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Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent due to the 
worldwide obesity epidemic and currently affects one-third of adults or about one billion 
people worldwide. NAFLD is predicted to affect over 50% of the world’s population by 
the end of the next decade. It is the most common form of liver disease and is associated 
with increased risk for progression to a more severe form non-alcoholic steatohepatitis, 
as well as insulin resistance, type 2 diabetes mellitus, cirrhosis, and eventually hepa-
tocellular carcinoma. This review article will focus on the role of alternative splicing in 
normal liver physiology and dysregulation in liver disease.
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iNTRODUCTiON

Publication of the human genome sequence in 1995, and subsequently other mammalian genomes 
in the following two decades, has revealed a surprisingly small number of genes that must account 
for tremendous species diversity. Indeed, recent estimates have suggested that the number of human 
protein-coding genes may be as low as 19,000 (1). This is surprising given that the Drosophila mela-
nogaster and Caenorhabditis elegans genomes encode 17,000 and 21,733 genes, respectively (2, 3), 
and even the lowly amoeboflagellate Naegleria gruberi, a free-living unicellular eukaryotic organism, 
has 15,727 genes (4). These observations posed a diversity paradox for genetics and challenged the 
one gene-one protein hypothesis. Unlike prokaryotic and lower eukaryotic genes, most mammalian 
genes are composed of multiple coding exons with intervening non-coding introns of variable 
length. Very often these exons encode discreet protein modules or substructures. Transcription 
of these split genes produces a primary transcript that requires further processing to remove the 
intronic sequences, a process called RNA splicing. Much of our understanding of the mechanism of 
RNA splicing comes from elegant biochemical and genetic studies in yeast and has been extensively 
reviewed (5). The presence of exons and introns provides a solution to the diversity paradox by 
allowing assembly of different proteins by modular construction of RNA transcript isoforms through 
a process termed alternative splicing (6, 7). The diversity of RNA transcripts is further amplified 
by the use of alternative transcription start sites and polyadenylation sequences. Transcriptome 
sequencing has shown that upward of 90% of mammalian genes have multiple transcript isoforms, 
and an estimated 160,000 alternatively spliced transcripts are protein encoding (8, 9). Although 
85% of these genes have a predominant RNA transcript isoform (10), the minor isoforms can have 
different functions and may play an important role in disease.

Alternative splicing and the generation of protein diversity have broad implications for clinical 
disease. It is estimated that 50–60% of 31,250 disease-causing mutations in the Human Gene Mutation 
Database affect splicing (11, 12). Approximately 16% of these mutations are located directly in splice 
sites (13), and 66% are SNPs, microdeletions, or insertions within exons. While some of these latter 
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mutations have a pathogenic effect by altering protein sequence, 
a large proportion do not, but rather interfere with splicing by 
interrupting exonic splicing enhancers or silencers. Cancer has 
been termed a disease of the genome due to the accumulation 
of DNA damage and genetic alterations that cumulatively cause 
transformation and malignancy. Indeed many mutations alter 
protein function by creating constitutively active oncogenic 
proteins or disrupting tumor suppressor proteins. However, it is 
now increasingly recognized that many cancer-associated RNA 
transcripts do not result from point mutations in the RNA itself, 
but rather by changes in expression or function of splicing factors 
that regulate the ordered splicing of primary gene transcripts giv-
ing rise to aberrant expression of oncofetal isoforms with greater 
proliferative capacity.

