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The accumulation of somatic driver mutations in the human
genome enables cells to gradually acquire a growth advantage
and contributes to tumor development. Great efforts on pro-
tein-coding cancer drivers have yielded fruitful discoveries
and clinical applications. However, investigations on cancer
drivers in non-coding regions, especially long non-coding
RNAs (lncRNAs), are extremely scarce due to the limitation
of functional understanding. Thus, to identify driver lncRNAs
integrating multi-omics data in human cancers, we proposed a
computational framework, DriverLncNet, which dissected the
functional impact of somatic copy number alteration (CNA)
of lncRNAs on regulatory networks and captured key func-
tional effectors in dys-regulatory networks. Applying it to 5
cancer types from The Cancer Genome Atlas (TCGA), we por-
trayed the landscape of 117 driver lncRNAs and revealed their
associated cancer hallmarks through their functional effectors.
Moreover, lncRNA RP11-571M6.8 was detected to be highly
associated with immunotherapeutic targets (PD-1, PD-L1,
and CTLA-4) and regulatory T cell infiltration level and their
markers (IL2RA and FCGR2B) in glioblastoma multiforme,
highlighting its immunosuppressive function. Meanwhile, a
high expression of RP11-1020A11.1 in bladder carcinoma was
predictive of poor survival independent of clinical characteris-
tics, andCTD-2256P15.2 in lung adenocarcinoma responded to
the sensitivity ofmethyl ethyl ketone (MEK) inhibitors. In sum-
mary, this study provided a framework to decipher the mecha-
nisms of tumorigenesis from driver lncRNA level, established a
new landscape of driver lncRNAs in human cancers, and
offered potential clinical implications for precision oncology.
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INTRODUCTION
In the human genome, cancer driver events, which confer a growth
advantage to tumor cells, are crucial to tumor initiation, progres-
sion, and metastasis. They always destroy key biological pathways,
such as P53 and mitogen-activated protein kinase (MAPK)
signaling, and in turn disrupt the cell homeostasis.1 Currently, great
efforts on protein-coding drivers have largely deepened the under-
standing of tumorigenesis, and they have revealed many clinical
predictive and targeted biomarkers.2,3 However, investigations of
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cancer drivers in non-coding regions, especially long non-coding
RNAs (lncRNAs), are relatively scarce due to the lack of enough
functional understanding.

Like protein-coding genes, a great deal of somatic genetic alterations
also occurs on lncRNAs, such as copy number alteration (CNA).4 It’s
reported that there are about 21.8% of lncRNAs located in regions
with focal CNA in 12 major cancer types,5 and the pervasiveness of
CNA on lncRNAs was also confirmed by Zhang et al.6 Moreover,
some lncRNAs have been demonstrated to play driver roles and
participate in cancer formation by impacting vital biological pro-
cesses.7,8 For instance, lncRNA FAL1, recurrently amplified in
ovarian cancer, represses p21 expression through regulating the
stability of epigenetic repressor BMI1 and then increases cell prolifer-
ation.5 lncRNA PRAL, significantly deleted in hepatocellular carci-
noma, enhances p53 stability via inhibiting MDM2-dependent p53
ubiquitination and further induces cell apoptosis.9

Nevertheless, it is still a huge challenge for researchers to distinguish
driver lncRNAs from a large amount of passengers. As a representa-
tive method, OncodriveFML detects coding and non-coding drivers
by estimating the accumulated functional impact bias of tumor so-
matic mutations based on signals of positive selection.10 Here, we
developed a computational framework, DriverLncNet, to identify
driver lncRNAs in human cancer. It could dissect the functional
impact of lncRNA CNA events on regulatory networks, and it could
capture key functional effectors in dys-regulatory networks. Applying
it to 5 cancer types, we presented a landscape of cancer driver
lncRNAs, and we characterized their associated cancer hallmarks
through functional effectors. Further, we revealed cancer immunity
The Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The Overview of DriverLncNet

(A) Construction of binary copy number profile of candidate driver lncRNAs. (B) Identification of dys-regulatory networks by differential network analysis integrating multi-

omics data. (C) Identification of functional effectors of candidate driver lncRNAs based on non-coding regulatory mechanisms. (D) Determination of final driver lncRNAs using

random walk and network distance. C-Lnc, PLSR, and PPI networks indicate the candidate driver lncRNAs, partial least-squares regression, and protein-protein interaction

network, respectively.
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of driver lncRNAs, and we demonstrated their prognostic and drug
response potential.

