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Abstract

Background: Translation of messenger mRNAs makes significant contributions to the control of
gene expression in all eukaryotes. Because translational control often involves fractional changes in
translational activity, good quantitative descriptions of translational activity will be required to
achieve a comprehensive understanding of this aspect of biology. Data on translational activity are
difficult to generate experimentally under physiological conditions, however, translational activity
as a parameter is in principle accessible through published genome-wide datasets.

Results: An examination of the accuracy of genome-wide expression datasets generated for
Saccharomyces cerevisiae shows that the available datasets suffer from large random errors within
studies as well as systematic shifts in reported values between studies, which make predictions of
translational activity at the level of individual genes relatively inaccurate. In contrast, predictions of
cell-wide translational activity are possible from such datasets with higher accuracy, and current
datasets predict a production rate of about 13,000 proteins per haploid cell per second under fast
growth conditions. This prediction is shown to be consistent with independently derived kinetic
information on nucleotide exchange reactions that occur during translation, and on the ribosomal
content of yeast cells.

Conclusion: This study highlights some of the limitations in published genome-wide expression
datasets, but also demonstrates a novel use for such datasets in examining global properties of cells.
The global translational activity of yeast cells predicted in this study is a useful benchmark against
which biochemical data on individual translation factor activities can be interpreted.

Background

The rate of translation of eukaryotic messenger RNAs is
often stringently controlled and can limit the overall
amount of protein produced from a gene. Moreover,
changes in mRNA-specific translation rates can occur, and
such changes can alter protein production rates independ-
ently of transcriptional activity. Translational control
mechanisms of this kind are known to contribute to cellu-
lar growth and proliferation, the development of organ-
isms, and to the occurrence of disease [1].

Mechanisms by which the translational apparatus can
exert control over gene expression rates are being
described in increasing detail. For simple organisms like
yeast it is now likely that we know most of the canonical
translation factors, and many or most of the non-canoni-
cal factors that exert mRNA-specific effects [2]. Neverthe-
less, the detailed modes of translational control remain
elusive, and even where factors are well studied effects of
small alterations in their activity are still impossible to
predict quantitatively.
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Most of our difficulties in interpreting translational con-
trol in real life likely stem from the fact that the mecha-
nisms in question do not employ simple on-off switches,
but instead use fractional changes in the activity of their
component parts to achieve redistributions of transla-
tional activity among different mRNA species. Such frac-
tional changes cannot be understood from the structure of
pathways alone, but additionally require quantitative
knowledge of reaction rates, fluxes, etc. The development
of reliable quantitative models of translation is thus an
important prerequisite for the understanding of gene
expression.

More and more aspects of the translational pathways in
yeast are being examined in quantitative detail, including
assembly of the cap-binding complex [3], formation of
the ternary eIF2:GTP:tRNAMetcomplex [4,5], formation of
the 43S complex [6], ribosomal subunit joining [7], and
many aspects of translation elongation [8,9]. The results
from these studies already form an important basis for an
increased quantitative understanding of eukaryotic gene
expression. However, scope for the interpretation of
results from such work is limited because to date we do
not have a comparative value of how much gene expres-
sion activity yeast actually requires. The relevant parame-
ters (proteins produced and amino acid bonds formed per
unit time) are difficult to determine experimentally and,
where relevant techniques exist at all, these techniques
require the application of specific and often non-physio-
logical growth conditions. The principal approach for the
experimental determination of translation rates is based
on measurements of incorporation rates of isotopically
labelled amino acids, which can only be performed in
defined (minimal) medium and usually involves limiting
amounts of the labelled amino acid. Moreover, while this
technique is routinely used for the estimation of relative
changes in translation rates (see e.g. refs [10-12] for repre-
sentative examples), the author is not aware of any reports
of absolute estimates for cell-wide translation rates that
have to date been reported using this or any other experi-
mental approach.

Rate information on translational activity should also be
represented in the genome-wide protein abundance and
half-life surveys that have been published over the last
years [13-16]. Indeed, such information has been
extracted in the past based on individual genes [17,18].
However, comparisons between overlapping portions of
datasets from independently conducted studies suggest
that there is a considerable error associated with genome-
wide abundance data [15], and it is not clear in how far
the accuracy of rate-information derived from error-prone
data is itself affected by error. In this study, genome-wide
datasets are examined with respect to the likely extent of
error that they contain, and it is shown that global rate
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information is likely to be more accurately represented
than rate information for individual gene products. Glo-
bal translation rates predicted from the currently available
datasets are then shown to fit relatively well with a
number of completely independently derived parameters,
including the cellular active ribosome content, and kinetic
models of various nucleotide exchange reactions that
occur during translation.

Methods

Raw datasets

Reported protein abundance data were retrieved from the
supplemental material accompanying published studies
by Ghaemmaghami et al. [14], Newman et al. [16] and Lu
et al. [15]. Only datasets obtained with yeast strains grown
in rich medium (YPD) were used. An additional dataset
based on abundance values reported in individual studies
in the published literature was constructed via full-text
searches of the relevant literature on Textpresso http://
www.yeastgenome.org/textpresso/ and Google Scholar
http://scholar.google.co.uk/ (see Additional file 1 for
details of this dataset). Transcriptome data reporting
absolute mRNA abundances for YPD-grown yeast were
retrieved from studies published by Holstege et al. [19],
Arava et al. [20], Holland [21], Jelinsky and Samson [22]
and Roth et al. [23]. Genome-wide protein half-life values
for growth in YPD were retrieved from the publication by
Belle et al. [13]. A second protein half-life dataset was con-
structed by extracting 202 protein half-life values from
small-scale studies (Additional file 1).

Pairwise study comparisons

For each pairwise comparison between two datasets,
genes for which non-zero values existed in both datasets
were extracted, and for each gene the fold difference in
reported values was calculated. These fold difference val-
ues were then log, -transformed, and distributions of the
log,, fold difference values were analysed using the dfit-
tool function in the Matlab statistics toolbox (release
2007b, The Mathworks Inc., Natick, MA). Histograms of
the log fold difference values were constructed using the
Freedman-Diaconis rule, and normal distributions were
fitted to the resulting histograms.

Construction of a curated dataset

Information from the genome-wide studies was collated
into a curated dataset as follows: information from the
pairwise comparisons was initially used to scale the pro-
tein and mRNA abundance datasets to a common mean
(scaling factors for the protein abundance studies were
Ghaemmaghami et al. = 0.84, Lu et al. = 0.91, Newman et
al. = 12.6, Literature set = 0.61; for mRNA abundance
studies Holstege et al.= 1.2, Arava et al. = 1.8, Holland =
0.7, Jelinsky and Samson = 0.929, Roth = 0.3). Where
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available, experimental data from the genome-wide stud-
ies were then imported into the curated dataset.