MeCHANiSM OF ALTeRNATive RNA 
SPLiCiNG

Much of our understanding of mechanism of RNA splicing comes 
from genetic studies in yeast and biochemical reconstitution experi-
ments (5, 14). These studies have shown that the ends of an intron 
are aligned for excision by a complex network of RNA and protein 
interactions involving both splice sites in a large complex called 
the spliceosome. Initially the 5′ splice site is recognized by the U1 
small nuclear ribonucleoprotein particle (snRNP) by base pairing 
of the U1 small nuclear RNA to the 5′ splice site. The U2 snRNP 
is then recruited to the 3′ splice site and branch point sequence 
by the accessory factor U2AF. The complex containing the pre-
RNA, and the U1 and U2 snRNPs is called the pre-spliceosomal 
complex and defines the intron. This complex then recruits the 
U4/U5/U6 tri-snRNP, and the spliceosome undergoes a number 
of rearrangements including replacement of the U4:U6 duplex 
with a U2:U6 duplex, loss of the U4 snRNP, and displacement of 
the U1 snRNP on the 5′ splice site by the U6 snRNP to create 
the catalytically competent splicing complex. The actual splicing 
reaction then proceeds by two transesterification reactions first 
by the branch point adenine at the 5′ splice site then by the exonic 
terminal hydroxyl group at the 3′ splice site resulting in ligation of 
the two exons and liberation of an intron-lariat structure.

What defines whether an exon is recognized in a primary 
RNA transcript? While U1 and U2 snRNPs can interact across 
short introns to define the intron in typical in vitro splicing reac-
tions, this interaction is much less efficient when the size of the 
intron increases above 250 nucleotides (15). As most introns are 
kilobases in length, yet the average size of an exon is ~200  nt, 
definition of the splice sites in vivo is generally thought to occur 
across exons rather than introns, a process termed exon definition 
(16). Thus, exons are defined by binding of U1 and U2 snRNP 
across the exon in the primary transcript followed by the long-
range splice site pairing across the intron to assemble functional 
spliceosomes. Support for this exon-definition model comes from 
the finding that mutation of the downstream 5′ splice site on an 
exon can alter splicing of the upstream intron, so the sequential 
splicing of introns is coordinated and does not occur independent 
of each other.

How does this process allow for the use of different exons or 
splice sites during alternative splicing? In general, alternative exons  

contain weak splice sites that are not recognized efficiently 
(14). For genes that are co-transcriptionally spliced, this can be 
explained by a kinetic competition for assembly of the U1–U2 
complex across alternative exons, or for non-co-transcriptionally 
spliced genes, this could be explained by the differences in the 
stability of the resulting complexes. Whether these weak exons 
are recognized is determined to a large extent by the presence 
of cis-acting binding sites for RNA-binding proteins within the 
exon or adjacent introns in the primary RNA transcript (17–19). 
Two of the most well-studied families of RNA-binding splicing 
regulators are the SR proteins (16 members) and the hnRNPs (20 
members) (20–24), but there are also a number of less-studied 
families of RNA-binding proteins that regulate splicing, includ-
ing the CELF/BRUNOL family, the Zinc-finger proteins, and 
the RBM family (25–27). All proteins contain RNA-binding 
domains allowing sequence specific-binding to RNA. Proteins 
of the SR family have an RNA recognition motif (RRM) at the 
amino-terminus, and a C-terminal domain that is enriched in 
arginine/serine dipeptides (RS domain) and heavily phospho-
rylated. hnRNP proteins show greater structural diversity than 
SR proteins, with RRM, RGG (arginine/glycine rich box), or 
KH (K homology box) RNA-binding domains. Additionally, 
the hnRNPs have auxiliary functional domains, which mediate  
protein–protein interactions and/or localization, and are diver-
gent in protein sequence and structure (28). Both SR proteins and 
hnRNPs can promote or inhibit exon recognition depending on 
sequence context, thus modulating the usage of alternative exons 
or splice sites (14, 29, 30).

ALTeRNATive SPLiCiNG iN LiveR 
DeveLOPMeNT

While liver-specific transcriptional regulation is well established 
and has been studied for decades, liver-specific alternative splic-
ing is less well understood. Alternative splicing has traditionally 
been studied on a gene-by-gene basis, which required prior 
knowledge of the gene transcripts, but the development of high-
throughput array and RNA sequencing (RNA-seq) technologies 
has allowed an unbiased assessment of alternative splicing events 
(Table  1) (31). In a recent study, Nellore et  al. aligned 21,504 
human RNA-seq samples from the Sequence Read Archive to 
the human genome and compared exon–exon junctions to the 
known gene annotation databases (32). Approximately 19% of 
splice junctions (56,861) that were found in at least 1,000 samples 
were not previously annotated, indicating that a great deal of 
transcript diversity is still to be discovered. Brain, liver, and testis 
show the greatest diversity in transcripts with ~35–40% of genes 
showing alternative exon or splice site usage (33).