RESULTS
The Landscape of Driver lncRNAs in Human Cancers

We proposed a computational framework, DriverLncNet, to identify
cancer driver lncRNAs integrating multi-omics data in human can-
cers (Figure 1; see the Materials and Methods for details). Applying
DriverLncNet to 5 The Cancer Genome Atlas (TCGA) cancer types
referring to 2,148 patients, we totally identified 117 driver lncRNAs
(71 amplified and 46 deleted) with different numbers of functional
effectors (Table S5). On average, there were 23 driver lncRNAs per
cancer type (ranging from 4 to 36) (Figure S2). These driver
lncRNAs were amplified or deleted in 10%–58% of patients,
and their copy number level significantly affected their expression
(p < 0.05, one-sided Wilcoxon test; Figure 2A; Table S6). Some
have been demonstrated to be cancer drivers through biological ex-
periments, such as PVT1 and ANRIL (also known as CDKN2B-AS1)
(Table S7).
Notably, ANRIL was copy number deleted in 58% of glioblastoma
multiforme (GBM). It was located on chromosome 9p21 and was re-
ported to be recurrently deleted in multiple cancer types.11 ANRIL
deletion significantly reduced its expression (16-fold decrease,
p = 3.71e�17, one-sidedWilcoxon test; Figure S3A). Finally, we iden-
tified 33 functional effectors (4 microRNAs [miRNAs] and 29 genes)
of ANRIL in the dys-regulatory network (Figure 2B). Among those,
miR-375 and miR-637 have been demonstrated to be cancer-related
miRNAs involved in cell cycle and apoptosis processes.12 Also,
the 29 functional effector genes participated in these processes
(p < 0.05, hypergeometric test; Figure 2C), and they were significantly
enriched in known cancer genes (p = 0.0073, hypergeometric test),
supporting the driver role of ANRIL in cancer.11 Also, ANRIL was
closely associated with two known cancer driver genes, PTEN and
PDGFRA, in the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) network, mainly depending on several shared
functional effector genes related to cell cycle and apoptosis, such as
MDM2, E2F2, ATF2, NDC80, and GADD45B (Figure S3B). Actually
PTEN and PDGFRA themselves and their functional effectors were
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Figure 2. Driver lncRNAs and Their Functional

Effectors in Human Cancers

(A) Copy number ratio in CNA samples (y axis), influence

of copy number on expression (x axis; jlog2(FC)j, where
FC = mean expression [CNA samples]/mean expression

[wild-type samples]), and alteration frequency (circle size)

for each driver lncRNA. (B) The functional effectors in dys-

regulatory network induced by ANRIL deletion in GBM.

(C) Enrichment map for functional effectors of ANRIL.
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also involved in cell cycle and apoptosis (p < 0.05, hypergeometric
test; Figure S3C).

Furthermore, we assessed whether these driver lncRNAs exhibited
similar properties with known cancer genes. Accumulating evidence
has revealed that cancer genes tend to be at early stages of replication
timing, which shaped the landscape of genetic alterations in the can-
cer genome.13 Like known cancer genes, driver lncRNAs showed
significantly earlier replicating time than others using Repli-seq
data from Lawrence et al.14 and 5 cancer cell lines in University of
California, Santa Cruz (UCSC; p = 3.91e�10, p = 1.4e�7, one-sided
Wilcoxon test; Figure S4; see the Supplemental Materials and
Methods for details). Through analyzing phastCons15 conservation
data from UCSC and variant call format file from the 1000 Genomes
project, we observed that driver lncRNAs had higher exon conserva-
tion, higher fraction of rare SNPs, lower SNP density, and
lower derived allele frequency (DAF) (p = 4.697e�5, p = 0.0886,
364 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
p = 0.031, and p = 0.0027, one-sided Wilcoxon
test; Figure S5), suggesting underlying purifying
selection of driver lncRNAs.16,17 Also, driver
lncRNAs showed significantly stronger patho-
genicity and functionality (p = 6.646e�5,
p = 1.74e�6, and p = 0.0129, one-sided Wil-
coxon test; Figure S6) using three popular
methods, Funseq2,16 EIGEN,18 and CADD19

(see the Supplemental Materials and Methods
for details). Taken together, these driver
lncRNAs form a new landscape of non-coding
RNAs in human cancers, which is worthy of
further functional characterization and experi-
mental validation.

