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Abstract

Motivation: Reverse phase protein array (RPPA) is a powerful dot-blot technology that allows studying protein expression
levels as well as post-translational modifications in a large number of samples simultaneously. Yet, correct interpretation of
RPPA data has remained a major challenge for its broad-scale application and its translation into clinical research. Satisfying
quantification tools are available to assess a relative protein expression level from a serial dilution curve. However,
appropriate tools allowing the normalization of the data for external sources of variation are currently missing.

Results: Here we propose a new method, called NormaCurve, that allows simultaneous quantification and normalization of
RPPA data. For this, we modified the quantification method SuperCurve in order to include normalization for (i) background
fluorescence, (ii) variation in the total amount of spotted protein and (iii) spatial bias on the arrays. Using a spike-in design
with a purified protein, we test the capacity of different models to properly estimate normalized relative expression levels.
The best performing model, NormaCurve, takes into account a negative control array without primary antibody, an array
stained with a total protein stain and spatial covariates. We show that this normalization is reproducible and we discuss the
number of serial dilutions and the number of replicates that are required to obtain robust data. We thus provide a ready-to-
use method for reliable and reproducible normalization of RPPA data, which should facilitate the interpretation and the
development of this promising technology.

Availability: The raw data, the scripts and the NormaCurve package are available at the following web site: http://
microarrays.curie.fr.
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Introduction

The technology of Reverse phase protein arrays (RPPA) [1],

first described in 2001 [2], is a quantitative microformat dotblot

approach. It consists in depositing very small amounts of protein

extracts onto microscope slides covered with nitrocellulose. Each

spot contains 1 ng or less of material and one array can contain up

to five thousand spots. Each array is then labeled with an antibody

that specifically recognizes a protein of interest. Thus, RPPA is the

opposite of forward arrays, also termed antibody arrays [3], where

a large selection of antibodies is fixed on the arrays and incubated

with one protein extract per array. The advantages of RPPA,

compared to antibody arrays, are the small amounts of samples

that are required and the possibility to compare protein expression

among a large number of samples in the same experiment. As for

antibody arrays, the major constraint in RPPA lies in the quality of

the used primary antibodies, and systematic validation of their

specificity in Western Blot is required. Given the advantages of

RPPA, the technology has gained interest notably in the field of

cancer proteomics [4,5]. Examples of successful applications

include the identification of activated signaling pathways in

different types of cancer [6–8] and the identification of prognostic

biomarkers [9–11]. However, a major issue that is still under

development concerns the quantification and the normalization of

the data. Indeed, serial dilutions are generally made of each

sample, which allows appreciating the dynamic range of an

antibody. From these serial dilutions, one relative protein

expression level needs to be obtained for each sample for further

analysis. This step is termed the quantification of the data. Next,

the normalization of the data aims to correct for potential sources

of variability that do not reflect biological differences in protein

expression between the samples under investigation. These include
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(i) differences in the total amount of protein extracts that were

deposited, (ii) differences in the fluorescence background inten-

sities and (iii) spatial effects on the slides.

Several quantification methods have been proposed. Some of

them use a sample-by-sample strategy [12,13] with linear or

logistic models. In this case, a curve is fitted to the serial dilutions

for each sample separately, and from this curve the final protein

expression level of the sample will be read. Next, these models

were improved by applying a joint strategy using all the samples of

the array to fit the curve [14]. The joint logistic strategy was shown

to improve the accuracy and the dynamic range of the estimated

protein expression levels over sample-by-sample estimations [14].

In addition, Hu et al. [15] showed that a non-parametric approach

is more flexible than the logistic model and may be applied to a

greater set of data. Their algorithm is applied array by array and it

is implemented in the SuperCurve R package [16]. Besides

SuperCurve, a mathematically simpler model, called SerialCurve,

was proposed by Zhang et al. [17]. Instead of modeling the

response curve of an antibody, this model characterizes the

relationship between signals in successive dilution steps.

SuperCurve and Serial Curve are currently the most efficient

quantification methods. However, they do not normalize the data,

i.e. they do not remove external sources of variability. Given the

high sensitivity (up to the attomol range) and the high precision of

RPPA (CV of v15%), such variations are expected to bias the

results [18,19]. Few publications propose normalization methods:

Neeley et al. [20] proposed a normalization step, to be applied after

SuperCurve, which mainly removes inter-array variability.

Another method, called microenvironment normalization, was

developed to remove spatial effects within an array and is applied

before SuperCurve algorithm [21]. Although very powerful, this

method requires many positive control spots and thus significantly

diminishes the number of samples that can be analyzed on one

array. In conclusion, no satisfying methods for intra-array

normalization of RPPA data are currently available.

Here, we propose models to simultaneously quantify and

normalize RPPAs. We chose to base our models on SuperCurve

quantification, rather than on SerialCurve, since non-parametric

models are more flexible and may in some cases better fit observed

RPPA data [15,16]. Four different normalization models were

tested. To validate our results, an experiment using a purified

protein (Chk2) was used. In this experiment, human samples,

mouse samples and known concentrations of Bovine Serum

Albumin (BSA) solutions are studied, with or without the addition

of exogenous Chk2. The ability of our models to remove spatial

effects and to correct for variations in the total amount of spotted

proteins is then investigated. All our results are validated by cross-

validation and show that the best performing model takes into

account three parameters for normalization: one negative control

slide, one slide with a total protein stain, and spatial covariates

within the array. This model, which we call NormaCurve, allows

robust and reproducible normalization of RPPA data.