In order to enrich the dataset for missing values, all genes
without an assigned protein abundance value were then
analysed using data from the Ghaemmaghami et al. and
Newman et al. studies[14,16] to identify those genes
which had been successfully tagged with both GFP and
TAP-tags, but where expression of neither tag could be
detected. These genes were assigned an abundance value
of 0. For all other genes, missing values on protein abun-
dance and protein turnover were assigned by using mRNA
abundance value as a predictor for protein abundance
(based on an average of 3450 proteins per mRNA for all
genes where both values were determined experimen-
tally), and by using the average protein half-life of all pro-
teins with experimentally determined values as a "best
guess" for those genes where no turnover information was
available (half-life of 778 minutes or decay-rate constant
of 0.00089 min-!). The final curated dataset is given in
Additional file 1, with individual entries colour-coded to
identify their mode of construction.

Calculation of global gene expression parameters
The translational frequency F, for an individual gene g was
calculated as:

Fg = Ag * kg + Ag * kawth’

where A, is steady-state protein abundance for gene g, k, is
the gene-specific protein decay rate constant calculated
from the observed half-lives as k, = In(2)/t,), ,, and kg0,
is the global apparent dilution rate constant resulting
from cell growth, calculated from the doubling time of 90
minutes as ke, = I1(2)/90. F, represents the rate of pro-
tein production per minute for gene g and equals fre-
quencies of translation initiation and translation
termination if 100% efficiency of these processes and no
"drop-off" of ribosomes during translation elongation are
assumed. Translation elongation frequencies E, for indi-
vidual genes were calculated as:

Ey=Fyx (LORP,g' 1),

where Logy,, is the ORF length of gene g in codons. Global
frequencies were calculated as the sums of F and E for all
genes.

Analysis of ribosome densities

The number of ribosomes involved in the synthesis of
protein from an individual gene g at any given time, R,,
was calculated as:

Ry = Fy x Logr,/ €
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where ¢ is the average translation elongation rate in
codons per second. The sum of R for all genes was used to
estimate total numbers of active ribosomes per cell for a
given &

Modelling of nucleotide exchange

Catalysed guanidine nucleotide exchange rates on elF2
were computed using the Michaelis-Menten equation
from the published K,, and K, values [5]. A unidirec-
tional reaction of the form

elF2:GDP + GTP -> elF2:GTP + GDP

was assumed, reflecting the assumption that elF2:GTP
complexes were withdrawn from the system immediately
upon formation and fed back as elF2:GDP complexes,
which allowed calculation of the maximum rates of
exchange that could be maintained at a given combina-
tion of elF2B and elF2:GDP concentrations.

All other nucleotide exchange reactions were imple-
mented as kinetic models in Berkely Madonna software
(v8, http://www.berkeleymadonna.com/) based on pub-
lished kinetic information (see main text for details).
Models were implemented using starting concentrations
of 0.13 mM for GDP, 1.3 mM for GTP [10,11], and vary-
ing concentrations of factor:GDP complexes. The starting
concentration of free factor and factor:GTP complexes was
set to zero. Simulations were run until the systems
reached equilibrium, and the maximum rate of factor: GTP
complex formation that occurred on the way to equilib-
rium was recorded as a function of initial factor: GDP
complex concentrations.

Results and discussion

Comparison of genome-wide datasets

The minimal information required to determine transla-
tional activity comprises protein abundance and protein
turnover rates. In addition, mRNA abundance data can be
used to analyse mRNA-specific translational activity. For
budding yeast, large-scale studies have been published
that report such data for closely related S288C-derived
strains and essentially identical growth conditions (i.e.
logarithmic growth in YPD) [13-16,19-23]. For protein
and transcript abundance, these studies report partially
overlapping results sets. Because of the similarity in
growth conditions, these overlapping results sets should
report identical data in the absence of any error; con-
versely, differences in reported values can be usefully
employed to estimate the error that is actually associated
with the datasets. In order to increase the scope for such
inter-study comparisons, additional, less extensive data-
sets on protein abundance and half-lives were created by
examining the published literature for smaller-scale stud-
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ies that reported relevant values (see Additional file 1 for
these datasets).

In order to estimate the reliability of data contained in
individual datasets, studies addressing the same parame-
ter (protein abundance, protein half-life, or mRNA abun-
dance) were arranged in all possible pair wise
combinations, genes for which data were reported in both
datasets of the pair were extracted, and the fold difference
of reported values was calculated for each gene and then
log-transformed. Figure 1 shows some of the distributions
of the log,, fold difference values resulting from these
analyses. Importantly, the results clearly highlight that for
most of the genes where data are reported in more than
one study, these values differ widely, and thus demon-
strate that at least some of the studies are associated with
a relatively large error. The shape of the log fold difference
distributions also indicates that there are likely to be two
independent sources of error: first, for all pair wise analy-
ses conducted in this way, the fold difference values
appear to be lognormally distributed with high probabil-
ity, which is most consistent with a random error within

Protein Abundance

Protein Half-life
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each dataset where over- or under-estimation by a given
factor are equally likely. The relative magnitude of this
error becomes apparent in the spread of the log-normal
distributions. In additional analyses, no significant corre-
lations could be detected between log,, fold difference
values for individual gene products and other parameters
like molecular weight and overall abundance (data not
shown).

Second, there appear to be systematic shifts in reported
values between studies. For example, for those proteins
for which abundance values are reported in both the stud-
ies by Ghaemmaghami et al. [14] and Newman et al. [16],
these values are on average about 16-fold higher in the
former study. This type of error becomes apparent in the
shift of the mean of the relevant distributions away from
zero. Importantly, this combination of errors is observed
in all the analysed studies, irrespective of whether they
report data on protein abundance, protein half-life, or
mRNA abundance.

Transcript Abundance
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Pair wise comparisons of genome-wide data sets. Datasets were compared in a pair wise manner, and fold difference
values were calculated for all genes that were represented in both studies of each comparison. The comparisons with the low-
est (top) and highest (bottom) variance in the log difference values are shown. For protein half-life data, only a single genome-
wide study is available and these data were therefore compared to protein half-life values extracted from published individual
studies. In all graphs, observed log,, fold difference values are displayed as bars, and the best fitting lognormal distribution is
displayed as a broken line. Inset numbers in the graphs indicate the number of data points (n), and grey broken lines indicate
the expected pair wise comparison value for genes where two studies report the same abundance or half-life (i.e. a fold-differ-

ence value of | or 100).
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Analysis of ribosomal protein abundances

In order to validate the conclusions from the pair-wise
dataset analyses, the distribution of ribosomal protein
(RP) abundance values in the study by Lu et al. [15] was
examined as an independent approach. RPs should in
principle form a useful standard for protein abundance
data, since there is strong evidence that these proteins
occur at one copy per ribosome within assembled ribos-
omes (reviewed in ref. [24]), but do not generally exist in
ribosome-free forms. Indeed, non-ribosome incorporated
RPs tend to be rapidly degraded [16,17], so that it can be
expected that the intracellular ratio of the majority of RPs
is close to one.