Driver lncRNAs Contribute to Cancer

Hallmarks through Functional Effectors

Our framework allowed us to identify driver
lncRNAs and their functional effectors, which
can greatly help us to further characterize the
functional phenotypes of driver lncRNAs. To
clarify the effectiveness of functional effectors,
we took a known driver lncRNA PVT1 in lung
adenocarcinoma (LUAD) as an example for
detailed illustration. Through a small inter-
fering RNA (siRNA) knockdown experiment20
and CRISPR interference technology,21 we utilized gene set enrich-
ment analysis (GSEA) for functional effectors of PVT1, and we found
that these functional effectors were significantly enriched in differen-
tially expressed genes after perturbation of PVT1 (Figures S7A and
S7B), which indicated that PVT1 can significantly influence these
functional effectors. Furthermore, we observed that PVT1 functional
effectors were enriched in the functions of migration and death pro-
cess (Figure 3A). We thus speculated that PVT1might be involved in
the cancer hallmarks of metastasis and apoptosis.

To confirm this speculation, we calculated the pathway activity of the
epithelial-mesenchymal transition (EMT) and apoptosis-associated
pathways from The Molecular Signatures Database (MSigDB) using
a popular method.22 As a result, the activities of these pathways
were significantly correlated with PVT1 expression, such as trans-
forming growth factor b (TGF-b)-signaling pathway and apoptosis
(p < 0.05, p < 0.001, two-sided Wilcoxon test; Figures 3B and 3C).



Figure 3. Cancer Hallmarks and Driver lncRNAs with Functional Effectors

(A) Enrichmentmap of functional effectors ofPVT1 using an enrichment tool gProfiler (p% 0.05). The size of the red circle is proportional to the size of a functional gene set. (B)

EMT- and apoptosis-associated pathways and molecular markers correlated to PVT1 expression (blue for low expression or pathway activity, red for high; Pearson’s

correlation, *p% 0.05, **p% 0.01, ***p% 0.001). (C) Apoptosis pathway activity in PVT1 low- and high-expression groups (two-sided Wilcoxon test). (D) BiPartite graph in

five tumor types. The curve between a cancer hallmark and a driver lncRNA indicates that the lncRNA is associated with the cancer hallmark. The percent under the icon of

cancer hallmark indicates the fraction of GO terms of each hallmark. (E) Three cancer hallmarks of driver lncRNA PVT1.
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Also, some known EMT- and apoptosis-related markers,23,24 such as
VIM, ZEB1/2, and MYC, showed significant correlations with PVT1
(p < 0.05, two-sided Wilcoxon test; Figure 3B). These findings were
consistent with previous studies that PVT1 could suppress cell
apoptosis, migration, and invasion in non-small-cell lung cancer
cells,25,26 suggesting that functional effectors can effectively capture
the functional mechanisms of driver lncRNAs.

Hence, we sought to characterize the cancer hallmark landscape of
driver lncRNAs using their functional effectors in five tumor types.
In brief, a driver lncRNA was considered to be associated with a spe-
cific cancer hallmark conservatively if its functional effectors were
significantly enriched in hallmark gene ontology (GO) terms (Tables
S8 and S9; see the Supplemental Materials and Methods for details).
As a result, 74 of 117 (63.2%) driver lncRNAs were associated with
various cancer hallmarks (Figure 3D). On average, more than two
cancer hallmarks were found to be linked with a specific driver
lncRNA, such as PVT1 in LUAD linked with three cancer hallmarks,
including evading apoptosis, tissue invasion and metastasis, and tu-
mor-promoting inflammation (Figure 3E). These results indicated
that the aberrant lncRNAs can widely influence cancer hallmarks
through their functional effectors and, consequently, contribute to tu-
mor development and progression.

Driver lncRNAs Are Involved in the Tumor Immune

Microenvironment

We next focused on 17 driver lncRNAs related to the immune hall-
marks evading immune detection and tumor-promoting inflamma-
tion. To characterize whether these lncRNAs were associated with
an immunophenotype, we obtained 39 immunosuppressive genes
comprising an immune signature from previous studies (Table
S10). The 17 lncRNAs were strongly associated with these immuno-
phenotype-related genes, with coincident patterns (Figure 4A).
Through assessing the immunosuppressive score based on the signa-
ture using gene set variation analysis (GSVA),27 we observed that
88.2% (15/17) of these lncRNAs showed significant associations
with immunosuppressive scores (p < 0.05, two-sided Wilcoxon test;
Figure 4B). For instance, patients with a high expression of lncRNA
RP11-571M6.8 in GBM had lower immunosuppressive scores than
others (p < 0.001, two-sided Wilcoxon test; Figure 4C). As targets
of cancer immunotherapy, immune checkpoint proteins PD-1,
PD-L1, and CTLA428 also showed lower expression in patients with
a high expression of RP11-571M6.8 (p = 0.035, p = 0.032, and
p = 0.035, respectively; two-sided Wilcoxon test; Figure 4D).