Materials and Methods

Cell lines and Protein Extraction
Cell lines from ATCC have been used in our experiments: NIH-

3T3 (ATCC CRL-1658), MCF10A (ATCC CRL-10317), BT20

(ATCC HTB-19) and T47D (ATCC HTB-133) and Jurkat T

(ATCC TIB-152). Cell lines are grown in appropriate medium

supplemented with 1% penicillin/streptomycin (Invitrogen 15140-

122) and 10% foetal calf serum (Invitrogen 10500-064), except

when serum starvation is applied. For protein extraction, cells are

washed twice in PBS and harvested in hot Laemmli buffer (50 mM

Tris pH = 6.8, 2% SDS, 5% glycerol, 2 mM DTT, 2.5 mM

EDTA, 2.5 mM EGTA, 1x HALT Phosphatase inhibitor (Perbio

78420), Protease inhibitor cocktail complete MINI EDTA-free

(Roche 1836170, 1 tablet/10 mL), 2 mM Na3VO4 and 10 mM

NaF). Extracts are boiled for 10 min at 100uC, passed through a

fine needle to reduce viscosity and centrifuged 10 min at

15000 rpm. The supernatant is harvested and stored at 280uC.

Protein concentration is determined (Pierce BCA reducing agent

compatible kit, ref 23252).

RPPA Experiment
Purified Chk2 protein (Abnova, H00011200-P01) is added to

cell extracts or to BSA (Sigma-Aldrich) solutions and detected

using a monoclonal antibody against Chk2 (Cell Signaling

Technology 3440). The following samples are deposited onto

nitrocellulose covered slides (Schott Nexterion NC-C) using a

dedicated arrayer (Aushon Biosystems 2470). The design is

summarized in the Table 1 and consists of the following extracts:

1. NIH-3T3 cells: the antibody against Chk2 does not recognize

the murine protein. Thus, total protein staining is expected to

be high while background levels are expected with the anti-

Chk2 antibody. The background level corresponds here to

non-specific binding and autofluorescence of the nitrocellulose.

2. NIH-3T3 cells + purified Chk2 protein: both total protein

staining and anti-Chk2 staining are expected.

3. BSA alone: total protein staining is expected to be high while

background levels are expected with the anti-Chk2 antibody.

4. BSA + purified Chk2 protein: both total protein staining and

anti-Chk2 staining are expected

5. MCF10A cells: both total protein staining and anti-Chk2

staining are expected,

6. MCF10A cells + purified Chk2 protein: both total protein

staining and anti-Chk2 staining are expected

7. Several control cell lines (BT20, jurkat, serum-starved

MCF10A, T47D)

For each sample, 15 2-fold serial dilutions are deposited, starting

at 1 mg/ml. For the extracts 1 to 4, starting concentrations of 0.8,

0.9, 1, 1.1 and 1.2 mg/ml were used, complemented or not with

respectively 0.033, 0.038, 0.042, 0.046 and 0.05 ng/ml purified

Chk2. The aim of these varying starting concentrations is to

introduce a variability in the spotted amount of total protein, in

order to test the ability of our models to correct for this. Samples

were divided over two 384-well plates. Each well contained

w20 ml of extract. In the first well plate, all wells were used and

the plate remained open for 125 minutes during printing. In the

second well plate, one fourth of the wells was used and the plate

remained open for 42 minutes. Total printing time was 3 h 48 min

and humidity was kept at w60% during the entire printing process

to avoid evaporation. All samples were deposited 6 times on each

array (technical replicates). A custom printing was used in order to

distribute samples as randomly as possible over the array.

Five arrays are stained with the total protein stain Sypro Ruby

(noted sypro). For this, arrays are incubated 15 min in 7% acetic

acid and 10% methanol, rinsed twice in water, incubated 10 min

in Sypro Ruby protein blot stain (S11791, Invitrogen) and rinsed

again.

In addition, five arrays are labeled with anti-Chk2 antibody

(CST 3440) and five arrays are labeled without primary antibody

(negative control, noted ctrl), using an Autostainer Plus (Dako).

Briefly, slides are incubated with avidin, biotin and peroxydase

blocking reagents (Dako) before saturation with TBS containing

Quantification and Normalization of RPPA Data
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0.1% Tween-20 and 5% BSA (TBST-BSA). Slides are then

probed overnight at 4uC with primary antibodies (or without

primary antibody for negative controls) diluted in TBST-BSA.

After washes with TBST, arrays are probed with horseradish

peroxidase-coupled secondary antibodies (Jackson ImmunoRe-

search Laboratories) diluted in TBST-BSA for one hour at room

temperature. To amplify the signal, slides are incubated with Bio-

Rad Amplification Reagent for 15 minutes at room temperature.

The arrays are washed with TBST, probed with Cy5-Streptavidin

(Jackson ImmunoResearch Laboratories) diluted in TBST-BSA

for one hour at room temperature and washed again in TBST.

The processed slides are dried by centrifugation and scanned

using a GenePix 4000B microarray scanner (Molecular Devices).

Spot intensity was determined with MicroVigene software

(VigeneTech Inc).

SuperCurve Model and Extensions
Initial SuperCurve. Hu et al. [15] proposed a non-paramet-

ric model to quantify relative protein expression levels from RPPA

experiments. The model is yij ~ f1(stepsi z expLevelj) z Eij

where yij is the intensity measured by the scanner at the ith

dilution step for the jth sample, stepsi is the dilution step,

expLevelj is the median effective relative protein expression level

(called EC50), f1 is a non-parametric monotonically increasing

function and Eij is the random error with a median assumed to be

0. The stepsi values are log-scaled dilution factors centered on

their median (i.e equal 22, 21, 0, 1 and 2 for the respective

dilution factors 1/16, 1/8, 1/4, 1/2 and 1). This model

corresponds to ModelSC11 of Table 2. In this model, the

function f1 and expLevelj are unknown but estimated using the

following iterative algorithm (see [15] for details):

1. for each sample j, the initial estimation of expLevelj is

computed using the following logistic function:

yij~azb|
expfc(stepsizexpLevelj)g

1zexpfc(stepsizexpLevelj)g
zEij ð1Þ

where a, b, c and expLevelj are unknown parameters.