Changes in alternative RNA splicing have been detected dur-
ing the development of many tissues including the brain, heart, 
and skeletal muscle, and more recently in liver (31). Fetal liver 
does not perform a metabolic function as nutrients are provided 
from the mother via the placenta. Instead the fetal liver supports 
hematopoiesis in the embryo (34). Hepatocytes in the embryo are 
proliferative but they growth arrest and differentiate after birth as 
the liver takes on a metabolic function (35–37). Hematopoiesis 
also switches from the liver to the bone marrow during late 
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TAbLe 1 | Studies reporting alterations of RNA splicing factor expression or alternative splicing in liver.

Study Objective Method Reference

Ameur et al. Nascent transcripts and co-transcriptional splicing in 
brain and liver

RNA sequencing (RNA-seq) on human and chimpanzee RNA from 
brain and liver

(31)

Nellore et al. Alternative splicing across Sequence Read Archive Re-aligned 21,504 RNA-seq samples from SRA (32)

Yeo et al. Alternative splicing across human tissues Re-aligned cDNA and EST alignments (33)

Bhate et al. Alternative splicing during mouse liver development RNA-seq on FVB/NJ mice at embryonic day 18, and postnatal days 
14, 28, and 90

(39)

Peng et al. Transcriptome and alternative splicing during liver 
development

RNA-seq on male C57BL/6 mice (n = 3) at e17, postnatal days 0,  
1, 3, 5,10, 15, 20, 25, 30, 45, and 60

(40, 41)

Lake at al Transcriptome of non-alcoholic fatty liver disease 
(NAFLD)

Microarrays on 10 steatotic, 9 non-alcoholic steatohepatitis (NASH) 
with fatty liver, 7 NASH w/o fatty liver, and 19 normal subjects

(76)

Moylan et al. Transcriptome in NAFLD Microarrays on 40 mild NAFLD and 32 severe NAFLD subjects (77)

Pihlajamaki et al. Comparison of liver transcriptomes in obese and lean 
humans and mice

Microarrays on 5 lean non-diabetics and 8 obese subjects  
undergoing bariatric surgery

(79)

Zhu et al. Liver transcriptome and alcohol-metabolizing genes  
in NAFLD

Microarrays on 40 mild NAFLD, 32 severe NAFLD, 15 alcoholic 
hepatitis, and 7 normal subjects

(83)

Ye and Liu NAFLD transcriptional networks Microarrays on 10 steatotic, 16 NASH, and 19 normal subjects (86)

Ahrens et al. Liver transcriptome and methylome after bariatric 
surgery

Microarrays on 15 NASH, 12 NAFLD, 18 obese and 18 control 
subjects, and 23 post-bariatric surgery

(87)

Teufel et al. Comparison of liver transcriptomes in mouse models  
of NAFLD with human NAFLD or NASH

Microarrays on C57BL/6 mice, and 25 obese, 27 NAFLD, 25 NASH, 
and 39 normal human subjects

(88)

Lin et al. Transcriptome in hepatocellular carcinoma (HCC) RNA-seq on 56 paired tumor and non-tumor tissue; HBV+, HCV+,  
and non-viral

(104)

Burchard et al. Liver transcriptome in HCC Microarrays on 96 HBV-related HCC patients (paired  
tumor + adjacent non-tumor)

(105)

Shiraishi et al. Transcriptome alterations and somatic mutations in  
liver cancer

RNA-seq on 22 paired HBV-related HCC (tumor and non-tumor  
tissue)

(107)

Huang et al. Transcriptome of HBV-related HCC RNA-seq on 10 paired HBV-related HCC (tumor and non-tumor  
tissue)

(108)

Tremblay et al. RNA splicing in HCC Reanalysis of 377 HCC samples from TCGA; HBV+, HCV+, HBV/
HCV+, and non-viral

(109)
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gestation. The transcription factors regulating this transition 
in hepatocytes and cholangiocytes have been well documented  
(37, 38), but many genes also show a switch in fetal-to-adult RNA 
isoform expression reflecting changes in alternative splicing. 
Bhate et al. profiled the mouse liver transcriptomes at embryonic 
day 18 and postnatal days 14 and 28 and at 3 months by RNA-seq 
(39). In addition to 4,882 changes in gene expression between 
e18 and adult, the authors found 529 genes that underwent a 
change in RNA splicing and 214 genes that underwent a change 
in polyadenylation. The majority of these changes in alternative 
splicing were conserved between mouse liver and in human fetal 
(22 weeks) and adult (51 years) liver tissue.

A more extensive study by Peng et  al. profiled mouse liver 
transcriptomes at embryonic day 18, and postnatal days 0, 1, 
3, 5, 10, 15, 20, 25, 30, 45, and 60 of mouse liver development  
(40, 41). They found 7,289 genes that were differentially expressed 
at some point during development, and 829 of these had multiple 
annotated splicing variants with 90 being differentially expressed. 
In addition, they found evidence for 2,383 novel splice isoforms, 
of which 1,455 were detected at multiple times suggesting that 
there is a great deal of liver transcript information yet to be 

annotated. As might be expected, both studies indicated that 
genes associated with amino acid, fatty acid, cholesterol, bile, 
glucose, steroid, urea, and drug metabolism were upregulated in 
adult liver, whereas those associated with hematopoiesis, DNA 
repair and metabolism, cell cycle, and chromosome reorganiza-
tion were downregulated. The changes in alternative splicing 
were not the result of altered cell populations in the liver as the 
majority (88%) were still observed in purified hepatocytes (39). 
A number of splicing factors decreased in expression, including 
Celf1, Celf2, Mbnl1, Ptbp1, Srsf1, 2, 3, 4, 6, 7, and 10, Hnrnpa1, and 
Hnrnph, but Esrp2 was increased in both studies.

A number of these genes have been studied in vitro, knocked 
out in the whole animal or deleted in hepatocytes (Table  2). 
Surprisingly, the Mbnl and Celf family proteins were identified 
in fetal liver. These proteins are expressed highly in muscle and 
have been studied extensively for their involvement in myotonic 
dystrophy (MD) (42–44). The whole-body knockout of Mbnl1 
causes muscle and eye abnormalities reminiscent of MD (45). 
Subsequently, two studies reported that loss of Mbnl2 had no 
muscle phenotype but a third reported myotonia (46–48). 
Interestingly, one Mbnl2 knockout mouse had a brain phenotype 
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TAbLe 2 | Genetic manipulation of RNA-binding proteins in vivo.

Gene Class Model Phenotype Reference

Celf1 CELF/BRUNOL 
family

Homozygous knockout No liver phenotype/growth retardation? No assessment of splicing (50)
Transgenic overexpression Hepatocyte proliferation in young livers. Myotonia and dystrophic muscle histology. 

Altered splicing
(51, 55)

Esrp2 RBM family Homozygous knockout Increased proliferation, diploid and tetraploid hepatocytes, smaller hepatocytes, no 
metabolic changes, or liver damage. Altered splicing

(39)

Hnrnpa1 HNRNP family Homozygous knockout Perinatal lethality. Muscle developmental defects. Impaired cardiac function. Altered 
splicing

(58)

Mbnl1 Zn-finger protein Homozygous knockout No liver phenotype, muscle and eye abnormalities characteristic of myotonic dystrophy. 
Altered splicing

(45)

Mbnl2 Zn-finger protein Homozygous knockout No liver phenotype, defects in spatial memory, abnormal REM sleep. Altered splicing (46–48)

Ptbp1 HNRNP family Homozygous knockout Embryonic lethal. No assessment of splicing (60, 61)

Slu7 Zn-finger protein AAV-shRNA knockdown 
in liver

Reduced gluconeogenesis, insulin resistance, enhanced glucose uptake and glycolysis, 
hepatocyte proliferation, dyslipidemia. Altered splicing

(111)

Srsf1 SR protein family Homozygous knockout Embryonic lethal postimplantation. No assessment of splicing (66)
Hepatocyte knockout No liver phenotype. No assessment of splicing (57)
Cardiomyocyte knockout Excitation coupling defects. Hypertrophic cardiomyopathy. Death due to heart failure (66)

Srsf2 SR protein family Homozygous knockout Embryonic lethal postimplantation. No assessment of splicing (56)
Hepatocyte knockout Apoptosis, liver damage, liver failure. Altered splicing (57)
Cardiomyocyte knockout Dilated cardiomyopathy. Stress-induced death. No assessment of splicing (56)

Srsf3 SR protein family Homozygous knockout Embryonic lethal at blastocyst stage. No assessment of splicing (67)
Hepatocyte knockout Metabolic dysfunction, steatosis, fibrosis, apoptosis and proliferation, liver damage, 

altered ploidy, hepatocellular carcinoma. Altered splicing
(68, 
110)

Srsf10 SR protein family Homozygous knockout Late embryonic lethal with cardiac hypertrophy and liver degeneration. Altered splicing (80)
Heterozygous knockout Increased VLDL secretion and plasma triglycerides. Altered splicing (79)
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with impaired hippocampal plasticity and synaptic transmission 
consistent with high-level expression of Mbnl2 in the brain (48). 
Loss of neither family member is associated with liver defects, 
however, but MBNL1 has been reported to regulate hematopoie-
sis in the fetal liver (49) potentially by regulating splicing of the 
Ndel1 gene. In contrast, CUGBP1 (Celf1) is highly expressed in 
the liver but its effects appear unrelated to its role as a splicing 
factor, but rather are due to its role as a translational regulator as 
it forms a complex with eIF2 to support translation of proteins 
involved in liver function and regulates hepatic stellate cell activa-
tion (50–55).

Mice with complete deletion of Srsf2 die just after embryo 
implantation but mice with hepatocyte-specific deletion of Srsf2 
are viable and have normal size at birth (56, 57). The mice fail to 
thrive, however, and die by 2–3 weeks of age. The cause of death 
is liver failure. In contrast, hepatocyte-specific deletion of Srsf1 
did not have a phenotype and the mice were healthy. Livers in 
the newborn Srsf2 KO mice appear normal in size and color but 
by day 11 the livers are pale and firmer. Histologically, the livers 
show hepatocyte ballooning with periportal fibrosis and inflam-
mation. The liver failure is likely due to the lack of proliferation of 
hepatocytes in the neonatal liver, and increased apoptosis possibly 
due to endoplasmic reticulum and oxidative stress. Metabolically, 
the knockout livers show steatosis and lack glycogen. RNA-seq 
analysis indicated that the mice livers have altered cholesterol and 
bile homeostasis as SRSF2 stimulates expression of liver transcrip-
tion factors Srebp1c, Cebpa, Ppara, Nr1i3 (CAR1), Nr1h4 (FXR), 
Mlxipl (CHREBBP), and Foxa2. Thus, SRSF2 has effects on liver 

RNA splicing that are not compensated by other SR proteins, 
unlike the role of SRSF1 that appears redundant.

Homozygous deletion of Hnrnpa1 causes perinatal lethality 
within 30 min of birth because of muscle developmental defects. 
Death was due to cardiac dysfunction with higher blood pres-
sure and heart rate, but defects were also observed in smooth 
and skeletal muscle (58). No liver phenotype was reported. The 
polypyrimidine tract binding protein PTBP1 (HNRNPI) binds 
to intronic sequences upstream of the 3′ splice site and represses 
splicing of pre-mRNAs (59). The effect of PTBP1 on liver func-
tion in  vivo has not been studied as the homozygous deletion 
of Ptbp1 is embryonic lethal at the implantation stage (60, 61). 
In HepG2 hepatoma cells, however, PTBP1 modulates splicing 
of multiple genes involved in cholesterol synthesis and uptake 
including LDLR, MVK, HMGCS1, and PSCK9. It also regulates 
splicing of the fatty acid desaturase genes 2 and 3 (FADS2 and 
3) that are involved in fatty acid elongation and unsaturation  
(62, 63). Consequently, omega-3 and omega-6 poly-unsaturated 
fatty acids were reduced following Ptbp1 knockdown, but 
saturated and mono-unsaturated fatty acids were not altered. 
Interestingly, PTBP1 is upregulated during hepatitis B virus 
infection and reduces expression of the proapoptotic form of FAS, 
which may contribute to the survival of infected hepatocytes (64).