However, the analysis of RP abundances is complicated
for two of the protein abundance studies, which used C-
terminal protein tagging with either GFP [16] or TAP-tags
[14] for the quantification procedure. Because of the
dense packing of RPs within the ribosome, the introduc-
tion of large tags is likely to interfere with RP incorpora-
tion and potentially alter turnover rates for the tagged
proteins, thus reducing the apparent RP abundance. This
would introduce a specifically larger error into RP abun-
dance values compared to the rest of the proteome, and
analyses of RP abundance should therefore not be used to
estimate overall errors in these two studies. Indeed, the
two protein abundance datasets that used tagging
approaches show a specific underrepresentation of ribos-
omal proteins when compared to the mass-spectrometry
based study by Lu et al. which did not rely on protein tags
(data not shown).

This latter study contains 41 RPs for which complete
abundance information is available, i.e. either RPs
encoded by one gene with an associated value, or RPs
encoded by two genes that both have an associated value.
Reported abundances for these RPs range from 29,000 to
710,000 proteins per cell (figure 2). Importantly, RP
abundance values appear to vary around a mean in a log-
normal distribution, similar to the distributions of fold
difference values discussed above. Thus, ribosomal pro-
tein abundance values in this particular dataset do not
show the close distribution around a mean that is sug-
gested by the literature for true ribosomal protein abun-
dances, but rather show a broad, lognormal distribution
as would be expected from the assumption that each data-
set contains significant random error. A comparison of the
variance observed for ribosomal protein abundance val-
ues in the dataset by Lu et al. with the variance observed
for the pairwise comparison of the Ghaemmaghami et al.
and Lu et al. studies, suggests that it is likely that errors in
both studies contribute to the differences observed
between them. However, because these variance values
were generated with different datasets, they cannot be
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Figure 2

Comparison of reported ribosomal protein and
ribosomal RNA abundances. Abundance values for 4|
ribosomal proteins (rPs, black bars) were extracted from the
mass spectrometry-based study by Lu et al. [15]. Where one
rP is encoded by two genes, total rP abundance was calcu-
lated as the sum of the abundances associated with each
gene. The best fitting lognormal distribution is shown as a
black broken line. The grey broken line shows the distribu-
tion of independently derived rRNA abundance values.

used to characterise the average error within each study
more quantitatively.

The RP abundance distribution in figure 2 shows a mean
abundance of 227,000 RPs per cell. Independent esti-
mates for the cellular ribosome content have been gener-
ated by analysing the abundance of ribosomal RNA
(rRNA) species in several studies [25-30], with reported
values ranging from 150,000 to 350,000 copies of ribos-
omal RNA per cell for fast-growing haploid yeast strains.
All of these studies were relying on relatively inaccurate
estimates for the molecular weights of rRNAs derived
from gel electrophoreses, and much of the variation in
reported rRNA abundances derives from the fact that dif-
ferent estimates for this parameter were used. However,
these studies also report the raw data for total cellular
RNA content and the proportion of RNA that is rRNA, and
rRNA abundances are therefore here re-calculated from
these raw data based on the exact rRNA molecular weights
from now available sequence information (table 1). The
resulting estimate of 187,000 + 56,000 rRNA copies per
yeast cell can be usefully compared to the distribution of
RP abundances in figure 2. Overall, the analysis of ribos-
omal protein abundance data thus supports the assump-
tion generated from the pairwise study comparisons that
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Table I: Cellular RNA content and proportion of total RNA that is rRNA from several studies, and calculation of the cellular ribosome

content.
Total RNA content (g/cell) rRNA proportion in total RNA Ribosomes (molecules/cell) 2 Study

7.6 x 1013 80% [27]
49 x |0-13 84% [30]
5.8 x 013 83% [25]
7.0 x 013 [29]
10.0 x 1013 [28]

85% [26]

7.1 £1.9x% 1013 83 +2% 187,000 + 56,000

The last row contains averages.

a calculated as (total RNA * rRNA proportion)/MW*N,; where MW is the total molecular weight of ribosomal RNA contained within a ribosome
(1.9 x 106 g/mol, from http://mips.gsf.de/proj/yeast/rna/rrna.html), and N, is Avogadro's number (6.022 x 1023 mol-').

individual datasets contain random errors in the reported
values.

Extent of systematic errors

The fact that the expected values of the lognormal distri-
butions in figure 1 are significantly different from zero
indicates that, in addition to random errors, there is a sec-
ond error element at least in some studies that systemati-
cally shifts values in the affected datasets. In the following,
this second error element will be referred to as the loca-
tion error, since it shifts the location of the log mean of
fold difference values away from zero. The relative loca-
tion of values reported in the three different large-scale
studies and the literature dataset on protein abundance is
shown in figure 3, and was derived from information
including all possible pair-wise comparisons between
these studies. IRNA abundance studies are included in this
analysis via their comparison with the Lu et al. RP values.
A separate analysis of location errors in the mRNA abun-
dance datasets shows that these datasets show a similar
range in systematic shifts as the protein abundance data-
sets. For protein half-lives, the two available datasets (the
study by Belle et al. and the literature dataset) show only
minor systematic shifts, although it is difficult to judge the
statistical significance of this.

If the magnitude of the location error was exactly known
for each study, then individual datasets could easily be
scaled to correct for this error. Under the assumption that
the location error in different studies is normally distrib-
uted, the most likely position for the true location they
should have without error corresponds simply to the
mean of the observed locations. This location is indicated
in red in figure 3 (note that the axis was scaled relative to
this point). However, because of the large shifts between
studies and the small number of studies available, this
estimate is inaccurate, and the location of the true mean
can only be pinpointed to a range of about 50% above
and below the observed mean at the 90% confidence
level.

Use of data sets for parameter prediction

Based on the types and extent of errors in the genome-
wide datasets identified above, it is possible to predict the
accuracy of parameters calculated from these datasets.
One such parameter that is of general interest is the
mRNA-specific translation rate, which follows directly
from protein levels and decay-rates (to give the total trans-
lation rate for an individual gene product), and mRNA
levels (to give the mRNA-specific translation rate). It is
clear that the result of any calculation performed with
three parameters that have a significant associated error

(T'1)' w32 M

(T1) 032
lweySewwaeyo

(9'T) 19se38p B4N3RIDI

(80°0) ‘/b 12 ueWMaN
(66°0) sa1pn3s YNY.
ﬁ\

0 0.5 1 1.5 2
Fold systematic difference between studies

\ J
{

90%
Confidence interval for location of true mean

Figure 3

Systematic shifts in reported values between protein
abundance studies. Bars indicate the position of studies
relative to each other, which was determined by analysing
the locations of means from pair wise study comparisons as
shown in figure |. The scale is normalised to the mean loca-
tion of the differences between studies (indicated by a red
bar). The 90% confidence interval for the location of the true
mean, corresponding to the point to which the studies would
need to be scaled in order to correct for the systematic
errors, is indicated below the graph.
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will itself have an associated error, and an important ques-
tion is thus whether the error in the results will still permit
the drawing of relevant conclusions. In terms of mRNA-
specific translational activity, a frequently asked question
is whether two mRNAs are translated at different rates,
which would be indicative of a translational control
mechanism impinging on at least one of the two mRNAs.

In order to empirically estimate in how far the random
errors contained in genome wide datasets would affect
calculations of relative mRNA specific translational activ-
ity values, a simulated dataset of 4000 genes was con-
structed with associated protein abundance, protein half-
life, and mRNA abundance values. Expression levels and
half-lives in this dataset were assumed to be identical for
all entries, but were allowed to vary randomly around the
true value in a lognormal distribution with variances sim-
ilar to those estimated for the observed error in the real
genome-wide datasets. This dataset can thus serve as an
approximate reference for the kind of spread in apparent
mRNA-specific translation efficiencies that is falsely gen-
erated by noise in the underlying studies. The distribution
of calculated mRNA specific translation frequencies that
would be expected if all frequencies were identical in real-
ity, but were calculated from noisy datasets, is shown in
the histogram in figure 4 in open circles. Importantly,
mRNA-specific translation frequencies calculated from
the real datasets (full circles in this figure) show a very
similar distribution around the mean. Thus, even for
mRNAs at the extremes of the translation frequency distri-
bution which show apparent translational rates that differ
by four orders of magnitude, this difference is more likely
to arise from errors in the underlying datasets than from
true biological differences. This effect is caused entirely by
the random error within the studies, in addition, the sys-
tematic location error between studies will affect the accu-
racy of calculations of absolute translation rates per
mRNA.

Although this analysis highlights the problems with inter-
preting local (i.e. gene-specific) parameters calculated
from the genome-wide datasets, the main aim of the study
presented here is to ask whether the datasets would allow
the prediction of global translational parameters with any
accuracy. There are important implications in the observa-
tion that a large part of the variability observed in compar-
isons between studies appears to be random. For the
calculation of global parameters, where essentially the
sum of all entries in a dataset is considered, random errors
within studies will be largely lost through averaging. Anal-
yses of simulated datasets with properties similar to the
experimental abundance studies indicate that the remain-
ing error for a calculation of the global protein content is
reduced by >>99% compared to the average error in the
reported abundance for an individual gene product. For
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Figure 4

Accuracy of parameter estimates from genome-wide
studies. Apparent translational frequencies per mMRNA were
calculated from protein abundance, protein half-life, and
mRNA abundance values, and the resulting datasets were
analysed for the variation around the mean translational fre-
quency. The distribution outlined by open circles was gener-
ated from simulated datasets, and corresponds to the
expected distribution if true translational activity was the
same for all messages, but was calculated from error-prone
datasets. Black circles represent the variation around the
mean translational frequency for the real datasets (average
values were used where more than one study reported rele-
vant values for a gene).

global parameters, the positioning error associated with
the datasets is thus predicted to be the only significant
error source that remains.

Estimation of cell-wide translational activity

An analysis of the coverage of genome-wide abundance
datasets (figure 5) indicates that more than half of all
genes (~54%) now have associated experimental data for
protein abundance, protein half-life, and mRNA abun-
dance. A small proportion (~13%) has only one of these
parameters missing. In contrast, for a relatively large pro-
portion (~25%) mRNA values have been reported but no
protein abundance or half-life values exist. Although
mRNA levels for these genes have been reported, these are
significantly lower than for those genes where protein
abundance levels exist. Indeed, 50% of genes without
existing protein abundance values have reported steady-
state mRNA expression levels of less than 0.01 copies per
cell. Since comparisons of real-time PCR data with micro-
array analyses have shown that the latter tend to overesti-
mate very low abundance mRNAs [21], these genes are
likely to be largely transcriptionally repressed. In contrast,
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6576 genes
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Figure 5

Composition of the modelling dataset. The diagram
shows the numbers of genes for which experimentally deter-
mined mRNA abundances, protein abundances, and protein
half-lives are present in the curated dataset. Note that the
total set of 6576 genes includes 812 genes classed as dubious
in SGD http://www.yeastgenome.org, most of which have no
associated data in the curated dataset.

only about 5% of genes that do have associated protein
expression values have reported mRNA expression values
in this low range.

Further support for the assumption that a large propor-
tion of genes without reported protein abundance values
are genuinely non-expressed comes from the two
genome-wide tagging studies [14,16]. Genes that have no
associated protein abundance values in these two studies
fall into either of two classes: those where successful tag-
ging could be performed and verified by genetic methods
but where the tag nevertheless remained undetectable,
and those were tagging could not be successfully per-
formed. The inability to visualise either GFP- or TAP-
tagged versions of the same protein where both tags could
be successfully integrated is strong evidence for low or no
expression at the protein level, and this criterion applies
to 64% of genes without any associated protein abun-
dance value. In conclusion, although a certain proportion
of genes without such values will undoubtedly turn out to
be false negatives, it can be predicted that the currently
available genome-wide data sets capture the majority of
expressed genes.

http://www.biomedcentral.com/1752-0509/2/87

Based on these analyses, data from the individual
genome-wide studies were pulled together into a curated
dataset. The procedure for the construction of this dataset
was designed to incorporate the best available experimen-
tal data wherever such data were available, and to use best
guesses where such data were unavailable. Details of the
construction of this dataset and the dataset itself are given
in the Methods section above, and in Additional file 1.

Two global parameters that can easily be calculated from
this dataset are total protein and mRNA content, and for
both experimental estimates are available for comparison.
The total cellular protein content reflected in the curated
dataset amounts to 3.72 pg per cell, and 90% confidence
limits can be estimated for this value of 1.9 and 5.6 pg
based on the extent of the positioning error for protein
abundance datasets. This compares to experimental esti-
mates generated by us in two independent studies, which
gave a total cellular protein content of 5 pg [12,31].
Although the total mass of cellular RNA cannot be calcu-
lated in the same way because non-coding mRNA regions
for each gene contribute to the molecular weight but are
not accurately known, the total number of mRNAs in the
dataset can easily be calculated as about 12,200, with 95%
confidence limits between 6,100 and 18,300 mRNAs per
cell. This compares to experimental estimates of about
15,000 poly(A) tailed RNAs per cell generated experimen-
tally [32]. In two important aspects, the curated dataset
thus approaches estimates from available experimental
data.

The sum of proteins per cell predicted from the curated
dataset is about 53 million proteins for a fast-growing
haploid yeast cell, with 90% confidence limits of 30-80
million. From the local loss-rates for individual proteins
through degradation, the global loss-rate through cell
growth, and the local protein abundance data, protein
synthesis rates can be calculated for each gene. The cell-
wide sum of these rates amounts to about 13,000 (6,500~
19,500) proteins synthesised per cell per second on aver-
age throughout the cell cycle, and, if translation initiation
and termination are assumed to be loss-free processes,
there must consequently also be about 13,000 translation
initiation and translation termination events per cell per
second. The frequency of translation elongation events
can be calculated locally for each gene if the relevant ORF
lengths are included in the calculations, the sum of these
amounts to 6.0 (3-9) million elongation events per sec-
ond per cell.

Interestingly, just under half of this activity (6,400 pro-
teins per second) is required to balance protein degrada-
tion, whereas the remainder is required to balance protein
dilution through cell growth. One prediction from these
results is that protein synthesis is likely to be strongly cor-
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related with cell growth rates, because even if protein
decay rates are assumed to be unaffected by reductions in
growth rates, the contribution of dilution to the require-
ments for protein synthesis would decline linearly with
such reductions. Experimental evidence supporting these
analyses is available from early studies demonstrating that
global amino acid incorporation rates, synthesis rates of
individual proteins, and translation elongation rates are
indeed nearly linearly correlated with growth rates
[25,29,33,34]. Moreover, experimentally induced limita-
tions in translational activity produce corresponding
growth limitations that are linearly dependent on the
former [35].

The relation between protein synthesis rates and active
ribosome numbers

Although predictions of the cellular protein and mRNA
content made from the genome-wide datasets are consist-
ent with available experimental data, the quality of pre-
dictions of translational activity can be further evaluated
by comparison with published evidence relating to the
activity of factors participating in the translational proc-
ess. One way of validating the predicted protein synthesis
frequencies is to ask whether the predicted ribosome con-
tent of the cell actually matches predicted protein synthe-
sis rates. The proportion of active ribosomes in yeast cells
under fast growth conditions has been addressed in inde-
pendent studies, and these studies consistently report val-
ues of around 90% active ribosomes [25,34].

The number of active ribosomes required for the synthesis
of an individual gene is a function of protein synthesis
rates, ORF length, and translation elongation rates. Under
constant translation initiation rates, the numbers of ribos-
omes that are active under steady-state conditions
declines as translation elongation rates increase, essen-
tially because with faster elongation rates ribosomes fin-
ish translation sooner and thus become available for
further rounds of translation more rapidly.

The calculated sum of active ribosomes required for syn-
thesis of all expressed genes is plotted as a function of
average elongation rates in figure 6. For protein synthesis
frequencies calculated from the curated dataset, the mean
value of 186,000 active ribosomes predicted from ribos-
omal protein and rRNA abundance data is met at an aver-
age elongation rate of 32.6 codons per second. There are
two published studies available that have addressed trans-
lation elongation rates in vivo by direct experimental
approaches, and these studies reported rates of around 10
codons per second [28,34]. Protein synthesis frequencies
predicted from the genome-wide datasets thus appear to
require a higher elongation rate than the experimental
estimates suggest. However, if the ribosome activity calcu-
lations are repeated at the lower limit of the 90% confi-
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Calculation of the numbers of active ribosomes as a
function of the translation elongation rate. Local trans-
lation rates were calculated for each mRNA from the
genome wide expression data as described in the text. The
number of ribosomes bound per mRNA was then calculated
based on the ORF length and varying translation elongation
rates; the sum of all MRNA-bound ribosomes is shown in the
graph as a function of the average elongation rate. The solid
line was calculated for the mean translational activity (13,000
proteins per cell per second), broken lines were calculated at
the upper and lower 90% confidence limit for this parameter
(19,500 and 6,500 proteins per cell per second, respectively).
Grey lines indicate elongation rates matching a total cell pop-
ulation of 186,000 active ribosomes.

dence interval for protein synthesis rates (corresponding
to 6,500 proteins per second per cell), the ribosomal con-
tent is met at an elongation rate of 16.3 codons per sec-
ond, much closer to the experimental estimate.

It should be noted that the experimental studies in ques-
tion employed a metabolic labelling technique which
required growing the cells in minimal medium, and that
cell growth rates were therefore significantly lower than
those of cells used for generation of the genome-wide
datasets. Since other studies have concluded that elonga-
tion rates vary with growth rates (see e.g. ref. [25]), the
published value of 10 codons per second can only be
taken as a lower limit for elongation rates to be expected
under the fast growth conditions used to generate the
genome-wide datasets. In conclusion, the relationship
between protein synthesis rates, ribosome content and
translation elongation rates suggested by the genome-
wide datasets appears relatively consistent with experi-
mental estimates, although the comparison with elonga-
tion rates may suggest that the true value of intracellular
protein synthesis rates lies at the lower end of the confi-
dence interval for this parameter.
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Analyses of nucleotide exchange rates

As a further means of verification, published biochemical
data on translation factor activities can be used to validate
protein synthesis rates predicted from the genome wide
datasets. All reactions involving translation factors are of
a cyclical nature, where the relevant factors undergo par-
ticular reaction steps and then need to be re-set to some
initial state in order to catalyse subsequent cycles. It is
thus evident that the flux for any given reaction within the
translational pathway must equal the total protein synthe-
sis flux, at least if translational reactions are assumed to be
100% efficient and do not occur in futile cycles. Unfortu-
nately, current knowledge on the kinetics of the entire
translation initiation, elongation or termination path-
ways is not sufficiently detailed to predict fluxes from fac-
tor levels in the cell. However, several reactions within the
translation pathways include the hydrolysis of ATP or
GTP, and following these hydrolysis steps the relevant fac-
tor:NDP complexes need to be recycled to factor:NTP
complexes before the next reaction can occur. Again, the
flux through these "mini-cycles" needs to be equivalent to
the protein synthesis flux (figure 7A), and for several
nucleotide exchange reactions there is sufficient kinetic
knowledge available to predict the maximum sustainable
flux if intracellular factor concentrations are known.

In yeast, six different translation factors have been identi-
fied that hydrolyse nucleotide triphosphates in fixed stoi-
chiometric ratios within translation reactions: these are
the initiation factors elF2 and eIF5B [2], the elongation
factors eEF1A, eEF2 and eEF3 [36], and the termination
factor eRF3 [37]. Further NTP hydrolysis is required by
various helicase activities, although for these it is
unknown how many cycles of action are needed per trans-
lation cycle. For elF2, elF5B, eEF1A and eRF3, relatively
detailed data exist on the mechanism and rate constants
of the interaction with nucleotides that allow the quanti-
tative estimation of maximum supportable nucleotide
exchange rates within the cell (figure 7B). These rates can
be usefully compared to the protein production rates pre-
dicted from the genome-wide datasets. However, the cal-
culations of nucleotide exchange rates requires factor
levels as one of the input parameters, and as has been
demonstrated above, available abundance values for indi-
vidual proteins are associated with a large error. The fol-
lowing calculations therefore have to be interpreted with
this caveat in mind.

For elF5B, exchange of hydrolysed GDP for GTP appears
to occur without the involvement of classic guanidine
nucleotide exchange factors (GEFs). Exchange rates for
this factor are thus a relatively straightforward function of
GDP release rates, GTP binding rates, and the GDP-GTP
concentration gradient that exists in the cell. Levels of this
protein (encoded by the FUN12 gene) are equivalent to

http://www.biomedcentral.com/1752-0509/2/87

about 1.4 + 0.8 uM (average + SEM of all available data
from large- and small-scale studies, calculated for a liquid
cell volume of 37 um3 [12]). Kinetic modelling of the
GDP-GTP exchange reaction for this protein as a function
of elF5B:GDP levels shows that maximal rates for this
reaction are sufficient to sustain the predicted translation
initiation rates upwards of 0.2 uM of the GDP complex
(figure 7C). The rate and abundance information availa-
ble for this protein is thus fully consistent with the pre-
dicted translation rates.

For eRF3, the situation is more complicated because GDP
exchange rates differ for the free protein and for its com-
plex with eRF1, with the complex being the form of the
protein that actually participates in translation termina-
tion reactions. For a complete model, rates of eRF3:eRF1
complex formation would thus need to be included, but
to date there is no rate information available for this reac-
tion. However, a partial model can be considered that
evaluates exchange rates only for the eRF1:eRF3 complex,
for which kinetic data are available [38]. According to the
genome wide datasets, eRF3 (SUP35) occurs in cells in
excess over eRF1 (SUP45), and we confirmed this excess of
eRF3 by independent quantitative western blotting exper-
iments (T. von der Haar and M.F. Tuite, University of
Kent, UK, unpublished). Levels of the eRF1:eRF3 complex
are thus limited to the abundance of eRF1, or 1.4 + 0.8
uM. The known rate-constants predict that translation ter-
mination rates of 13,000 proteins per second could be
sustained with eRF1:eRF3:GDP complex levels as low as
0.3 uM (figure 7D), again indicating that known rate
information for GDP exchange on eRF1:eRF3 complexes
is fully consistent with the predicted translation rates.

The translation elongation factor eIF2 is one of two
known GTPases participating in translation that require
guanidine exchange factor activity in order to sustain suf-
ficient nucleotide exchange rates [2]. K, and &, values
have been published for the elF2B-catalysed nucleotide
exchange on elF2 [5], and these allow the calculation of
maximal guanidine exchange rates as a function of elF2B
and elF2:GDP levels. Intracellular levels of the two factors
correspond to 0.74 + 0.66 uM for elF2B and 8.7 + 4.2 uM
for elF2, and at these concentrations maximum guanidine
exchange rates can be achieved of 0.6 uM s'!. This com-
pares to predicted protein production rates of about 0.4 to
1.2 uM s (calculated as the molar equivalent of 6,500 to
19,500 proteins per second produced in a volume of 37
pm3). The K}, value used for these calculations was deter-
mined at 20°C, and exchange rates under the experimen-
tal conditions used to generate the genome-wide datasets
may therefore be marginally higher.

Interestingly, at the assumed factor concentrations, guani-

dine exchange rates are virtually independent of eIF2:GDP
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Figure 7 (see previous page)

Analysis of nucleotide exchange activity for different translation factors. A, nucleotide exchange rates must match
protein production rates (for translation initiation and termination factors) or elongation rates (for elongation factors) due to
the cyclical nature of the relevant reactions. B, kinetic models used for the analyses in panels C-F. Nucleotide exchange on elF2
was calculated from published Ky, (7.4 x 108 M) and k_,, (43 s!) values according to the Michaelis-Menten equation. All other
reactions were implemented as kinetic computer models and analysed for maximum nucleotide exchange rates. Rate constants
for the exchange reactions on elF5B are from [44], on eRFI:eRF3 complexes from [38], and on eEFI A from [8]. C-F results of
simulations of nucleotide exchange reactions. In all four panels, areas shaded in red indicate the exchange activity required to
match the predicted translational activity, within the 90% confidence limits for these predictions. Nucleotide exchange rates
are plotted as a function of the relevant factor:GDP complex concentration (black lines), mean intracellular concentrations of

total factor are indicated by green vertical lines for reference (except for eEFI A where the concentration is from a single

study, see main text for explanation).

concentrations but instead depend linearly on the con-
centration of its GEF, eIF2B. This would be consistent with
the evolution of eIF2B, rather than elF2 itself, as the major
control point for ternary complex formation in eukaryotes
(see e.g. ref. [39]). An increase of elF2B levels to 1.6 uM
would be required to achieve guanidine exchange rates at
the upper limit of the 90% confidence interval for transla-
tion rate estimates produced here, and it can be concluded
that the available kinetic knowledge on eIF2 nucleotide
exchange matches translation rates predicted from the
genome-wide datasets very closely.

Lastly, nucleotide exchange rates were analysed for the
translation elongation factor 1A. Overall nucleotide
exchange rates on this factor need to be almost three
orders of magnitude higher than for the initiation or ter-
mination factors (0.4 mM vs. 0.8 uM), since eEF1A-cata-
lysed GTP hydrolysis occurs once per amino acid bond
formed rather than once per protein produced. As for
elF2, guanidine nucleotide exchange on eEF1A is cata-
lysed by an essential GEF, eEF1B. Detailed kinetic models
exist for the exchange reaction in the presence of the cata-
lytic subunit of eFF1B, eEF1Ba [8]; and nucleotide
exchange rates were therefore here simulated as kinetic
models based on these published data. Abundance infor-
mation for eEF1A, encoded by the identical ORFs TEF1
and TEF2 in yeast, is particularly variable, with Ghaem-
maghami et al. reporting 827 molecules per cell (~0.05
puM), while Lu et al report 1,181,715 molecules per cell
(~70 uM). The available information on the cellular con-
tent of eEF1Ba is slightly less variable, with a mean con-
centration of 15 + 8 uM. Figure 7F demonstrates that
guanidine exchange rates matching the lower limit of the
90% confidence interval for elongation rate predictions
(3.3 million amino acid bonds formed per second or 0.2
mM s1) require eEF1Ba concentrations upward of 10 uM
and eEF1A concentrations upwards of 30 uM. This would
thus be consistent with the higher eEF1A content reported
by Lu et al.

Conclusion

Knowledge of the cellular abundance and turnover of
gene expression intermediates is an important prerequi-
site for the quantitative understanding of gene expression.
More generally, knowledge of the levels of participating
factors is required for the quantitative understanding of
any biological process. The analyses conducted in this
study show, however, that current datasets reporting such
parameters differ widely in the reported values wherever a
given gene product is covered by more than one study.
These differences are most likely due to errors in the
reported values, rather than biological variability under
the different experimental conditions. In a recent study by
Singh et al. [40], a small set of abundance values generated
by quantitative western blotting for translation initiation
factors was compared to values that had previously been
generated in a small scale study in our own work [12], as
well as the corresponding values extracted from the large-
scale study by Ghaemmaghami et al. [14]. Although this
study and our previous study employed very different
strain backgrounds, the generated data were very linear,
indicating an absence of random variability between the
two small scale studies. In contrast, although the study by
Singh et al. and the large scale study both employed rela-
tively closely related (S288C-derived) yeast strains, the
comparison between these two studies showed the typical
random variation that was also observed here for compar-
isons between different large scale studies. Random varia-
bility thus appears to be a particular hallmark of the large-
scale studies, although the reasons for this are currently
unclear. It is interesting to note that systematic shifts were
also observed in the comparison of the two small-scale
studies, and were in fact larger (3-fold) than those
observed here between the genome-wide studies.

Whether the extent of error observed in available genome-
wide datasets limits their usefulness for quantitative anal-
yses of biological processes essentially depends on the
level of detail that needs to be captured. At the level of
individual gene products, absolute abundance values
(which would for example be important for kinetic mod-
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elling or other systems biological analyses) suffer from
both the observed random error and the systematic shift
error. Simulations of similar datasets indicate that an indi-
vidual protein abundance value extracted from one of the
original genome-wide datasets has associated 50% confi-
dence limits of about 9-fold above and below the reported
value, based on a combined random error as observed for
the ribosomal proteins in the study by Lu et al. [15] and a
positioning error as analysed in figure 2. With current
datasets, quantitative analyses for individual gene prod-
ucts are thus only reliable in a very broad context. For glo-
bal parameters however, where the random error element
can be predicted to become very small due to averaging
effects and only the location error remains, existing data-
sets permit modelling with higher accuracy.

Based on this principle, this study makes the first available
quantitative prediction of global translation rates in loga-
rithmically growing yeast cells. This parameter still has a
considerable amount of uncertainty attached to it, mostly
because of uncertainty regarding the extent of systematic
over- or under-estimation of protein abundance values in
the respective studies. It should be noted that in the esti-
mation of confidence limits for translation rates, the pro-
tein half-life dataset was assumed not to have a significant
location error. This is based on the comparison between
the large scale dataset generated by Belle et al. and a
smaller dataset collated from values reported in the litera-
ture, where the distribution of fold different values centres
nearly perfectly around one (Figure 1). Because this
assumption is based on a single comparison, however, it
is not possible to estimate its reliability, and with more
datasets becoming available, systematic shifts in protein
half-life datasets may yet become apparent.

Another important caveat for the reported activity esti-
mates is that they are based on the assumption that once
a ribosome starts translation, a functional protein will
always result. Experimental evidence indicates that this is
not necessarily the case: for example, a published study on
translation in E. coli estimated that up to 24% of transla-
tion events on an mRNA encoding the lacZ protein did
not result in synthesis of a functional protein [41].
Because translation occurs co-transcriptionally in E. coli
and translation initiation can occur on mRNAs that have
not yet been completely transcribed, this low proportion
of successful translation events is the result of both RNA
polymerase and ribosomal failures [41]. In contrast, tran-
scription and translation are uncoupled in eukaryotic
cells, and translational failure rates are therefore signifi-
cantly lower. Investigations of ribosome densities on the
yeast YEF3 mRNA indicate that processivity failures
occured in less than 0.01% of elongation events on this
mRNA [42]. In other words, more than 90% of initiating
ribosomes resulted in generation of a full-length product

http://www.biomedcentral.com/1752-0509/2/87

on this relatively long mRNA (1045 codons). However,
Yef3p is a highly expressed translation factor with a high
codon adaptation index, and ribosomal drop-off is more
likely to occur on codons decoded by rare tRNAs where
wait times are longer [43]. In summary, currently availa-
ble data are not sufficiently detailed to assess the influence
of processivity errors in detail, but such errors are not
likely to significantly increase the cellular requirement for
translation compared to the estimates given here.

The predicted translation rates of 13,000 (6,500-19,500)
proteins synthesised per second and of 6 (3-9) million
peptide bonds being formed per second will form a useful
benchmark against which emerging knowledge on the
kinetics of relevant reactions can be interpreted. In this
study, initial analyses have focused on guanidine nucle-
otide exchange reactions that occur during translation.
The resulting analyses show that, to the best available
knowledge, biochemical data on such reactions coincide
very well with the information on translation rates con-
tained within genome-wide expression datasets. For
example, both the uncatalysed exchange reactions for
elF5B and the termination factors are easily sustainable at
rates required to regenerate sufficient factor:GTP com-
plexes to match the predicted translation rates, whereas
those reactions relying on guanidine exchange factor
activity clearly could not sustain sufficient rates if they
proceeded in an uncatalysed fashion. Moreover, levels of
catalysis as judged from published kinetic data and factor
levels extracted from the genome-wide datasets place sus-
tainable nucleotide exchange rates at levels that are
required to match the predicted translational activity.
Together with the analyses on required ribosomal activity,
this study thus suggests that data generated over several
decades in different labs, and with various approaches
including cell biology, classical biochemistry and modern
genome-wide approaches, can be combined quantita-
tively to produce a coherent picture of a central biological
process.

Additional material

Additional file 1

Excel spreadsheet containing the literature datasets for protein abun-
dance and protein half-lives, and the full curated dataset.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-2-87-S1.xls]

Acknowledgements

| am greatly indebted to Dr. Martin Ridout (Institute of Mathematics, Sta-
tistics and Actuarial Science, University of Kent, UK) for critical reading of
the manuscript. This work was funded by a Wellcome Trust (UK) Research
Career Development Fellowship (Ref. 075438, to TvdH).

Page 13 of 14

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1752-0509-2-87-S1.xls

BMC Systems Biology 2008, 2:87

References

20.

21.
22.

Hershey JWB, Sonenberg N, Mathews MB: Translational Control
in Biology and Medicine. 3rd edition. Cold Spring Harbor, New
York: Cold Spring Harbor Laboratory Press; 2007.

Kapp LD, Lorsch JR: The molecular mechanics of eukaryotic
translation. Annu Rev Biochem 2004, 73:657-704.

von der Haar T, Oku Y, Ptushkina M, Moerke N, Wagner G, Gross
JD, McCarthy JE: Folding transitions during assembly of the
eukaryotic mMRNA cap-binding complex. | Mol Biol 2006,
356(4):982-992.

Kapp LD, Lorsch JR: GTP-dependent recognition of the
methionine moiety on initiator tRNA by translation factor
elF2. | Mol Biol 2004, 335(4):923-936.

Nika J, Yang W, Pavitt GD, Hinnebusch AG, Hannig EM: Purification
and kinetic analysis of elF2B from Saccharomyces cerevisiae.
J Biol Chem 2000, 275(34):26011-26017.

Fekete CA, Mitchell SF, Cherkasova VA, Applefield D, Algire MA,
Maag D, Saini AK, Lorsch JR, Hinnebusch AG: N- and C-terminal
residues of elFIA have opposing effects on the fidelity of
start codon selection. Embo | 2007, 26(6):1602-1614.

Fringer JM, Acker MG, Fekete CA, Lorsch |R, Dever TE: Coupled
release of eukaryotic translation initiation factors 5B and 1A
from 80S ribosomes following subunit joining. Mol Cell Biol
2007, 27(6):2384-2397.

Gromadski KB, Schummer T, Stromgaard A, Knudsen CR, Kinzy TG,
Rodnina MV: Kinetics of the interactions between yeast elon-
gation factors | A and | Balpha, guanine nucleotides, and ami-
noacyl-tRNA. | Biol Chem 2007, 282(49):35629-35637.

Rodnina MV, Beringer M, Wintermeyer W: How ribosomes make
peptide bonds. Trends Biochem Sci 2007, 32(1):20-26.

Menne TF, Goyenechea B, Sanchez-Puig N, Wong CC, Tonkin LM,
Ancliff P), Brost RL, Costanzo M, Boone C, Warren A]: The
Shwachman-Bodian-Diamond syndrome protein mediates
translational activation of ribosomes in yeast. Nat Genet 2007,
39(4):486-495.

Verlhac MH, Chen RH, Hanachi P, Hershey JW, Derynck R: Identifi-
cation of partners of TIF34, a component of the yeast elF3
complex, required for cell proliferation and translation initi-
ation. Embo | 1997, 16(22):6812-6822.

von der Haar T, McCarthy JE: Intracellular translation initiation
factor levels in Saccharomyces cerevisiae and their role in cap-
complex function. Mol Microbiol 2002, 46(2):531-544.

Belle A, Tanay A, Bitincka L, Shamir R, O'Shea EK: Quantification
of protein half-lives in the budding yeast proteome. Proc Natl
Acad Sci USA 2006, 103(35):13004-13009.

Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A,
Dephoure N, O'Shea EK, Weissman JS: Global analysis of protein
expression in yeast. Nature 2003, 425(6959):737-741.

Lu P, Vogel C, Wang R, Yao X, Marcotte EM: Absolute protein
expression profiling estimates the relative contributions of
transcriptional and translational regulation. Nat Biotechnol
2007, 25(1):117-124.

Newman JR, Ghaemmaghami S, lhmels |, Breslow DK, Noble M,
DeRisi JL, Weissman JS: Single-cell proteomic analysis of S. cer-
evisiae reveals the architecture of biological noise. Nature
2006, 441(7095):840-846.

Beyer A, Hollunder ], Nasheuer HP, Wilhelm T: Post-transcrip-
tional expression regulation in the yeast Saccharomyces cer-
evisiae on a genomic scale. Mol Cell Proteomics 2004,
3(11):1083-1092.

Greenbaum D, Colangelo C, Williams K, Gerstein M: Comparing
protein abundance and mRNA expression levels on a
genomic scale. Genome Biol 2003, 4(9):117.

Holstege FC, Jennings EG, Wyrick ]J, Lee Tl, Hengartner CJ, Green
MR, Golub TR, Lander ES, Young RA: Dissecting the regulatory
circuitry of a eukaryotic genome. Cell 1998, 95(5):717-728.
Arava Y, Wang Y, Storey D, Liu CL, Brown PO, Herschlag D:
Genome-wide analysis of mMRNA translation profiles in Sac-
charomyces cerevisiae. Proc Natl Acad Sci USA 2003,
100(7):3889-3894.

Holland MJ: Transcript abundance in yeast varies over six
orders of magnitude. | Biol Chem 2002, 277(17):14363-14366.
Jelinsky SA, Samson LD: Global response of Saccharomyces cer-
evisiae to an alkylating agent. Proc Natl Acad Sci USA 1999,
96(4):1486-1491.

23.

24.
25.

26.
27.
28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

http://www.biomedcentral.com/1752-0509/2/87

Roth FP, Hughes JD, Estep PW, Church GM: Finding DNA regula-
tory motifs within unaligned noncoding sequences clustered
by whole-genome mRNA quantitation. Nat Biotechnol 1998,
16(10):939-945.

Perry RP: Balanced production of ribosomal proteins. Gene
2007, 401 (1-2):1-3.

Boehlke KW, Friesen |D: Cellular content of ribonucleic acid
and protein in Saccharomyces cerevisiae as a function of expo-
nential growth rate: calculation of the apparent peptide
chain elongation rate. | Bacteriol 1975, 121(2):429-433.
Schweizer E, Halvorson HO: On the regulation of ribosomal
RNA synthesis in yeast. Exp Cell Res 1969, 56(2):239-244.

Udem SA, Warner JR: Ribosomal RNA synthesis in Saccharomy-
ces cerevisiae. | Mol Biol 1972, 65(2):227-242.

Waldron C, Jund R, Lacroute F: The elongation rate of proteins
of different molecular weight classes in yeast. FEBS Lett 1974,
46(1):11-16.

Waldron C, Lacroute F: Effect of growth rate on the amounts
of ribosomal and transfer ribonucleic acids in yeast. | Bacteriol
1975, 122(3):855-865.

Warner JR: The economics of ribosome biosynthesis in yeast.
Trends Biochem Sci 1999, 24(1 1):437-440.

von der Haar T: Optimized protein extraction for quantitative
proteomics of yeasts. PLoS ONE 2007, 2(10):e1078.

Hereford LM, Rosbash M: Number and distribution of polyade-
nylated RNA sequences in yeast. Cell 1977, 10(3):453-462.
Kief DR, Warner JR: Coordinate control of syntheses of ribos-
omal ribonucleic acid and ribosomal proteins during nutri-
tional shift-up in Saccharomyces cerevisiae. Mol Cell Biol 1981,
1(11):1007-1015.

Waldron C, Jund R, Lacroute F: Evidence for a high proportion
of inactive ribosomes in slow-growing yeast cells. Biochem |
1977, 168(3):409-415.

Sangthong P, Hughes ], McCarthy JE: Distributed control for
recruitment, scanning and subunit joining steps of transla-
tion initiation. Nucleic Acids Res 2007, 35(11):3573-3580.

Taylor DJ, Frank ], Kinzy TG: Structure and function of the
eukaryotic ribosome and elongation factors. In Translational
control in biology and medicine Edited by: Mathews MB, Sonenberg N,
Hershey JWB. Cold Spring Harbor, New York: Cold Spring Harbor
Laboratory Press; 2007:59-85.

von der Haar T, Tuite MF: Regulated translational bypass of
stop codons in yeast. Trends Microbiol 2007, 15(2):78-86.
Pisareva VP, Pisarev AV, Hellen CU, Rodnina MV, Pestova TV:
Kinetic analysis of interaction of eukaryotic release factor 3
with  guanine nucleotides. J Biol Chem 2006,
281(52):40224-40235.

Pavitt GD: elF2B, a mediator of general and gene-specific
translational control. Biochem Soc Trans 2005, 33(Pt
6):1487-1492.

Singh CR, Udagawa T, Lee B, Wassink S, He H, Yamamoto Y, Ander-
son JT, