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Seasonal influenza epidemics occur year-round in the tropics, complicating the planning of vaccination programs.
We built an individual-level longitudinal model of baseline antibody levels, time of infection, and the subsequent rise
and decay of antibodies postinfection using influenza A(H1N1)pdm09 data from 2 sources in Singapore: 1) a noncom-
munity cohort with real-time polymerase chain reaction–confirmed infections and at least 1 serological sample col-
lected from each participant between May and October 2009 (n = 118) and 2) a community cohort with up to 6
serological samples collected betweenMay 2009 andOctober 2010 (n = 760). Themodelwas hierarchical, to account
for interval censoring and interindividual variation. Model parameters were estimated via a reversible jump Markov
chainMonteCarlo algorithm using custom-designed R (https://www.r-project.org/) and C++ (https://isocpp.org/) code.
After infection, antibody levels peaked at 4–7weeks, with a half-life of 26.5weeks, followed by a slower decrease up to
1 year to approximately preinfection levels. After the third wave, the seropositivity rate and the population-level anti-
body titer dropped to the same level as they were at the end of the first pandemic wave. The results of this analysis are
consistent with the hypothesis that the population-level effect of individuals’ waxing and waning antibodies influences
influenza seasonality in the tropics.

influenza antibodies; influenza outbreaks; seasonality; statistical modeling; tropics; vaccination programs

Abbreviations: HAI, hemagglutination-inhibition; RT-PCR, real-time polymerase chain reaction.

In temperate and subtropical countries, influenza epidemics
occur regularly during the cold winter months and the monsoon
season, respectively (1). However, in tropical countries such as
Singapore, influenza activity is much more irregular (2). This
lack of seasonality on the equator may complicate the plan-
ning of vaccination programs in tropical countries, particularly
selection of the best timing of vaccination campaigns (3).

Higher influenza antibody titers, usually measured by
means of hemagglutination-inhibition (HAI) assays, are
associated with protection against influenza infection (4).
They fluctuate over time according to individuals’ exposures,
increasing substantially due to infection/vaccination and then
gradually waning (5). However, few studies have investigated
people’s long-term antibody trajectories over multiple influenza
waves and how this translates to population-level immunity—
information which is important for planning influenza vaccina-
tion programs.

The 2009 influenza A(H1N1) pandemic afforded us an
unusual opportunity to study the trajectory of immune response
to influenza infection, as well as the link between herd immu-
nity levels and the timing of influenza epidemics, because most
people, especially children and young adults, did not have pre-
existing immunity against the new strain of influenza virus (6).

We developed a statistical model with which to characterize
the evolution of antibody titers against influenza virus infection
using a series of HAI assays collected over multiple influenza
seasons in the community in Singapore, as well as supplemen-
tary real-time polymerase chain reaction (RT-PCR) data col-
lected from various subpopulations. Conventionally, a 4-
fold rise in antibody titers in paired serum samples is
indicative of infection (7, 8), but this measure has low sen-
sitivity (9). Therefore, we synthesized information from
RT-PCR data in addition to repeated serological sampling to
obtain information on the temporal evolution of HAI titers in
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the immediate aftermath of infection; we also estimated the
risk of infection without the restriction of assuming a 4-fold
rise. To do this, we developed a novel method that exploits a
rich data set unobscured by the impact of seasonal forcing.

METHODS

Data

This analysis used serial serological samples obtained from
2 distinct cohorts in Singapore.

The primary data set involved a community cohort recruited
from theMulti-Ethnic Cohort, a substudy of the Singapore Con-
sortium of Cohort Studies, as described in detail elsewhere (10,
11). In total, 838 subjects aged 21–75 years were enrolled, of
whom 760 (91%) with recorded serological data were analyzed
(seeWeb Table 1, available at https://academic.oup.com/aje, for
demographic data). Repeated serological samples were col-
lected at up to 6 different time points fromMay 2009 to October
2010, spanning the H1N1 pandemic and subsequent waves
(Figure 1A), as described in detail elsewhere (11). Each subject
had at least 2 blood samples taken, and 430 (57%) of the 760
subjects had a full set of 6 blood samples.

We supplemented this with a second RT-PCR cohort (n =
118) comprising hospitalized patients, health-care workers,
military personnel, and staff and residents of a nursing
home. These persons had both RT-PCR-confirmed infec-
tion and at least 1 serological sample (average = 2.3; range,
1–7) (12). This data set provided information on the temporal
evolution of titers in the immediate aftermath of infection;
times at which samples were taken (May–October 2009) are
presented in Figure 1B.