Changes in alternative splicing during the mesenchymal to 
epithelial differentiation have been attributed to the splicing fac-
tors ESRP1 and ESRP2 (65). Expression of Esrp2 was increased in 
the adult liver and ablation of Esrp2 led to impaired adult splic-
ing patterns implicating this splicing factor in the fetal-to-adult 
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transition in hepatocytes (39). The livers did not show changes in 
morphology, however, nor did they display signs of liver damage, 
or any alterations in lipid, cholesterol, or glucose metabolism.

Other splicing factors have also been implicated in hepatocyte 
differentiation. Mice with complete loss of Srsf1 or Srsf3 die dur-
ing early embryogenesis, but mice carrying a hepatocyte-specific 
deletion of Srsf1 or Srsf3 are viable (66, 67). The hepatocyte-
specific deletion of Srsf1 did not show an overt liver phenotype 
but loss of Srsf3 caused impaired hepatocyte maturation (57, 68). 
The impaired differentiation was consistent with mis-splicing of 
Hnf1a that is critical for liver development, leading to reductions 
in other liver-enriched transcription factors including HNF6α 
(Onecut1), HNF3α (Foxa3), and C/EBPα. Consequently, the 
livers continued to express fetal markers such as α-fetoprotein 
(Afp) and H19. The impaired differentiation was associated with 
disrupted hepatic architecture characterized by large irregular 
hepatocytes, with compressed sinusoidal spaces and bile canali-
culi, and reduced binuclearity. Interestingly, expression of Esrp2 
is significantly reduced in the Srsf3 knockout, which may partly 
explain the impaired differentiation phenotype. The entire 
phenotype cannot be explained by loss of Esrp2, however, as 
Esrp2 ablated mice do not show changes in liver morphology or 
histology. Loss of Srsf3 also causes alterations in glucose and lipid 
homeostasis characterized by reduced glycogen storage, fasting 
hypoglycemia, increased insulin sensitivity, and reduced choles-
terol synthesis although the target genes are distinct from those 
altered in the Srsf2 knockout. Like the Srsf2 knockout, loss of Srsf3 
causes endoplasmic reticulum stress, hepatocyte apoptosis and 
proliferation, and liver damage but did not cause the liver failure 
seen in the Srsf2 knockout.

ALTeRNATive SPLiCiNG AND  
FATTY LiveR

Overnutrition and obesity leads to non-alcoholic fatty liver disease 
(NAFLD) and its more severe form non-alcoholic steatohepatitis 
(NASH) (69, 70). These metabolic disturbances are becoming 
more common in the general population due to the current obe-
sity epidemic (71–73). Both NAFLD and NASH are associated 
with the metabolic syndrome and insulin resistance, and are risk 
factors for type 2 diabetes, non-alcoholic liver cirrhosis, and for 
the development of hepatocellular carcinoma (HCC) (74, 75). So 
understanding the changes that occur in the fatty or NASH liver 
is important to elucidate mechanisms underlying the heightened 
risk for subsequent disease progression. Transcriptome profiling 
by microarray has been performed in humans with NAFLD  
(76, 77). While this allows gene expression changes to be moni-
tored, most studies do not address changes in RNA alternative 
splicing (78). Toward the goal of understanding changes in splic-
ing, Pihlajamaki et al. profiled gene expression in liver samples 
from insulin-resistant humans with obesity (79). The top-ranked 
pathway downregulated in obese liver samples related to RNA 
processing and splicing. A number of splicing factors were 
decreased including SRSF10, SRSF7, SF3A1, SRSF2, SFPQ, and 
HNRNPs A1, K, D, and H. The authors showed that knockdown 
of SRSF10 increased lipogenesis in vitro in HepG2 cells and that 
heterozygous loss of Srsf10 in mice increased plasma triglycerides 

due to increased secretion of VLDL and mis-splicing of the lipid 
storage protein LIPIN-1 (Lpin1). Homozygous deletion of Srsf10, 
however, causes embryonic lethality with liver degeneration (80). 
This was the first example of how a change in RNA splicing could 
cause a change in lipid metabolism in the obese liver. SRSF10 
may also regulate the splicing of the scavenger receptor class B, 
member 1 gene (SCARB1) that encodes the SR-BI and SR-BII 
proteins that mediate reverse cholesterol transport (81). The loss 
of SRSF10 in obesity remains controversial, however, as it was not 
seen in another study (82).

Another large microarray study examined liver gene expres-
sion in 72 subjects with mild or advanced NAFLD, 10 normal 
liver, and 17 subjects with HBV-associated liver failure (77, 83, 
84). Ninety-two splicing factor genes were altered in this dataset 
with 30 splicing factors being altered in either mild or advanced 
NAFLD. Many of these were also identified in the Pihlajamaki 
study. Another study has shown a decrease in SRSF4 in NASH 
(85). A systems biology weighted gene co-expression network 
analysis of 16 human NASH, 10 NAFLD, and 19 normal liver 
samples identified a highly significant module (p  <  2  ×  10−6) 
associated with RNA processing (86). These changes are not in 
all datasets, however, as a German study in 45 morbidly obese 
subjects with NAFLD or NASH did not show alterations in splic-
ing factor expression (87, 88). Studies in mice have shown similar 
changes in the expression of splicing factors in diet-induced 
obesity and NASH models (79, 85, 88, 89). So NAFLD and NASH 
are associated with changes in RNA splicing factor expression in 
the liver, and this likely contributes to alterations in RNA splicing. 
Transcriptome profiling by RNA-seq could potentially provide a 
measure of RNA splicing although such an approach has not been 
published. It will be interesting to see whether these alterations in 
RNA splicing can contribute to the pathophysiology.

ALTeRNATive SPLiCiNG AND HCC

Worldwide, more than 700,000 people are diagnosed and 600,000 
people die each year of liver cancer. HCC is the most common 
primary liver cancer (70–85%) (90) and usually arises after years 
of liver disease and inflammation (91) either due to chronic hepa-
titis B or C virus (HBV/HCV) infection (92), or alcoholic and 
non-alcoholic cirrhosis. The relative importance of these HCC 
subtypes depends on geography. HCC in HBV/HCV endemic 
regions in Asia and Africa is 80–90% virus associated, compared 
to only 20–50% of HCC in the US (93–95). Approximately 
15–25% of HBV-infected individuals will develop chronic liver 
disease including cirrhosis, liver cancer, or failure, and 5–20% 
of HCV-infected individuals develop cirrhosis. A large majority 
(80%) of patients with HCC have cirrhosis, so cirrhosis is a major 
risk factor, but only 8% of patients with cirrhosis will develop 
HCC (96). In addition to chronic alcoholism, cirrhosis can have 
viral or metabolic causes (97–99), and alcohol use by at-risk 
individuals substantially increases the risk of cirrhosis and HCC. 
From a metabolic standpoint, obesity, NAFLD, and NASH are all 
risk factors for cirrhosis (75).