2. from all the samples and based on the initial estimates of

expLevelj , the function f1 is estimated by a constrained quadratic

b-spline via the R package cobs.

3. conditionally on the estimated curve f1, the concentrations

expLevelj are estimated by a non-linear regression series by series.

A dilution series corresponds here to the intensities of a given

sample with all its dilution steps.

4. The steps 2 and 3 are iterated twice.

This algorithm is applied array by array and was implemented

in the R package SuperCurve [16]. While allowing the quanti-

fication of the relative protein expression levels expLevelj at the

step 0, SuperCurve does not take into account potential sources of

variability which may bias the measurements. Therefore, we

propose extented SuperCurve models in what follows in order to

improve the signal-to-noise ratio of the data.

Extended SuperCurve. Based on SuperCurve, we propose

models taking into account several covariates which can be

separated into two main groups. The first group of covariates

corresponds to features which depend on the experimental design.

They are the Sample effect which takes into account the

differences between the spotted samples, the covariates Row and

Col which take into account spatial effects on the array, the

Replicate covariate which takes into account the fact that a sample

is spotted in at least two replicates within an array. The covariates

expLevel and steps also fall into this group. The second group of

covariates corresponds to features which are not directly

quantified on the array of interest. They are the covariate ctrl

which corresponds to the intensities of the control array without

primary antibody and the covariate sypro which corresponds to

the intensities of the Sypro Ruby array. These covariates are used

to correct the background level and the total amount of spotted

proteins, respectively. We defined four models (ModelSC1 to

ModelSC4) depending on which covariates from the first group

are included (see Table 2). In addition, for each ModelSC, four

sub-models are tested depending on which covariates from the

second group are considered. The suffixes 1, c, s and cs are added

to the name of the model in order to distinguish the model with

neither ctrl nor sypro, with only ctrl, with only sypro and with the

ctrl and sypro, respectively. For instance, the test of the ModelSC2

with neither ctrl nor sypro will be noted ModelSC21 while the test

with both ctrl and sypro covariates will be noted ModelSC2cs. Five

ctrl slides and five sypro slides have been performed. From the 25

possible combinations of (ctrl, sypro), nine were tested here. These

nine combinations use each array twice.

For all models, a non-parametric function f1 assesses the

expLevel and step effects as in the initial SuperCurve model. For

ctrl and sypro, a linear relationship between the intensities of the

ctrl (or sypro) and the intensities of the specific antibody arrays

(here anti-Chk2 array) was tested and gave poor results (not

shown). Thus, non-parametric functions were used.

In order to add these covariates to the initial SuperCurve model

(ModelSC11), a generalized additive model (gam) of the R

package mgcv [22] was added. In a gam model, the linear predictor

is given by a user specified sum of smooth functions of the

covariates plus a conventional parametric component of the linear

predictor. The likelihood of gam models is modified by the

addition of one or more quadratic penalty coefficient matrices for

each smooth function. Each penalty matrix is multiplied by an

associated smoothing parameter assessed by the minimization of

the REML criterion. The penalities are chosen to minimize an

estimator of the resulting mean squared predictor error [22].

Contrarily to the cobs function, the gam function does not take

into account monotonicity contraints. Consequently, the use of

this function induces the loss of monotonicity in the curve estimate.

The model fitting is performed in the same way as in the initial

SuperCurve algorithm except the second step which is modified as

follows. Based on the initial estimates of expLevelj , all the

Table 1. ModelSC 1: Capacity of the different models to
normalize for the varying amounts of total protein spotted.

Array Sample pvalØ pvals pvalc pvalcs

1 BSA 3.5969e-05 0.1449 0.0420 0.3053

2 BSA 8.2330e-06 0.0991 0.0802 0.2175

3 BSA 1.5165e-06 0.5173 0.0003 0.0063

4 BSA 3.9442e-04 0.3741 0.0016 0.2308

5 BSA 8.2330e-06 0.0991 0.0802 0.2175

1 3T3 3.3674e-08 0.0710 0.0616 0.0644

2 3T3 1.0865e-06 0.2752 0.0561 0.0536

3 3T3 2.1981e-07 0.1603 0.6549 0.2578

4 3T3 1.6289e-10 0.2555 0.1080 0.2672

5 3T3 1.0865e-06 0.2752 0.0561 0.0536

Represented are the p-values of the amount effects without neither ctrl nor
sypro (pval1), with ctrl (pvalc), with sypro (pvals), with ctrl and sypro (pvalcs).

doi:10.1371/journal.pone.0038686.t001
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parameters of the model (either smooth functions or parametric

terms) are estimated by a gam model via the R package mgcv.

In ModelSC4, as the Replicate effect is considered as a random

effect, the third step of the algorithm detailed above has been

modified to assess relative protein expression levels from all the

series of a sample instead of series by series like in the other

models.

The SuperCurve models of Table 2 are applied array by array

and was implemented into the initial SuperCurve package.

Validation Criteria
In order to compare the different models, we defined three criteria:

a cross-validation criterion, a regression criterion and the correlation

coefficient. The cross-validation (CV) criterion establishes a model

using a training set, which is then validated on a separate set of

samples in order to control the robustness and the generalization of a

model. The regression criterion reflects how representative the fitted

curve is for the real data. The correlation coefficient corresponds to

the correlation between the true protein concentrations and the

relative expression levels estimated by the model.

1. Cross-validation (CV) criterion. For the samples NIH-

3T3, BSA and MCF10A, the concentrations of Chk2 are known

(either absolutely or up to a delta as there is an unknown base level

expression of Chk2). From these samples, both a training set and a

test set were built (this procedure is repeated 30 times). Without

loss of generality, let us consider the ModelSC1cs. On a given

training set and test set, a 5-fold CV criterion is computed as

follows:

- On the training set (4/5 of the data): estimates of the

parameters of the non-parametric functions f̂fi and of the other

covariates,

- On the test set (1/5 of the data):

* Estimate of

yij{f̂f2(ctrlij){f̂f3(syproij)~f̂f1(stepsizexpLevelj),

* From the true concentrations expLevelT ,

f̂f1(stepsizexpLevelT ) is computed,

* The cross-validation criterion is then:

Cr~
1

N
|
X

i, j

ff̂f1(stepsizexpLevelj)

{f̂f1(stepsizexpLevelT)g2

ð2Þ

where corresponds to the total number of spots. This criterion is

the most important because it reflects the generalization and the

robustness of the model.

2. Regression criterion. Corresponds to the REML

coefficients of the gam function. We remind that the gam

smoothing regression uses a penalization parameter to avoid

overfitting.

3. Correlation coefficient. Corresponds to the correlation

coefficient between the true concentrations and the relative

expression level estimated by the ModelSC in the training set.

Normalization of the Total Amount of Spotted Proteins
As mentioned previously, small variations in the concentrations

of total protein are voluntarily introduced in order to assess the

ability of our models to correct for these differences. The two

samples NIH-3T3 and BSA are thus spotted starting from five

varying amounts : 0.8 mg/ml, 0.9 mg/ml, 1.0 mg/ml, 1.1 mg/ml

and 1.2 mg/ml. Each starting concentration is then serially diluted

2-fold to obtain 15 dilution steps. The following two step

procedure was then used:

1. First, the observed intensities (y) were normalized according

to the two control arrays (ctrl and sypro) given the normalized

intensities yNorm. Four cases can then be distinguished whatever

the ModelSC of Table 2: models without covariate (Equation 3),

with only ctrl (Equation 4), with only sypro (Equation 5) and with

the two covariates (Equation 6).

yNorm~y ð3Þ

yNorm~y{f̂f2(ctrl) ð4Þ

yNorm~y{f̂f3(sypro) ð5Þ

yNorm~y{f̂f3(sypro){f̂f2(ctrl) ð6Þ

2. The significance of the effect of the five amounts l (0.8, 0.9,

1.0, 1.1, 1.2 mg/ml) is tested on the samples BSA and NIH-3T3

via the following linear model 7 where stepsk corresponds to the

dilution step, amountl corresponds to the amount effect and

Table 2. The initial SuperCurve model (ModelSC11) and the extended SuperCurve models.

Name c s cs

ModelSC1 yij~f1(stepsizexpLevelj)zEij zf2(ctrlij ) zf3(syproij ) zf2(ctrlij )zf3(syproij )

ModelSC2 yijk~f1(stepsizexpLevelj)z zf2(ctrlij ) zf3(syproij ) zf2(ctrlij )zf3(syproij )

SamplekzEijk

ModelSC3 yijklm~f1(stepsizexpLevelj)z zf2(ctrlij ) zf3(syproij ) zf2(ctrlij )zf3(syproij )

SamplekzCollzRowmzEijklm

ModelSC4 yijkn~f1(stepsizexpLevelj)z

SamplekzReplicatenzEijkn

zf2(ctrlij ) zf3(syproij ) zf2(ctrlij )zf3(syproij )

SamplekzReplicatenzEijkn

The best model we propose is bolded.
doi:10.1371/journal.pone.0038686.t002
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(steps, amount)kl corresponds to the interaction between the two

effects, m is the sample and Eklm the normal residuals:

log(yNormklm)~mzstepskzamountl

z(steps, amount)klzEklm

ð7Þ

Spatial Effect Evaluation
To check if our normalization ModelSC removes spatial effects,

the significance of the two effects, Row and Col, was tested before

normalization on the observed intensities (yijk) and after normal-

ization on the estimated residuals (~yyijk ) of the ModelSC of Table 2.

This test was performed on any ModelSC, even if they do not

contain the spatial covariates Row and Col (ModelSC3) in order

to check if the other tested covariates (negative control and total

protein stain) can remove spatial effects or not. Equation 8 is the

linear model taking into account the effect of the jth row and of

the kth column for the ith sample. The significance of the

covariates Row and Col is tested by Fisher tests.

Valijk~mzRowjzColkzEijk ð8Þ

where

Valijk~
yijk if initial model

~yyijk otherwise

(

Required Number of Replicates
We addressed how many technical replicates are required to

evidence a significant difference between two samples S1 and S2.

Each sample is composed of n replicates. We want to know the

minimum difference between the mean relative protein expression

of two samples (D~MeanexpLevel(S1){MeanexpLevel(S2)) required to

be significant. This test can be written as follows: H0 : D~0
against the hypothesis H1 : D=0. Two parameters may vary: n
the number of replicates within each sample and D the difference

between the two mean expression levels after applying Super-

Curve. By varying these two parameters, the power of the test can

be calculated. The power corresponds to the probability of

rejecting the null hypothesis H0 while H1 is true.