Blood samples were assayed for HAI antibody titers against
influenza A(H1N1)pdm09 infection. Written informed con-
sent was obtained from all participants.

In addition, we used routine surveillance data from local
sentinel health-care clinics that submitted weekly nasal and/
or throat swab samples from cases of influenza-like illness.
The samples were sent to the National Public Health Labora-
tory to confirm influenza infection. We analyzed samples that
were positive for influenza A(H1N1)pdm09 among influenza-
like illness cases, to validate whether modeled influenza inci-
dence over time was consistent with community influenza
surveillance.

Statistical analysis

Our primary objective was to model the trajectory of evolv-
ing influenza A(H1N1)pdm09 antibody titers, and the second-
ary objective was to estimate the time of infection for infected
persons as a form of community influenza surveillance. An
individual-level longitudinal model was built of baseline anti-
body levels, risk of infection, time of infection, and the subse-
quent rise and decay of antibodies postinfection. The model
was hierarchical, to account for differences between indivi-
duals, and accounted for interval censoring of antibody titers.
The antibody titer has values ranging from <1:10, 1:10,… to
1:20,…≥1:1,280. To simplify the analysis, we coded the val-
ues as 1 for 1:10, 2 for 1:20, etc., and thus designated the inter-
vals to be (1, 2), etc.—in other words, used a logarithmic
scale. The titer at any time point was modeled via a Gaussian-
distributed latent variable, ~ (μ σ )z N ,it it

2 , for individual i at
time point t . The latent variable was then interval-censored in
line with the recorded titer values. The mean titer, μit, varies
by individual, time, and infection status. It is modeled to be
constant at individual i’s baseline titer level, Bi, if that individual
is never infected. If the person is infected, a boosting term is
added that is characterized by 5 parameters ( )T B M S R, , , ,i i i i i ,
whereTi is the time of infection for individual i, Mi is the time of
peak rise after infection, Si controls the steepness of the rise over
time, and Ri is the additional titer due to infection at the time of
peak rise. The estimated mean titer, μit, at time t for individual i
can therefore be expressed as

⎧⎨⎩μ = + × ( − θ ) ( )B i
B R f t T k

if individual is not infected and
, , otherwise,

1it
i

i i i i i

where ( θ ) = (Γ( )θ ) (− θ )−f x k k x x, , 1/ exp /i i i i
k k

i
1i i is a gamma

density with parameterization shape ki and scale θi, set to
be functions of the mode and steepness parameters: θ =i
− + +M M S/2 4 /2i i i

2 2 and = θk S /i i i
2 2. The model was

parameterized in this way to facilitate identifiability of the
parameters by reducing their interdependency.
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Figure 1. Blood collection period for the community cohort and distri-
bution of the daily numbers of influenza A(H1N1)pdm09 cases detected
in the real-time polymerase chain reaction (RT-PCR) cohort during the
influenza A(H1N1)pdm09 outbreak in Singapore, 2009–2010. The gray
bars in part A indicate the timing of serum samples taken from the com-
munity cohort. The solid black line in part A represents theweekly relative
proportions of influenza A(H1N1)pdm09 infections obtained from routine
primary care surveillance, which provides a reference for the size of the
pandemic at the community level. There were 757, 624, 690, 679, 624,
and 556 samples collected during waves 1–6, respectively. The black
dots in part B give the daily numbers of A(H1N1)pdm09 cases identified
in theRT-PCRcohort.
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The risk and time of infection were modeled assuming a con-
stant hazard of infectionϕ, so that the likelihood contribution
was −ϕe D, where D is the length of follow-up, for persons never
infected and ϕ −ϕe d for those infected at time d. Because infec-
tion status was unknown for subjects in the community cohort,
it was difficult to relate the time of infection to the early dynam-
ics of antibody titers. We therefore supplemented the primary
data with additional data from persons with RT-PCR-confirmed
infection to obtain a better estimate of the initial trajectory fol-
lowing infection and thereby better estimates of the infection
status and time of infection (if infected) of the community
cohort. For those individuals, the (known) time of onset was not
modeled, as the risk to these persons was not deemed to reflect
the risk in the general community. The likelihood contribution
from individual i would therefore be the product of the likeli-
hood function for the titer distribution and, for persons in the
community cohort, the likelihood function for the time of infec-
tion. A complication of estimation is that the dimension of the
parameter vector is not specified a priori but changes with infec-
tion status for each individual. For instance, if the infection
status for individual i were to switch from not infected to in-
fected, the corresponding parameters would change from ( )Bi to
( )B M S R T, , , ,i i i i i . To facilitate changes in parameter dimen-
sion for persons with unknown infection status, we employed
the reversible jumpMarkov chain Monte Carlo algorithm. This
has the advantage of allowing changes in the dimension of the
parameter vector as well as the parameter values by simulating
from their posterior distributions (13). The algorithm used is
described in Web Appendix 1, including the prior distribution,
the reversible jump Markov chain Monte Carlo algorithm, and
validation of the approach. Point estimates are posterior mean
values, and uncertainty intervals are 95% credible intervals.

Epidemic simulation

To assess the consistency of our analysis and our hypothesis
that the waning of herd immunity levels is associated with the
timing of influenza epidemics in the tropics, we performed
a simple simulation using a susceptible-infected-susceptible
model in which individuals could move back and forth between
the susceptible state and the infected state. A description of the
model appears in Web Appendix 2. This model makes a series
of additional assumptions beyond those of the preceding analy-
sis—most importantly that the risk of reinfection depends lin-
early on log HAI titers (estimates derived from Zhao et al. (4))
and uses plausible but arbitrary values of the baseline infection
and importation risks.

All statistical analyses were implemented in R, version
3.1.2 (R Foundation for Statistical Computing, Vienna, Austria).
To overcome speed issues in R, we executed functions in the
C++ language using the Rcpp and RcppArmadillo extensions
(14, 15). All codes are available on GitHub (GitHub, Inc., San
Francisco, California) at https://github.com/zxiahong/titre-
trajectory-aje.

RESULTS

A summary of preinfection titer distributions for the commu-
nity cohort and the RT-PCR cohort is shown in Web Table 2.
The two cohorts had similar preinfection titer distributions

(P = 0.15). For RT-PCR cases, we had data with which to
define the cases’ infection status and time of disease onset (as
opposed to the community cohort, where these parameters had
to be inferred from the model). On average, we found that the
antibody titers rose quickly to (1:40, 1:80) 1 week after onset
of disease, peaked around 4 weeks after onset, and then grad-
ually tapered off (Figure 2).

The modeled titer trajectories (with 95% credible inter-
vals), as well as the observed titer levels of 6 selected indivi-
duals from the community cohort who seroconverted during
the study period, are displayed in Figure 3 (fits for all persons
from both cohorts are presented in theWeb Video). In almost
all cases, the modeled antibody levels pass through or near
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Figure 2. Observed repeated hemagglutination-inhibition (HAI)
antibody titers (A) versus modeled HAI antibody titer trajectories (B)
for the real-time polymerase chain reaction (RT-PCR) cohort (n =
118) from the influenza A(H1N1)pdm09 outbreak in Singapore,
2009–2010. Subjects in the RT-PCR cohort are represented by differ-
ent colors. In part A, the colored dots represent the antibody titers
observed over time, along with lines connecting dots from the same
individual. In part B, each colored line represents themodeled titer tra-
jectory over time for each individual. The white line shows the esti-
mated mean titer trajectory for infected persons, with the black
shaded area representing the 95% credible interval for the estimated
mean titer; the narrowness of the shaded area reflects the large sam-
ple size.
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the titer data, with a shape that reflects the evolution in the
observed data closely. The times of infection, with 80% and
95% credible intervals, were estimated. The width of the uncer-
tainty timewindow ranged from a fewweeks for persons whose
infection fell around the time of serological sampling to 1 year
for those whose infection probably fell between 2 widely spaced
serum samples. In simulations, there was good concordance
between the parameter estimates derived from simulated data
and the parameters used to generate the simulated data (Web
Table 3).

Figure 4 presents individual-level dynamics for the titer tra-
jectory, the seropositivity rates, and the seroconversion rates
over time postonset (in months) for hypothetical individuals
with no prior immunity against influenza A(H1N1)pdm09
infection. On average, the antibody titers peaked at 6.8 weeks
(95% credible interval: 6.0, 7.0) after infection, with an estimated

half-life of 26.5 weeks (95% credible interval: 24.0, 29.0), and
then decreased almost to baseline antibody levels after 12months
postinfection. (The posterior distributions of antibody titers over
time are presented in the Web Results.) The seropositivity and
seroconversion rates were derived directly from the fitted model
and peaked at approximately 50% and 60%, respectively. These
rates may provide guidance for the timing of serological tests de-
signed to estimate epidemic size. This suggests that about 1 in 2
infections would bemissed on the basis of traditional metrics. For
the community cohort, age and sex were not associated with peak
antibody titers, as indicated by the low correlations with posterior
mean peak levels (0.05 (using Pearson’s correlation test, P =
0.49) and −0.01 (P = 0.93), respectively). Older adults had a
shorter half-life of antibody titers against influenza infection
(correlation: −0.18; P = 0.01); however, no difference between
males and females was observed (correlation:−0.11;P= 0.11).
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Figure 3. Observed and modeled hemagglutination-inhibition (HAI) antibody titers over time and estimated time of infection for 6 subjects
selected from the community cohort for the influenza A(H1N1)pdm09 outbreak in Singapore, 2009–2010. Six subjects were arbitrarily selected
from the community cohort to show the goodness of fit of the developed hierarchical model. More than half of the participants in the community
cohort had 6 blood samples collected. Parts A–D represent model-fitting for persons with 6 repeated blood samples collected but with different
times of infection relative to the time of blood sampling. Part E shows an example of an individual who contributed fewer than 6 blood samples. Part
F shows an example of persons estimated not to have been infected during the study period: The majority of participants in the community cohort
had similar titer trajectories as the participant shown in part F. The thick vertical lines in each panel represent the repeatedmeasured antibody titers
over the censored intervals. The black line represents the modeled median antibody titers over time. The gray and light gray shaded areas repre-
sent the 80% and 95% credible intervals (CrIs) for the modeled antibody titer trajectories, respectively. In the black strip at the top of each graph,
the white point represents the estimated time of infection, and the thick horizontal whiskers and thin horizontal whiskers show the 80%CrI and 95%
CrI for the times of infection, respectively.
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The population-level dynamics of immunity were also esti-
mated from the model. The modeled cumulative attack rate
increased rapidly during each of the first 3 waves (Figure 5,
part A; overall and age-stratified cumulative attack rates are
shown in Web Table 4). The corresponding modeled weekly
incidence exhibited patterns similar to the relative proportion
of influenza A(H1N1)pdm09 in the community (Figure 5,
parts B and C), which was not used in the model-building pro-
cess. Unlike the cumulative attack rate, which increased over
time, the antibody titer and seropositivity rate remained flat
after the first wave. By the end of the study period, the anti-
body levels and seropositivity rate had decreased almost to the
level seen just after the first wave (Figure 5, parts D and E).
The next wave of influenza A(H1N1-2009pdm) occurred in
January 2011 (16), by which time the population-level mea-
sures of immunity should have dropped below this level.

In simulations, the epidemic pattern observed at the begin-
ning of the simulation period was qualitatively similar to the
epidemic patterns in Singapore (Figure 6), but it differed
from those of the immediate aftermath of the pandemic. Sim-
ulations yielded yearly epidemics, but the timing of epidemics
was irregular. We found good synchronization between simu-
lated population-level geometric mean titers and influenza epi-
demics over time. This agrees with the hypothesis of waning
immunity being associated with the timing of epidemics in the
tropics, where there is an absence of seasonal forcing (Figure 6,
parts A and B). If we added in a small amount of seasonal
forcing (i.e., if the risk of infection went up and down by 20%
over the course of 1 year), the simulated antibody levels syn-
chronized epidemics to winter seasons (Figure 6, parts C and
D). This is consistent with the influenza epidemic patterns
in the temperate regions of the Northern and Southern
hemispheres.

DISCUSSION

In this paper, we undertook a Bayesian approach to establish
the time of infection and the evolution of influenza antibody ti-
ters at both the individual and population levels. Bayesian evi-
dence synthesis is becoming more widespread in public health
(17, 18), because it provides a flexible framework with which
to integrate various types of information. Moreover, Bayesian
approaches are valuable for longitudinal seroepidemiologic
studies, as they provide a natural and efficient mechanism
for accounting for between-individual variability.

Previous research has shown that delayed collection of
blood samples might lead to underascertainment of influenza
infections (8). A straightforward approach to accounting for
the timing of serological samples was to use a suitable proxy
for influenza levels in the community, such as extraction of
the rate of influenza-like illness from an influenza surveillance
program (4). Taking the current approach, however, meant it
was not necessary to include the proxy measurements of influ-
enza incidence in the community to estimate the time of infec-
tion, as the large number of study participants and the frequencies
of blood samples collected from each participant provided
sufficient information to establish incidence at the individual
level and to reproduce the timings of the first 3waves as observed
with the traditional surveillance well (Figure 5, parts B and C).
The results of sensitivity analysis using a model with a fluctu-
ating hazard of infection are shown in Web Figure 1; similar
results were obtained.

The model developed in this paper was based on data from
the first influenza pandemic wave and 2 subsequent waves due
to a new strain of influenza virus. The majority of participants
would have had no or little immunity against the new pandemic
strain, so we assumed a homogeneous risk of infection for all
members of the community cohort. In contrast, the general pop-
ulation would have had a broad range of baseline antibody titers
at the beginning of a seasonal influenza epidemic, which would
necessitate adaptation of the model to include the starting titer as
a model feature and allow the risk of infection to change de-
pending on the starting titer.

To model titer trajectories immediately upon infection, we
combined the RT-PCR cohort data with community cohort
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Figure 4. Individual-level dynamics for themodeled hemagglutination-
inhibition (HAI) antibody titer trajectory (A), the probability of having titers
greater than or equal to 1:40 (B), and the probability of seroconversion
(C) over time during the influenza A(H1N1)pdm09 outbreak in Singa-
pore, 2009–2010. The solid lines represent the estimated mean values,
and the dashed lines represent the 95% credible intervals. In part A, the
uncertainty interval bounded by the dashed lines is the 95% credible
interval for the estimatedmean titer.
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data. The RT-PCR assay is likely to have had an atypically high
sensitivity in the current study, because the RT-PCR cohort was
drawn from 3 populations under active surveillance during the
early phase of the pandemic (health-care workers, armed forces
personnel, and residents of long-term care homes). Because
these populations experienced different risks of infection (10),
the RT-PCR cohort was not assumed to have the same risk of
infection as the community cohort, but we did assume that the
two cohorts had similar titer responses after infection. Although
there was a risk that the RT-PCR cohort would have more
symptomatic individuals who might have experienced a differ-
ent titer trajectory from persons with no symptoms or milder
symptoms, we found that the preinfection titer distributions for
the two cohorts were comparable (P = 0.15) and there was
no significant difference in peak titers between the two co-
horts (P = 0.11). Therefore, the RT-PCR cohort should have
represented the community cohort well in terms of antibody
response before and after infection.

The finding that antibody titers peak 6–7 weeks after infec-
tion and drop rapidly within the first 6 months after infection

is consistent with results from previous studies (5, 9, 19–23).
However, different opinions exist as to the time interval for
the half-life of antibody titers (24, 25) (see Web Appendix 3
for more details).

We found a significant association only between age and
antibody half-life postinfection—elderly persons had signifi-
cantly shorter half-lives of antibody titers. Sex, in contrast,
was not a significant confounding factor that influenced
antibody response postinfection. These findings are consistent
with a previous, simpler analysis in which Hsu et al. (5) found a
faster rate of decrease in antibody titers in the older age group,
but no significant difference was observed for sex groups.

We found a rapid rise in population antibody levels and infec-
tions during the first wave of the influenza pandemic in Singa-
pore. However, while numbers of infections rose in both wave 2
and wave 3, population antibody levels reached a near-plateau
that lasted throughout the subsequent epidemic waves. The
slight sawtooth pattern in antibody levels and the seroposi-
tivity rate during waves 2 and 3 might explain the reoccur-
rence of influenza epidemics in a setting like Singapore, where
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Figure 5. Population-level dynamics for the cumulative attack rate (CAR) (A), themodeled (B) and observed (C) incidence of influenza A(H1N1)pdm09,
the geometric mean titer (GMT) (D), and the seropositivity rate (E) over time during the influenza A(H1N1)pdm09 outbreak in Singapore,
2009–2010. For parts A, D, and E, the solid line represents the estimated mean value and the dashed line represents the 95% credible interval.
Part B illustrates the modeled incidence of influenza A(H1N1)pdm09 infection, and part C illustrates the observed relative proportions of influenza
A(H1N1)pdm09 infections among influenza-like illness samples obtained from routine primary care surveillance.
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seasonal forcing is not present to synchronize epidemics to a
particular season. Individual-level simulations built upon the
model provided theoretical support for this hypothesis. In
this paper, we have postulated that changes in population-
level immunity levels resulting from the aggregation of indi-
vidual antibody trajectories, as measured by HAI titers, may
plausibly be associated with the timing of influenza epidemics
in the tropics (26, 27). Othermechanisms for immunity, including
high levels of cross-reactive cellular responses from seasonal

influenza infections or boosted cross-reactive antibodies (28–30)
and other hypothesized mechanisms, such as antigenic changes
in the virus, fluctuations in precipitation (31) between monsoon
and nonmonsoon time periods, importations from seasonal out-
breaks in the Northern and Southern hemispheres (2, 3), or ran-
domness alone (32), may also suffice to explain the timing of
subsequent waves of the 2009 pandemic and the irregular timing
of seasonal epidemics in aseasonal settings. Further work to val-
idate these findings and assess the importance of this mechanism
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Figure 6. Simulated numbers of influenza cases (parts A and C) and population-level geometric mean titers (GMTs) (parts B and D), with (A and
B) and without (C and D) seasonal forcing, for the influenza A(H1N1)pdm09 outbreak in Singapore, 2009–2010. The line in each graph shows the
simulated number of cases or GMTs over a period of 10 years. (White backgrounds show odd years; gray backgrounds show even years.) The sim-
ulation was carried out in a hypothetical population with a size of 1,000, and we assumed that each individual started with no or little immunity
against influenza. Parts A and B show the scenario in which there is no seasonal forcing (i.e., γ = 0), while parts C and D show the scenario in which
there is seasonal forcing of 20% in the community (i.e., γ = 0.2).
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relative to others, such as antigenic drift in the tropics, would
be valuable.

Our model suggests that seropositivity and seroconversion
peak at 50% and 60%, respectively, after the onset of influenza
infection. Both of these values are lower (by 10%–20%) than
what has been observed in other studies (5). The difference
may result from the criterion used to define influenza infection—
that is, a 4-fold rise in antibody titers between successive blood
samples. Thismight underestimate the total number of infections,
because some infections may be limited to a 2-fold rise (9). The
model developed here, however, is not limited by the use of a
4-fold rise in order to confirm infection. As a result, the denomi-
nators for calculating the seropositivity and seroconversion rates
are higher, as more people are inferred to be infected, lowering
the estimates accordingly.

There were some limitations in this study. The model devel-
oped here depends on the availability of RT-PCRdata for a subset
of participants, which could be costly and logistically challenging,
though when taking the same approach as we did, the confirmed
cases need not be from the same population as the serological
data. The uncertainty intervals for the estimated time of infection
depend on the time window between blood samples (Web
Table 5). For some persons, the uncertainty interval for the esti-
mated time of infection is wide (e.g., see Figure 3C), a reflection
of the fairly wide time window between the timings of the third
and fourth blood samples in our study. Future studies might tar-
get slightly more frequent serum sampling around epidemic
waves. The model was developed on the basis of data from the
first 3 epidemic waves of a new influenza strain (influenza
A(H1N1)pdm09), and as a result, it is not clear to what extent
the findings apply to seasonal influenza infections and after mul-
tiple waves of infections with the pandemic H1N1 strain. Only
the primary antibody response was studied, and the effect on
antibody titers from reinfections was not considered, as the
number of persons with apparent repeat infections in the cohort
was too small to estimate risks of reinfection (n = 3 with 4-fold
rises between successive intervals). Themodel was limited to per-
sons who started without a recent infection, because we assumed
a single infection for all individuals and the time of infection was
restricted to be after the time when the first imported case was
diagnosed in Singapore.

One application of our model is to advise health officials and
researchers on the timing of serological sampling relative to the
start of an outbreak. Once a personwas infected with influenza, it
would take a fewweeks for antibody titers to increase to the level
that was detectable—that is, titers ≥1:40 for a cross-sectional
study or a ≥4-fold rise in antibody titers for a longitudinal
study. Therefore, the optimal timing of the serological sample
for capturing seroconversion during the epidemic is during
the period in which the probability of titers≥1:40 or the proba-
bility of seroconversion peaks—that is, 5–8 weeks after infec-
tion. The time window of detectable seroconversion estimated
for H1N1 influenza and the time window of the half-life of anti-
body levels estimated in this paper provide reference points for
estimating the period in which a population may be vulnerable
to the start of a new domestic outbreak (particularly in tropical
settings, where seasonal forcing is weak) and hence determining
when to implement influenza vaccination among people who
are believed to be at risk.
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