavitha
et al., 2014; Pantham et al., 2015b). Calorie restriction in mice
resulted in reduced transplacental glucose and leucine transport
(Ganguly et al., 2012). In rats, calorie, or protein restriction in
late pregnancy decreased neutral AAs and glucose transplacental
transport (Rosso, 1977a,b; Malandro et al., 1996; Jansson et al.,
2006; Rosario et al., 2012). Therefore, the proposed cause-and-
effect link between maternal undernutrition and decreased fetal
growth involves the well-established physiological hormonal
response to starvation. Specifically, the increase in the levels of
catabolic hormones such as cortisol and the decrease in anabolic
hormones including insulin and IGF-I are predicted to inhibit
placental nutrient transport, resulting in decreased fetal nutrient
availability and IUGR. Opposite placental responses have been
reported in maternal over-nutrition in association with fetal
overgrowth. In a mouse model of maternal obesity, in vitro
glucose and AA transporter expression, and activity and in vivo
transplacental glucose and AA transport are increased (Aye et al.,
2015; Rosario et al., 2015b). Importantly, these findings are
consistent with up-regulation of placental AA transport in obese
women giving birth to large babies (Jansson et al., 2013) and
increased placental capacity to transport AAs and glucose in
women with diabetes and fetal overgrowth (Jansson et al., 1999,
2002a).

Inflammatory Mediators
Altered inflammatory profile in the mother, placenta, or fetus
can affect placental function. Specifically, maternal systemic
inflammation has been proposed to play a role in the
developmental programming of metabolic disorders especially in
pregnancies complicated with obesity and gestational diabetes
(Ingvorsen et al., 2015; Pantham et al., 2015a). Male offspring
of dams injected with lipopolysaccharide during mid-gestation
had enhanced food intake, increased body weight and enlarged
abdominal adipose tissue with reduced insulin uptake, consistent

with development of obesity and insulin resistance (Nilsson et al.,
2001). Offspring of dams exposed to high systemic levels of
TNF-α or IL-6 showed increased body weight and adiposity, and
exposure to IL-6 alone resulted in insulin resistance in female
offspring (Dahlgren et al., 2001).

Maternal obesity in women is associated with a low-
grade systemic maternal inflammation and signs of placental
inflammation (Challier et al., 2008) However, levels of circulating
MCP-1, IL-6, and C-reactive protein that were elevated in early
pregnancy in obese women were comparable to those of normal-
weight mothers at the end of pregnancy (Ingvorsen et al.,
2014) suggesting attenuation of maternal inflammatory state
in obese women with advancing gestation. Similarly, women
with high BMI had increased circulating levels of MCP-1
and TNF-α and activation of placental inflammatory pathways
p38-MAPK and STAT3 (Aye et al., 2014b) without signs of
fetal inflammation, suggesting that inflammation associated
with maternal overweight/obesity affects the fetus indirectly by
modulating placental function.

Maternal circulating cytokines could affect placental function
by altering the expression and activity of placental nutrient
transporters. IL-6 and TNF-α have been shown to stimulate
system A activity in cultured primary human trophoblasts (Jones
et al., 2009a). In contrast, IL-1β decreases system A activity
in BeWo cells (Thongsong et al., 2005) and inhibits insulin-
stimulated system A activity in cultured primary trophoblasts
(Aye et al., 2013b). Collectively, these data suggest that a
low-grade maternal systemic inflammation in maternal obesity
influences fetal growth and programs the fetus for future
disease by altering placental functions such as nutrient transport.
Whether direct fetal exposure to inflammatory mediators also
contributes remains to be established.

Placental Malaria and IUGR

Every year, ∼85 million pregnant women are at risk of malaria,
resulting in ∼600,000 low birth weight deliveries (Steketee et al.,
2001; Desai et al., 2007) mainly attributed to IUGR (Guyatt
and Snow, 2004). Recent studies suggest that down-regulation of
placental nutrient transport may contribute to IUGR associated
with malaria (Boeuf et al., 2013; Chandrasiri et al., 2014).

Placental malaria is the sequestration of Plasmodium
falciparum-infected erythrocytes in the intervillous space of the
placenta (Boeuf et al., 2013). This sequestration can stimulate the
recruitment of maternal inflammatory cells such as monocytes
and macrophages, a condition termed intervillositis (Ordi et al.,
1998) that is associated with an increased risk of low birth weight
deliveries (Desai et al., 2007; Rogerson et al., 2007).

Sequestered mononuclear cells and the syncytiotrophoblast
can produce various cytokines and chemokines. In placental
malaria, intervillous plasma levels of IFN-γ and TNF-α, IL-
10, and MCP-1 are increased (Rogerson et al., 2003; Suguitan
et al., 2003). Intervillous plasma MIP-1α, IL-8, and monocyte-
attracting beta-chemokines such as CCL2 and CCL3 are also
increased in placental malaria with intervillositis (Abrams et al.,
2003; Bouyou-Akotet et al., 2004; Ioannidis et al., 2014).
Inflammation could impair placental development and function,
contributing to IUGR in placental malaria. Also, decreased
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maternal circulating IGF-I levels were observed in women
with placental malaria, especially with intervillositis (Umbers
et al., 2011). Maternal leptin levels were reduced in mothers
with placental malaria (Kabyemela et al., 2008). Importantly,
placental malaria with intervillositis is associated with impaired
placental AA uptake (Boeuf et al., 2013) and BM GLUT-1
expression (Chandrasiri et al., 2014). Therefore, inflammation,
more so than infection, is associated with reduced placental
nutrient transport function and deregulation of maternal
hormones, which can impact fetal growth and development.
The mechanisms underlying the decreased placental nutrient
transport capacity and IUGR in placental malaria remain to be
fully established.

mTOR SIGNALING IN PLACENTAL
NUTRIENT SENSING

Mammalian cells have an array of nutrient-sensing signaling
pathways, such as AMP-activated protein kinase (AMPK),
AA response signal transduction pathway, glycogen synthase-3
(GSK-3), mTOR, and the hexosamine signaling pathway, which
regulate cell metabolism in response to altered nutrient levels. Of
these, mTOR is believed to play a central role in placental nutrient
sensing (Jansson and Powell, 2006; Jansson et al., 2012). mTOR
exists as two protein complexes: mTOR Complex 1 (mTORC1)

that regulates cell growth, proliferation, and metabolism and
mTORC2 that regulates cytoskeletal organization and cellular
metabolism. Placental mTOR signaling likely constitutes a critical
link between maternal oxygen and nutrient supply and fetal
growth (Jansson et al., 2012).

Hypoxia inhibits mTORC1 signaling by increased expression
of DNA damage response 1 (REDD1; Brugarolas et al., 2004) and
by activation of AMPK (Inoki et al., 2003). Yung and coworkers
also reported that placental mTORC1 signaling is inhibited in
women residing at high altitude, consistent with the concept
that hypoxia inhibits placental mTORC1 signaling (Yung et al.,
2008). In addition, the activity of the placental mTOR signaling
pathway is influenced by a multitude of upstream regulators such
as amino acids, growth factors, and free fatty acids, which are
likely to be affected by maternal nutrition. Protein restriction
in rats (Jansson et al., 2006) and nutrient restriction in baboons
(Kavitha et al., 2014) resulted in inhibition of placental mTORC1
activity, consistent with human IUGR (Roos et al., 2007; Yung
et al., 2008; Chen et al., 2015). In contrast, placental mTOR
is activated in animal models of maternal obesity (Jones et al.,
2009b; Rosario et al., 2015b) and in obese women delivering large
babies (Jansson et al., 2013).

mTOR also has a key role in regulating AA transporters
in the human placenta. In vitro, mTORC1 positively regulates
system A and system L, critical in transplacental AA transport
(Rosario et al., 2013). mTORC1 regulates cellular uptake of AAs

FIGURE 2 | Placental mTOR as a nutrient sensing signaling pathway. mTOR integrates maternal signals such as nutrients and growth factors to modulate the

transport of nutrients from the maternal to the fetal circulation. mTORC1 modulates the trafficking of AA transporters possibly through differential ubiquitination

mediated by NEDD4-2. Inhibition of NEDD4-2 will result in increased localization of AA transporters in the plasma membrane (Rosario et al., 2013, 2015a; Chen et al.,

2015).
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by affecting the plasma membrane trafficking of transporters by
differential ubiquitination, possibly through the ubiquitin ligase,
NEDD4-2 (Rosario et al., 2013, 2015a; Chen et al., 2015).

We propose that mTOR functions as a key placental
nutrient sensing signaling pathway responding to upstream
maternal signals by modulating transplacental AA transport and
influencing the trafficking of nutrient transporters (Figure 2).

CONCLUSION AND PERSPECTIVES

Changes in the maternal environment can impair fetal
growth and development, which may result in increased
susceptibility to diseases in postnatal life. We have proposed that
placental nutrient sensing allows the placenta to integrate these
perturbations with information from intrinsic nutrient sensing
signaling pathways to regulate secretion of hormones and
placental nutrient and oxygen transfer. Because fetal nutrient
supply programs the fetus for future disease, placental function
determines the growth and life-long health of the fetus.

Placental responses to perturbations in the maternal
compartment are complex and remain poorly understood,
highlighting an urgent need for further well-designed and
mechanistic research in this area. Intervention strategies
to alleviate pregnancy complications and prevent fetal

programming of adult disease are likely to be most effective if
placental function is targeted. mTOR constitutes an important
nutrient sensing signaling pathway believed to play a key
role in placental nutrient sensing. Maternal obesity with fetal
overgrowth is associated with activation of placental mTOR
signaling and up-regulation of placental nutrient transport both
in animal models (Aye et al., 2015; Rosario et al., 2015a,b) and
in women (Jansson et al., 2013). We recently reported that
normalization of maternal circulating levels of adiponectin in
obese mice completely prevented the activation of placental
mTOR signaling, up-regulation of placental nutrient transport
and fetal overgrowth (Aye et al., 2015) consistent with the
idea that targeting placental mTOR may represent an effective
intervention strategy in cases of abnormal fetal growth.
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