Alterations in RNA splicing in cancer have been known for 
over 30 years (11, 100, 101). Profiling the molecular alterations 
that occur in HCC has uncovered a number of targets with 
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altered RNA splicing including the DNMT3b, AURKB, MDM2, 
TENSIN2, MAD1, KLF6, SVH, TP73, TP53, and FN1 genes 
(102). Many of these changes have been shown to have functional 
effects to promote proliferation, prevent apoptosis, and support 
transformation in cell culture experiments. RNA splicing is also 
important for HBV and HCV viral expression, and many viruses 
hijack the cellular splicing machinery to allow splicing of viral 
RNAs (103). More recent studies have utilized high-throughput 
technologies to survey the HCC transcriptome (104–107). A 
2011 study sequenced the transcriptomes of 10 matched pairs 
of cancer and non-cancerous liver tissue from HBV-infected 
individuals (108). A total of 1,378 differentially expressed genes 
were identified in HCC, but more surprisingly 24,338 exons were 
differentially expressed, and the vast majority of differentially 
expressed genes also contained differentially expressed exons. 
A recent study utilized the RNA-seq data available through the 
TCGA database. Sequence data from 377 liver samples were 
reanalyzed to assess alterations in RNA splicing, uncovering 
~45,000 alternative splicing events (109). These events were fur-
ther filtered allowing the identification of 3,250 transcripts from 
2,051 genes whose expression was altered in HBV-associated 
HCC, 1,380 transcripts from 907 genes that were altered in HCV-
associated HCC, and 1,517 genes altered in non-viral HCC. Of 
these transcripts, 1,336 were shared by at least two groups. The 
authors also assessed splicing factor expression in these samples 
and found altered expression of 26 splicing factors, including 
ESRP2, SRSF2, CELF2, MBNL1, HNRNPA1, and HNRNPH, 
that were found altered in hepatocyte maturation study by Bhate 
et al. (39), that is consistent with oncofetal transformation. These 
studies are likely underestimates of the true dysregulated RNA 
splicing as most approaches rely on databases of known anno-
tated RNA isoforms, so will exclude reads that do not correspond 
to known splicing events.

CONCLUSiON AND FUTURe 
PeRSPeCTiveS

Although gross alterations in gene expression have been docu-
mented in nearly every disease state, recent data indicate that 
more subtle qualitative changes also occur, which may be just 
as important in disease pathogenesis. Recent high-throughput 
technologies are allowing a reassessment of these transcriptional 
changes with much higher resolution, providing a comprehensive 
documentation of individual transcript isoform identity and 

relative expression. These isoforms ultimately encode different 
proteins that could influence cellular function. Do these changes 
play a causal role in disease pathogenesis or are they simply a 
side effect of the disease? Traditionally, cancer was considered 
a disease of the genome and many of the changes in RNA splic-
ing were thought to be a result of global alterations in gene 
expression in the cancer genome. Recent data, however, are 
indicating that subtle alterations in RNA splicing are observed 
in early disease, long before genomic alterations have occurred, 
and these alterations may play a role in predisposition to later 
disease. Data from mouse studies have suggested that altered 
splicing may cause cancer. Overexpression of the SR proteins 
SRSF1, SRSF3, and TRA2β (SRSF10) transforms fibroblasts and 
accelerates tumor growth in nude mice, and the proteins have 
been found to be elevated in certain cancers suggesting that they 
are proto-oncogenes. Interestingly, SRSF3 loss in hepatocytes 
also leads to liver cancer in mice (110), and SRSF3 is reduced in 
human HCC (111), so the properties of individual splicing fac-
tors may depend on cellular context. Aside from the SR proteins, 
other RNA-binding proteins that have been implicated as hnRNP 
proteins hnRNPA1, hnRNPA2, hnRNPH, and hnRNPI (PTB) are 
overexpressed in certain cancers (24, 100, 112–114), and knock-
down of the proteins causes apoptosis in vitro. Overexpression of 
the zinc-finger protein MBNL2 in HCC correlates with smaller 
lower grade tumors and inhibits tumor growth and invasion 
in mice (115). Somatic mutations in splicing factor genes have 
also been found in cancers, the most frequently mutated being 
SF3B1, U2AF1, SRSF2, and ZRSR2 (116). Thus, dysregulation of 
RNA splicing may precede and predispose to carcinogenesis, and 
changes in splicing may be an early event in cancer initiation and 
warrant further investigation. Further studies testing individual 
transcript changes will be required to complete our understand-
ing of the subtleties of gene expression that underlie early disease 
pathogenesis.
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