To perform such a power analysis, the estimation of the intra-array

variability is required. Indeed, the higher the intra-array variability is,

the higher the mean difference D must be in order to have a relevant

power (a relevant power is usually fixed from 80%). The intra-array

variability (i.e the variance of the residuals Eijk) is assessed by the linear

mixed-effect model 9 [23] taking into account the sample fixed-effect

(Samplei) and the array random-effect (Arrayk) whose variance s2
array

corresponds to the inter-array variability.

expLevelijk~mzSampleizArraykzEijk ð9Þ

Results

We aim to present and validate new models allowing

normalization of RPPA data for possible sources of variability

that do not represent differences in the expression levels of the

protein of interest. These include fluorescence background signal,

differences in the total amount of deposited protein and spatial

bias on the arrays. All statistical models were described in the

Material and Method section.

In order to design an RPPA experiment with known concen-

trations of protein, we used purified Chk2 protein. Chk2 is a

medium-sized protein (around 60 kDa) involved in cell cycle arrest

and DNA damage response. Our antibody against Chk2 proved

highly specific in western blot analysis on human samples and does

not recognize the murine protein (Figure 1). Thus, exogenous

human Chk2 can be added to mouse cell extracts (NIH-3T3)

resulting in known Chk2 protein concentrations, within the

physiological context of a cell lysate. In addition, we added

recombinant Chk2 to human cell extracts (MCF10A) and to

solutions of Bovine Serum Albumin (BSA). We choose not to

deposit the recombinant protein alone, since this does not

represent a normal situation of antibody binding and detection.

The design of the RPPA arrays is detailed in the Materials and

Methods.

Three different stainings were applied: five arrays were labeled

with anti-Chk2 antibody, five arrays were labeled without primary

antibody (negative control, noted ctrl), and five arrays were stained

with the total protein stain Sypro Ruby (noted sypro). None of the

slides showed visible spatial bias and the negative control slides

showed low background levels (Figure 2A). Relative intensities of

each spot were determined using MicroVigene software (Figure 2B)

and quality control of the raw data was performed. Boxplots,

representing the raw intensities of 6 technical replicates for each

dilution step, demonstrate that replicates are highly reproducible

(Figure 2C; please note the scaling differences). To further

demonstrate the reproducibility of our replicates, we calculated

the coefficient of variation (CV, defined as (Standard Deviation/

Mean Intensity) 6100) for each sample and each dilution step, on

each array (Figure 2C). Median CV of all arrays, samples and

dilutions steps was 13.40%. However, we noticed that low

intensities are associated with high CVs and vice versa (Figure

S1). Indeed, median CV for samples with near-background

intensities (v1000) was 16.5%, while median CV for samples

with intermediate intensities (between 1000 and 10,000) was 9.6%,

and median CV for samples with high intensities (w10,000) was

3.9%. Observing high CVs on low intensities is not surprising,

since small variations on very low intensities give rise to high CVs.

For example, a sample for which the intensity of the replicates

ranged from 32 to 102, the mean intensity was 66.1 and the CV

42.6%. Since these values remain within the background noise, a

high CV for low intensities is not problematic. In addition, we

ensured that good correlations exist between the 5 replicate slides.

Indeed, mean Pearsons correlation coefficient was 0.98 for Chk2-

labeled slides, 0.72 for negative control slides and 0.99 for Sypro

Ruby stained slides. In conclusion, the quality of our raw data is

satisfactory in all aspects and we can thus pursue with data

analysis.

To start with, we compared parametric and non-parametric

models to analyze these data. In agreement with Hu et al., 2007,

we observe that non-parametric data better fit the data, in

particular for the negative control slide (not shown). We therefore

chose the non-parametric model SuperCurve as the basis for our

development. The different normalization models that we

developed, presented in the Material and Methods, have been

applied on these raw data. The evaluation of the normalization

described below (cross-validation estimation of relative protein

levels, spatial effect and correction for total amount of protein and

for spatial effects) uses only one set of ctrl and sypro arrays. The
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reproducibility of the results with others sets of ctrl and sypro

arrays is studied afterwards.

Estimation of Relative Protein Expression Levels
We use three validation criteria (cross-validation, regression and

correlation criteria), described in the Material and Methods, to

assess how well the different normalization models (Table 2)

predict protein expression levels. The cross-validation (CV)

criterion establishes a model using a subset of the samples, called

the training set, and is then validated on a separate set of samples

in order to control the robustness and the generalization of a

model. The regression criterion reflects how representative the

fitted curve is for the real data. The correlation coefficient

corresponds to the correlation between the true protein concen-

trations and the relative expression levels estimated by the model.

Better prediction of the protein expression levels result in a lower

cross-validation criterion, a lower regression criterion and a higher

correlation coefficient.

The results of the three validation criteria is shown in Figure 3.

The ModelSC11 corresponds to the initial SuperCurve and is

used as a reference (its criterion value is set at 0). Our models,

including a negative control array (ModelSC1c), a sypro ruby

array (ModelSC1s) or both (ModelSC1cs), are compared to the

initial SuperCurve model. The addition of one covariate (either

ctrl or sypro) significantly improves the CV and regression criteria

(but not the correlation coefficient) compared to the initial

SuperCurve (pv0.05). The results were validated by unilateral

t-tests. Importantly, adding the two covariates (ctrl and sypro) even

further improves the normalization, since all three criteria are

significantly improved. Thus, the simultaneous quantification and

normalization with the two covariates ctrl and sypro improves the

robustness of the estimated protein expression levels. These results

still hold if we consider ModelSC2, ModelSC3 and ModelSC4.

Figure 3 summarizes the results obtained for the five anti-Chk2

arrays. The details of the criteria, array by array, can be found in

Figure S2.

Next, we compared the four models ModelSC1cs, 2cs, 3cs and

4cs, which all take into account a negative control array and a

sypro ruby array, but differ in the effects that are taken into

account (see Table 2). A summary of the results for the five anti-

Chk2 arrays is given in the Figure 4 and validated by bilateral t-

tests (the detailed array by array plots can be found in Figure S3).

Figure 4 shows that the regression criterion is significantly lower in

the model with the maximum of covariates (ModelSC3cs).

However, this result is not confirmed by the CV criterion or by

the correlation coefficient, which are not significantly different

across the four tested ModelSC. Thus, we conclude that, for the

prediction of protein expression levels, the different models

perform similarly, as long as they include both a ctrl and sypro

array for normalization.

Correction of the Total Amount of Spotted Proteins
The correction of RPPA data for the total amount of spotted

protein is a crucial issue. Indeed, variations in total amounts of

spotted protein are likely to happen involuntary in RPPA, mainly

due to imprecise protein dosage methods. Without normalization,

proteins could be erroneously considered as differentially ex-

pressed. In order to test the ability of our normalization models to

correct for differences in the total amount of spotted protein, some

samples were voluntarily spotted at varying amounts (0.8, 0.9, 1,

1.1 and 1.2 mg/ml starting concentrations). As expected, the

sypro arrays permit to distinguish the total amounts of spotted

Figure 1. Western Blot. Western Blot analysis of Chk2 protein levels on a panel of different cell lines shows a single band at the expected size and
no signal in the mouse cell line NIH-3T3. Molecular weights (kD) are indicated next to the protein ladder (first lane). FCS: Fetal Calf serum, Ir: irradiated.
doi:10.1371/journal.pone.0038686.g001
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proteins (Figure S4 ) and they may therefore be useful to remove

this effect. Interestingly, ctrl arrays also reflect the spotted amounts

(Figure S5 ). These arrays may therefore also be useful to

normalize for variations in amounts of total protein.

Table 3 shows the p-values of the effect of the spotted amounts

(0.8, 0.9, 1, 1.1 and 1.2 mg/ml), using the linear model 7 (see

Material and Methods) applied on the ModelSC11, the

ModelSC1c, the ModelSC1s, the ModelSC1cs. As expected, the

ModelSC11 (i.e the initial SuperCurve model, without normali-

zation) is not able to correct for the varying amounts: it estimates

relative protein expression levels that are significantly different

between the varying spotted amounts. This observation demon-

strates the sensitivity of the RPPA technology and emphasizes the

need for a normalization step. Indeed, such variations of 20%

above or below the intended protein concentration are very likely

to occur in RPPA. We here show that, without normalization,

such variations significantly affect the estimated protein expression

levels. Applying a model taking into account at least one covariate

(ctrl and/or sypro) significantly improves the correction for the

spotted amounts. In most cases, the p-value is no longer

significant, indicating that the expression levels are considered

similar after normalization. Similar results are obtained with the

other ModelSC of Table 2.

In conclusion, the addition of at least one covariate (ctrl and/or

sypro) significantly corrects the bias that could be induced by

variations in the spotted amounts of total protein.

Figure 2. Quality control of raw RPPA data. A. Representative images of the Sypro Ruby labeled slides (left), the negative control slides (middle)
and the anti-Chk2 labeled slides (right). No spatial bias was detected visually. On each array, two identical blocks (superarrays) have been printed. The
upper block of 40640 dots is thus a replicate of the lower block. Within each block, samples are deposited in three replicates. Thus, in total, there are
6 replicates per array. B. Dot detection and quantification using MicroVigene software allows to convert images into quantitative numbers and gives
rise to raw data. C. Raw data obtained on a representative Chk2-labeled array are plotted against the 15 serial dilutions for the indicated samples.
Dilutions (dil) are centered around 0 and indicated below each graph. Mean, standard deviation (sd) and the coefficient of variation (cv) are indicated
for each dilution below each graph. Please note the differences in scaling between the four graphs.
doi:10.1371/journal.pone.0038686.g002

Figure 3. Prediction of protein expression: the benefit of using negative control and sypro ruby arrays. Summary of the three
evaluation criteria (CV criterion, regression criterion and correlation coefficient) of the ModelSC1 for the five anti-chk2 arrays. No: No normalization
(initial SuperCurve); Ctrl: addition of a negative control array; Sypro: addition of a total protein stained array; SyproCtrl: addition of both arrays. The
initial SuperCurve (ModelSC11) is used as a reference and set at 0 and the differences to this reference are computed for the other ModelSC1.
doi:10.1371/journal.pone.0038686.g003
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Spatial Effects
Spatial bias are often found in micro-array technologies. They

may be due to heterogeneous arrays or heterogeneous staining.

Although the samples are spotted in a random manner onto the

arrays, these spatial effects may lead to higher or lower signal in

some rows and/or columns and thus bias the results. In this

section, we will test if spatial effects are significantly present on raw

data. Then, we test if the ModelSC of Table 2 are able to remove

these effects.

For each ModelSC of Table 2, the significance of the effects

Row and Col is studied via the Equation 8 in the Materials and

Methods. By eye, we did not detect any spatial bias on the arrays.

Yet, we detect for each array at least one significant spatial effect

(Row and/or Col with pv0.05) on the raw data. Only the

ModelSC3, which takes into account the effects Row and Col

allows the total and reproducible removal of the spatial bias. For

the ModelSC 1, 2 and 4, no trend can be found.

From the previous results, we can conclude that the best model

is the ModelSC3cs, called NormaCurve from now on, which takes

into account the ctrl and sypro arrays for normalization and the

covariates Row and Col for correction of spatial bias.

Reproducibility of Control Arrays
It has been shown that inter-RPPA comparison is challenging in

RPPA due to high variability between slides [20]. Using a linear

mixed-effect model (detailed in Methods S1), we indeed observe a

significant difference in the raw data among the five replicate slides

of Chk2, ctrl and sypro.

All results described before are performed with one ctrl array

and one sypro array. Given the high inter-array variability, we

hypothesized that using different ctrl and/or sypro arrays may lead

to different results. Thus, all tests described above were

reproduced with other combinations of ctrl and sypro arrays.

Despite the high inter-array variability, a very good reproducibility

of the results is obtained, since we confirm with all combinations of

ctrl and sypro arrays that:

N Normalization with the two covariates ctrl and sypro improves

the robustness of the estimated protein expression levels

N Only ModelSC3 completely removes the spatial effects.

N The addition of at least one covariate (ctrl and/or sypro)

always leads to an improved normalization of the spotted

amount of total protein.

To explain this reproducibility, we ranked all samples according

to their estimated protein expression levels after normalization

Figure 4. Prediction of protein expression: comparison between the models ModelSC1cs, 2cs, 3cs and 4cs. Summary of the three criteria
(CV criterion, regression criterion and correlation coefficient) of the four ModelSC1cs, 2cs , 3cs and 4cs, for the five anti-chk2 arrays. The ModelSC1cs is
used as a reference and set at 0. The differences to this reference are computed for the other ModelSC. The regression criterion cannot be calculated
for the ModelSC4cs, since this model includes a random effect.
doi:10.1371/journal.pone.0038686.g004

Quantification and Normalization of RPPA Data

PLoS ONE | www.plosone.org 9 June 2012 | Volume 7 | Issue 6 | e38686



with different sets of ctrl and sypro arrays. A Wilcoxon test was

then performed to compare the ranking of their estimated protein

expression levels. The obtained p-values, close to 1, show that

ranks of expression levels are conserved, no matter the used set of

ctrl and sypro arrays. In conclusion, despite a strong inter-array

variability, all ctrl and sypro arrays can be used for normalization

without affecting reproducibility of the data.

Required Number of Replicates
Next, we address how many replicates are required per sample

to evidence a given difference in expression level between two

samples. For this, we first need to estimate the variability of the

relative expression levels among replicates. Indeed, a higher

variability among replicates means that more replicates will be

required to significantly evidence a given difference in expression

level. Using the linear model in Equation 9 (see Materials and

Methods), we observe a significant inter-array variability, even on

the normalized data. Figure 5 represents the power curves for

increasing numbers of replicates (n from 2 to 5) as a function of the

difference in expression level (x-axis) varying from 2 to 15. The

plot confirms that the higher the number of replicates, the faster

the power grows, i.e the smaller the difference in expression needs

to be. Moreover, not much power is gained between 3 to 5

replicates, meaning that convergence is close to be reached. In

conclusion, with the variability observed in our experience, 3

replicates seems to be a good compromise between statistical

power and space optimization on the arrays.

Required Number of Serial Dilutions
In our experiment, 15 serial dilutions were printed for each

sample, allowing robust curve fitting and thus optimal estimation

Table 3. ModelSC 1: Capacity of the different models to
normalize for the varying amounts of total protein spotted.

Array Sample pval Ø Pvals pvalc pvalcs

1 BSA 3.5969e-05 0.1449 0.0420 0.3053

2 BSA 8.2330e-06 0.0991 0.0802 0.2175

3 BSA 1.5165e-06 0.5173 0.0003 0.0063

4 BSA 3.9442e-04 0.3741 0.0016 0.2308

5 BSA 8.2330e-06 0.0991 0.0802 0.2175

1 3T3 3.3674e-08 0.0710 0.0616 0.0644

2 3T3 1.0865e-06 0.2752 0.0561 0.0536

3 3T3 2.1981e-07 0.1603 0.6549 0.2578

4 3T3 1.6289e-10 0.2555 0.1080 0.2672

5 3T3 1.0865e-06 0.2752 0.0561 0.0536

Represented are the p-values of the amount effects without neither ctrl nor
sypro (pval1), with ctrl (pvalc), with sypro (pvals), with ctrl and sypro (pvalcs).

doi:10.1371/journal.pone.0038686.t003

Figure 5. Power curves. Power curves showing the difference in relative protein expression that can be evidenced with 2, 3, 4 or 5 technical
replicates.
doi:10.1371/journal.pone.0038686.g005
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of relative protein expression. However, the highest dilution steps

show intensities at background levels and may thus not be essential

for the curve fitting. In addition, when many samples need to be

analyzed on the same array, the number of serial dilutions needs to

be reduced due to space limitation. Therefore, we studied how

many serial dilutions are required for robust estimation of

expression. For this, we took into account only the 2, 3, 5, 6 or

14 less diluted (most concentrated) dilution steps of each sample

and compared this to all 15 dilutions. Relative expression levels

were estimated with these varying numbers of dilutions. We then

compared estimated expression levels with true protein concen-

trations for the two most concentrated dilutions steps, which were

Figure 6. Protein expression prediction when using 2, 3, 5, 6, 14 or 15 serial dilutions for each sample. Summary of the three evaluation
criteria (CV criterion, regression criterion and correlation coefficient) for the five anti-chk2 arrays. The model using 2 dilutions is used as a reference
and set at 0. The differences to this reference are computed for the other number of dilutions. p-values (Anova test) are indicated.
doi:10.1371/journal.pone.0038686.g006
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the two points in common among the different analyses. We

computed the regression criterion and the correlation coefficient as

in Figure 3 while for the cross-validation criterion, only the two

common points were considered. We observe that all three criteria

significantly improve when the number of dilutions increases.

Moreover, a distinct improvement occurs between 3 and 5

dilutions, notably for the correlation coefficient and the regression

criterion. We therefore conclude that 5 serial dilutions per sample

is a good compromise between robust estimation of expression

levels and space optimization on the arrays.

Discussion

In this article, we propose a method to simultaneously quantify

and normalize RPPA data, based on the initial quantification

algorithm SuperCurve [15]. We show that the best normalization

model, which we call NormaCurve, takes into account the two

control arrays ctrl and sypro, as well as the two spatial effects Row
and Col. This model, validated by cross-validation, allows the

correction of spatial effects and corrects for differences in total

amount of spotted proteins. When we compared NormaCurve

with the initial SuperCurve model, significantly better correlations

with the true concentrations were obtained with NormaCurve.

Notably, we addressed the crucial issue of varying protein

amounts. We show that, in contrast to the initial SuperCurve

model, NormaCurve is able to correct for the total amount of

spotted protein when this latter varies between 1.2 and 0.8 mg/ml

for the first dilution step. Within this range, involuntary variation

in the concentration of a sample will thus be corrected by

NormaCurve and will not bias obtained results. A next step will be

to study up to which variability in the deposited amounts of

protein the normalization is satisfactory.

Interestingly, to correct for the total amount of spotted protein,

taking into account the two control arrays (both ctrl and sypro) is

not always better than taking either ctrl or sypro (Table 3). This

suggests that these two slides partially vehicle the same informa-

tion. Indeed, we observed that the background fluorescence

measured on the ctrl slide correlates with the total amount of

spotted protein. However, the ctrl array has an antibody-based

detection, similar to the protein detection protocol, while the sypro

array is a chemical staining procedure. The two slides are

therefore not expected to be entirely overlapping. Indeed, we

observe that inclusion of both ctrl and sypro arrays in our model

estimates relative protein expression levels that better reflect true

protein concentrations, compared to either ctrl or sypro alone

(Figure 3). Thus, ctrl and sypro arrays are complementary and

should both be included for an optimal normalization of the data.

The advantage of Normacurve, compared to microenvironment

normalization [21], is that control lysates are not required for

normalization. Thus, the entire array could be used for samples of

interest. NormaCurve is also attractive compared to median-based

normalization, in which the median of all arrays is simply set to the

same level for each sample. Indeed, in contrast to median-based

normalization, NormaCurve does not require a minimum amount

of antibodies to be powerful and it is not affected by a bias in the

chosen antibodies. Thus, NormaCurve appears as the most

versatile and useful normalization method currently available for

RPPA data.

In our experiment, we observed a significant difference among

replicate arrays, thus confirming the high inter-array variability

described elsewhere [20]. This implies that, when an important

number of samples are to be analyzed, these might better not be

divided over several arrays. Rather, a decreased number of

technical replicates and/or of dilution steps should be used for

each sample. Diminishing the number of serial dilutions impairs

the reliability of the estimated expression levels (Figure 6), while

diminishing the number of technical replicates affects the power in

the subsequent statistical analysis (Figure 5). We show that the

optimal compromise between data robustness and space optimi-

zation on the arrays consists of printing each sample in 5 serial

dilutions and 3 technical replicates.

All dilution steps, replicates and samples should be distributed as

randomly as possible over the array. This will make it possible to

optimize the normalization of potential spatial bias and ensure an

efficient identification of the relevant biological differences

between the samples under investigation.

In RPPA, spatial bias is mainly due to intrinsic heterogeneity of

nitrocellulose on the slides and to heterogeneous staining.

NormaCurve proposes a spatial normalization via two linear

covariates (Row and Col). Such spatial bias is a recurrent

problem in the microarray field and different methods have been

proposed to correct this artifact [24,25]. The MANOR method

initially developed for array-CGH experiment [24] did not

perform better than the proposed model (not shown). This may

be explained by the number of spots on RPPA arrays, which is

too low to efficiently estimate a spatial trend. However, future

technical improvements, such as diminished spot size through the

use of smaller spotting pins, might allow increasing the density of

spots on the arrays. Spatial normalization method would then

deserve to be re-evaluated.

Supporting Information

Figure S1 For a Chk2-labeled array, mean intensities were

plotted against the Coefficient of Variation for all samples and all

dilution steps. Note that high CVs are associated with low

intensities.

(TIF)

Figure S2 CV criterion, regression criterion and correlation

coefficient of the ModelSC 1 for the five arrays stained with anti-

Chk2.

(TIF)

Figure S3 Comparison of the ModelSC1cs, 2cs, 3cs and 4cs for

the five arrays stained with anti-Chk2.

(TIF)

Figure S4 Observed intensities on a Sypro Ruby stained array

for the dilution series of the BSA+chk2 samples with five different

starting concentrations (0.8, 0.9, 1, 1.1 and 1.2 mg/ml). The sypro

array correctly distinguishes between the different starting

concentrations.

(TIF)

Figure S5 Observed intensities on a control array (no primary

antibody) for the dilution series of the BSA+chk2 samples with five

different starting concentrations (0.8, 0.9, 1, 1.1 and 1.2 mg/ml).

The ctrl array distinguishes between the different starting

concentrations.

(TIF)

Methods S1 Reproductibility of control arrays.

(PDF)
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