Next, we explored the relationship between lncRNAs and immune
cell infiltration that determined whether tumor cells would escape
from immune-mediated destruction successfully.29 We obtained
three immune cell infiltration profiles of five immune cell types
(including regulatory T [Treg] cells, macrophages, CD8+ T cells, nat-
ural killer [NK] cells, and neutrophils) from previous studies.30–32We
found that 72.2% of lncRNAs were involved in different immune cell
infiltrations in at least one dataset (p < 0.05, two-sided Wilcoxon test;
Figure 4E). Among those, a high expression of RP11-571M6.8 in
366 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
GBM was highly related to the exhaustion of Treg cells, which could
suppress the immune response of cancer, in all three datasets
(p < 0.05, two-sided Wilcoxon test; Figure 4F; Figure S8). Moreover,
two Treg cell markers, CD25 and FCGR2B, whose downregulation
could indicate the exhaustion of Treg cells in the immune
response,33,34 showed significantly negative correlations with RP11-
571M6.8 expression (R = 0.269, p = 0.001; R = 0.349, p < 0.001, respec-
tively, Pearson’s correlation test; Figure 4G). These results
consistently reflected that a high expression of RP11-571M6.8 was
related to low immunosuppression and exhaustion of Treg cells, indi-
cating an enhanced cancer immunity. Taken together, our results re-
vealed the close connections of immune-related driver lncRNAs with
the immunoregulation of cancer, which may be effective markers for
immunotherapy.

Clinical Prognosis of Driver lncRNAs

We wondered whether some driver lncRNAs had clinical prognostic
implications. Since prostatic adenocarcinoma (PRAD) in TCGA had
few dead or disease progression samples, we focused our attention on
the other four cancer types. Through performing Kaplan-Meier and
multivariate Cox proportional hazard regression analyses, we identi-
fied 12 driver lncRNAs that were significantly predictive of overall
survival (OS), 4 of which were also significantly predictive of dis-
ease-free survival (DFS) (Tables S11 and S12).

For example, driver lncRNA RP11-1020A11.1 was significantly pre-
dictive of OS and DFS in bladder carcinoma (BLCA) (p = 0.0228,
p = 0.0285, log rank test; Figure 5A). RP11-1020A11.1, located on
chromosome 3p25, was recurrently amplified in BLCA, and its
expression in amplified tumors was significantly higher compared
to diploid tumors (p = 6.48e�08, Wilcoxon test; Figure 5B). Also,
functional enrichment analysis of its functional effectors showed
that RP11-1020A11.1 participated in cell proliferation, cell cycle,
cell migration, and apoptosis (p = 0.0073, hypergeometric test; Fig-
ure 5C). Under Cox regression analyses with age at diagnosis, gender,
and tumor stage as clinical covariates, we found that high RP11-
1020A11.1 expression was a favorable factor for clinical outcome
(hazard ratio [HR] = 0.29, 95% confidence interval [CI] = 0.14–
0.57, p = 0.0004 for OS; HR = 0.53, CI = 0.27–1.03, p = 0.069 for
DFS; Figure 5D), independent of clinical features. Interestingly, we
found that two other driver lncRNAs, SETD5-AS1 and RP11-
380O24.1, recurrently amplified in 3p25 in BLCA, had similar results
to RP11-1020A11.1 (Table S12), which suggested that the amplifica-
tion of 3p25 may serve as a potential favorable prognostic biomarker
in BLCA. Another driver lncRNA, FAM83A-AS1 in LUAD, was
significantly associated with patient OS and DFS independent of
clinical features, such as age at diagnosis, gender, and tumor stage
(Figures 5E–5H).

Anti-cancer Drug Sensitivity of Driver lncRNAs in LUAD

To explore the potential effects of driver lncRNAs on drug response,
we focused on the 15 driver lncRNAs in LUAD, and we evaluated
whether their CNA could influence drug response across 714 preclin-
ical cell models from the Cancer Genome Project35 (CGP). We found



Figure 4. Cancer Immunity of Driver lncRNAs

(A) Fold change (FC) of mean gene expression in patients with high or low expression of each lncRNA across 5 cancer types. The size of the red (or blue) circle is proportional

to the positive (or negative) log-fold change between patients with high or low expression. (B) Distribution of immunosuppressive scores in patients with high (red) or low (gray)

expression of each lncRNA (*p% 0.05, **p% 0.01, ***p% 0.001, two-sided Wilcoxon test). (C) Immunosuppressive score in patients with high (red) or low (blue) expression

of RP11-571M6.8 in GBM. (D) PD-1, PD-L1, andCTLA4 expressions in patients with high (red) or low (blue) expression of RP11-571M6.8 in GBM. (E) Immune cell infiltration

level and immune-related driver lncRNAs in 3 independent datasets across 5 cancer types (two-sided Wilcoxon test for immune cell infiltration level of patients with high and

low expression, p% 0.05). (F) Radar chart of 5 immune cells’ infiltrations in patients with high or low expression of RP11-571M6.8 in GBM in 3 three independent datasets

(two-sided Wilcoxon test). (G) The correlation between expression of Treg cell markers and RP11-571M6.8 expression in GBM.
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Figure 5. The Prognosis Value of Driver lncRNAs

(A and E) KM survival curve for tumor patients with high and low expressions of (A) RP11-1020A11.1 or (E) FAM83A-AS1 for OS and DFS in BLCA. (B and F) Distribution of (B)

RP11-1020A11.1 or (F) FAM83A-AS1 expression in diploid and amplified patients. (C and G) Enrichment map for functional effectors of (C) RP11-1020A11.1 or (G) FAM83A-

AS1. (D and H) Results of multivariable cox regression model for OS and DFS in (D) BLCA or (H) LUAD. Red and green indicate risk factor and favorable factor, respectively.
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that multiple driver lncRNAs presented strong correlations with the
responses of drugs that are associated with lung cancer and other can-
cer treatments (Figure 6A). For example, driver lncRNA CTD-
2256P15.2 amplification can significantly enhance the resistance of
selumetinib (p = 0.01, two-sided Wilcoxon test; Figure 6B, left), a
methyl ethyl ketone (MEK) inhibitor, which can block the MAPK
kinase and reduce the activity of the MAPK-ERK pathway.36 Mean-
while, lncRNA PVT1 copy number amplification enhanced the sensi-
tivity of zibotentan (p = 0.01, two-sided Wilcoxon test; Figure 6C,
left). Other anti-tumor drugs, such as GDC-0941 and gemcitabine,
were associated with CTD-2195M18.1 and NKX2-1-AS1, respectively
(Figures 6D and 6E).

To further affirm the relationship between driver lncRNAs and anti-
tumor drugs in patients, we built a predicted spectrum of drug
response for LUAD patients using drug response data in the CGP
through ridge regression.37 We observed that the patients with
CTD-2256P15.2 amplification or high expression showed strong selu-
metinib resistance (p = 3.7e�3, two-sided Wilcoxon test for copy
368 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
number; R = 0.3, p = 1.54e�7, Spearman rank correlation test for
expression; Figure 6B, middle and right), while PVT1 amplification
or high expression showed strong zibotentan sensitivity
(p = 9.63e�2, two-sided Wilcoxon test for copy number; R = �0.1,
p = 5.02e�3, Spearman rank correlation test for expression; Figure 6C,
middle and right), which supported the results in cell models. Espe-
cially, similar results for CTD-2256P15.2 were confirmed using
another resource, the Cancer Therapeutics Response Portal38

(CTRP version [v.]2). (p = 1.51e�3 for copy number; R = 0.3,
p = 5.35e�10 for expression; Figure S9A). Also, the functional effec-
tors of CTD-2256P15.2 were correlated with selumetinib response
through GSEA (false discovery rate [FDR] = 3.3e�2; Figure S10A).
In addition, CTD-2256P15.2 amplification can mildly enhance resis-
tance of another MEK inhibitor, trametinib, in CGP (p = 0.06, two-
sided Wilcoxon test; Figure S9B, left), which was certified by its
functional effectors through GSEA (FDR = 2e�2; Figure S10B) and
predicted spectrum (p = 4.73e�4 for copy number; R = 0.4,
p = 2.92e�14 for expression in CGP; Figure S9B middle and right;
p = 2.55e�2 for copy number; R = 0.2, p = 3.02e�6 for expression



Figure 6. The Association of Driver lncRNAs and Anti-cancer Drugs

(A) Correlation between drug half-maximal inhibitory concentration (IC50) and lncRNA copy number status in CGP. Dot size is proportional to the p value of correlation; dot

color indicates the drug response effect (drug resistance, red; and sensitivity, green) in CNA samples compared to diploid for a specific lncRNA. (B) Selumetinib has a high

IC50 in samples with CTD-2256P15.2 amplification in cell models (left) and predicted spectrum (middle and right). (C) Copy number status of lncRNA PVT1 and drug

zibotentan. (D) lncRNA CTD-2195M18.1 and drug GDC-0941. (E) lncRNA NKX2-1-AS1 and drug gemcitabine.
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in CTRP; Figure S9C). Our results suggested that the driver lncRNAs
could reflect the patterns of drug response and may be further inves-
tigated as markers for future drug guidance.

DISCUSSION
To date, the identification of cancer drivers from the non-coding re-
gions is quite challenging, due to the lack of enough functional under-
standing. In this study, we developed an integrated computational
framework, DriverLncNet, for identifying driver lncRNAs and their
functional effectors in human cancers. Applying it to 2,148 patients
from 5 cancer types, we identified 117 driver lncRNAs, and we char-
acterized their affected cancer hallmarks through analyzing their
functional effectors. These driver lncRNAs shed new insights into
molecular mechanisms, such as cancer immunity, and they provided
novel prognostic and drug response potential for clinical practice. To
our knowledge, this study represents the most extensive investigation
of driver lncRNAs, and it proves that the integration of multi-omics
data enables us to discover novel driver molecules and their dys-reg-
ulatory mechanisms during tumorigenesis.
Cancer genes generally induce deregulation of their functional
effectors and exert driver roles in cancer. DriverLncNet utilizes dys-
regulatory networks induced by lncRNA CNA events and regulatory
principles of lncRNAs to identify functional effectors of lncRNAs.
Our framework demonstrates that key functional nodes are quite
effective at distinguishing cancer drivers from a large amount of pas-
sengers. Actually, through such a way, many known driver events are
reported to deliver their functional influence from the genomic level
to the functional level and, in turn, contribute to cancer hallmarks.39

For example, tumor suppressor gene TP53 could promote cell-cycle
arrest by activating p21 expression in gliomas.40

In our work, miR-195, miR-136, POU2F2, and WFDC2, as key func-
tional effectors of PVT1 in LUAD, are involved in cell invasion and
apoptosis (Table S13), which reconcile the biological functions of
PVT1. Among them, miR-195 is reported to directly interact with
PVT1 in multiple cancers through miRNA sponge and involved
in tumor cell invasion and apoptosis. Notably, this strategy is
quite dependent on the understanding of regulatory or interaction
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 369
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mechanisms of lncRNAs. With the rapid advance of high-
throughput technologies, more interaction partners with lncRNAs
will be detected, such as DNA elements, RNAs, and proteins, which
will enhance our method to further optimize functional effectors,
greatly benefiting our understanding of the functional influence of
driver lncRNAs.

Another advantage of our framework is determining novel non-cod-
ing drivers by capturing the functional association with known can-
cer driver genes through their functional effectors. Actually, tumor
evolution is a process of somatic mutation and natural selection.41

During this process, several driver events form evolutional depen-
dence, and they exhibit different combination mutational patterns
to drive cancer formation. These evolutional dependency drivers
are always highly functionally associated, such as participating in
similar biological processes and mediating pathway crosstalk, and
they corporately promote clonal expansion or selective sweep.42–44

To confirm that candidate lncRNAs indeed act as cancer drivers,
we utilize network similarity to capture the potential functional
connection with known cancer driver genes, which makes our
framework more powerful.

In summary, our study presents a comprehensive landscape of cancer
driver lncRNAs, which serves as a resource to extend our knowledge
of non-coding driver events in cancer. Our analyses shed new insights
into molecular mechanisms of lncRNAs underlying tumorigenesis,
and they offer implications for prognosis prediction and drug selec-
tion strategies. With the large accumulation of whole-genome
sequencing data, we expect our method to be applicable to the discov-
ery of other non-coding drivers.

MATERIALS AND METHODS
Data Source

For 5 cancer types (including GBM, BLCA, PRAD, LUAD, and head
and neck cancer [HNSC]), we obtained copy number (level 3), muta-
tion (level 2), DNA methylation (level 3), gene expression (level 3),
and miRNA expression (level 3) data, as well as clinical data from
TCGA project. lncRNA expression data from TCGA was collected
from The Atlas of ncRNA in Cancer (TANRIC).45 The relationship
of transcription factor (TF)-targeting mRNA was from Transfac,
UCSC, and Chipbase, while that of miRNA-regulating mRNA was
from miTarbase and Starbase (see the Supplemental Materials and
Methods for details; Tables S1 and S2).

DriverLncNet: A Network-Based Framework to Identify Driver

lncRNAs

In general, cancer drivers abnormally regulate key molecules
(termed as functional effectors) and, in turn, impact downstream
signal pathways and networks, contributing to cancer formation7,8

(see the Supplemental Materials and Methods for details; Figure S1).
To identify driver lncRNAs in human cancers, we proposed a
computational framework, DriverLncNet, through dissecting the
functional impact of lncRNA CNA events by integrating multi-
omics data.
370 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
Building Binary CNA Profile of lncRNAs

Based on the copy number data, we built a binary CNA profile for po-
tential driver lncRNAs (Figure 1A). Potential driver lncRNAs were
selected through four filtering criteria: (1) lncRNAs should have a
dominant CNA type (amplification or deletion, p % 0.05, binomial
test) (see the Supplemental Materials and Methods for details); (2)
for lncRNA expression, we used same threshold with TANRIC, i.e.,
lncRNAs should have detectable expression, which was defined as
those with an average reads per kilobase per million mapped reads
(RPKM) R 0.3 across all samples; (3) lncRNAs should have concor-
dant changes between CNA and expression; and (4) lncRNAs should
harbor CNA in at least 10 samples, for robustly measuring the impact
of CNA on regulatory networks in subsequent analysis.

Constructing Regulatory Networks Associated with CNA and

Wild-Type lncRNAs

To construct dys-regulatory networks associated with CNA of each
lncRNA, we first used linear regression models to build two regulatory
networks (Figure 1B, top). One was constructed using CNA samples of
this lncRNA, and the other was constructed using wild-type samples.
Specially, in a given patient group, a linear regression model for each
genewas constructed to explain gene expressionvariance.Only outlying
genes (that is, the genes showing differential expression between cancer
and normal samples and having high expression variability across can-
cer samples)were used to construct linearmodels (see the Supplemental
Materials andMethods for details). In these models, multi-layer regula-
tory factors, including continuous DNA copy number level, promoter
methylation level, and the expression of TFs and miRNAs regulating
the corresponding genes, were included as covariates.

Given a gene Gi in a specific group containing N samples, there are
J TFs (j = 1, 2, ., J) and K miRNAs (k = 1, 2, ., K) regulating Gi.
A linear regression model is trained as

expGi zbCNCNGi + bmethmethGi +
XJ

1
bTFjexpTFj

+
XK

1
bmiRNAk

expmiRNAk
;

where expGi is the expression level ofGi,CNGi is the copy number level
of Gi, methGi is the promoter methylation level of Gi, expTFj is the
expression level of the jth TF regulating Gi, and expmiRNAk is the
expression level of the kth miRNA targeting Gi. bCN , bmeth, bTFj,
andbmiRNAk

represent regression coefficients of CNGi, methGi, expTFj,
and expmiRNAk, respectively.

Considering the large number of variables and their possibly high
collinearity, partial least-squares regression (PLSR) model was adop-
ted.46 Then, the significance of the effect of regulatory factors on gene
expression of each gene was estimated using 10-fold cross-validation
through the functions (plsr, RMSEP, and jack.test) in R package pls.
Subsequently, we extracted statistically significant regulatory factors
(copy number, promoter methylation, TFs, and miRNAs) with signif-
icant regression coefficients, which was adjusted by the Benjamini-
Hochberg procedure to control the FDR% 0.05. Then, all regulatory
relationships were integrated to form a regulatory network, in which
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the weights of edges were the regression coefficients. Finally, for each
candidate lncRNA, two regulatory networks were built separately us-
ing CNA samples of this lncRNA and wild-type samples. In addition,
we filtered out some regulatory relationships to obtain regulatory net-
works with biological significance47 (see the Supplemental Materials
and Methods for details).

Constructing Dys-regulatory Networks Induced by the CNA of

Candidate Driver lncRNAs

For each candidate driver lncRNA, we compared the two regulatory
networks and got a dys-regulatory network using different network
analysis with DiffK algorithm48 (Figure 1B, bottom). Specifically,
given a node v in a specific regulatory network, we set the node weight
as the sum of the absolute edge weights connecting the node. The for-
mula was shown as

SXDiffKðvÞ=
X
u˛X

wðu; vÞ;

where X is direct neighbors of node v, and wðu; vÞ is the absolute
weight of the edge between nodes u and v. Then, the absolute differ-
ence of the scaled weight of the corresponding node in two regulatory
networks was calculated as follows:

DiffKðvÞ=
������

SADiffKðvÞ
maxu˛A

�
SADiffKðuÞ

�� SBDiffKðv’Þ
maxu’˛B

�
SBDiffKðu’Þ

�
������
;

where A and B are direct neighbors of node v and v’ in two regulatory
networks. To determine the significance of the absolute weight differ-
ences for each node, the genetic alteration profile was randomly
permuted 1,000 times usingBioconductor package BiRewire,49 preser-
ving alteration frequency of candidate driver lncRNAs and samples.
Then, 1,000 random dys-regulatory networks were built, and the cor-
responding absolute weight differences were calculated. The signifi-
cance of the absolute weight difference was calculated as the fraction
of the 1,000 random permutations in which the randomweight differ-
ence was greater than that observed in the actual data. Only the nodes
with p value % 0.05 were regarded as dys-regulatory factors.
Identifying Functional Effectors of Candidate Driver lncRNAs

Considering the fact that lncRNAs could regulate gene expression
through several molecular mechanisms, such as competitive endoge-
nous RNA (ceRNA)-based regulation and chromatin remodeling by
recruiting chromatin complexes (see the Supplemental Materials
and Methods for details), we utilized three criteria to identify key
dys-regulatory factors for each candidate lncRNA (Figure 1C). For
a candidate driver lncRNA, those dys-regulatory factors (1) forming
miRNA response element (MRE) competitive relationships from a
known ceRNA database lnCeDB50 with this lncRNA or (2) co-ex-
pressing with this lncRNA (p % 0.05, Pearson’s correlation test)
were retained. In addition, (3) if the promoter methylation levels of
dysregulated factors were significantly correlated with this lncRNA
expression (p % 0.05, Pearson’s correlation test), these mRNAs
were retained. These retained dysregulated factors were referred to
as functional effectors of the lncRNA.

Detecting Driver lncRNAs through Network Analysis

Like cancer driver genes, driver lncRNAs also can provide tumor cells
with a growth advantage, thus contributing to tumor initiation, pro-
gression, or metastasis. So we supposed that driver lncRNAs and
driver genes should have closely functional associations on biological
network (Figure 1D).We obtained high-confident cancer driver genes
and then identified their functional effectors (see the Supplemental
Materials andMethods for details; Table S3). Through mapping func-
tional effectors of candidate driver lncRNAs and known cancer driver
genes on the STRING network,51 we measured the functional associ-
ation between candidate driver lncRNAs and cancer driver genes by
leveraging two strategies (random walk and network distance).

For random walk,52 the functional effectors of a cancer driver gene
were as seed nodes and the functional effectors of a candidate driver
lncRNA were as response nodes. The formula was shown as

pt + 1 = ð1� aÞwpt +ap0;

where p0 is the vector of initial probabilities of genes in the network
(the probability of the seed nodes are absolute Pearson’s correlation
coefficient between lncRNA expression and seed node expression
and others are 0); pt and pt + 1 are the probabilities of the nodes at
the tth and (t + 1)th steps, respectively; w represents the matrix of
edge weight wij; and a is the restart probability of 0.3. If the maximum
difference between pt + 1 and pt is less than 10e�8, the random walk
reaches the steady state. After random walk, every node in the
network gets a probability P to reflect its association with seed nodes.

To measure the association of response nodes and seed nodes, we de-
signed a statistic as follows:

a_score=
XM

1

1
Rpm

;

where M denotes the number of functional effectors (m = 1, 2,.,M)
of the lncRNA, Pm denotes probability of functional effector m after
randomwalk, Rpm denotes the rank of Pmin all nodes in the decreasing
order, and a_score is the association score of the candidate driver
lncRNA and the cancer driver gene.

For network distance, we used a pre-defined statistic53 to integrally
measure network association between two gene sets. The functional
effectors of a cancer driver gene and a candidate driver lncRNA
were treated as two gene sets, A and B. The formula was shown as

disAB = dAB � dAA + dBB
2

;

where dAB (or dBA) is the mean shortest distance of nodes in A (or B)
with nodes in B (or A), dAB = dBA; dAA ðdBBÞ is the mean shortest dis-
tance of nodes in A (or B) with other nodes in A (or B); and disAB is
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 371
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the network distance of A and B. All weights wij are transformed to
wijso that higher-confidence edges imply shorter paths. The distance
of neighboring nodes is the transformed matrix of edge weight.

To determine the significance of functional association between the
cancer driver gene and the candidate driver lncRNA, we randomly
selected the same count of functional effectors 1,000 times, and we
calculated 1,000 random statistics for two strategies. If the real statis-
tic was less than 5% of frequency of random statistics, the lncRNAwas
considered to be significantly associated with the cancer driver gene.
Combining with the two strategies, the lncRNAs that were associated
with at least one cancer driver gene were identified as driver lncRNAs
(Tables S4 and S5).
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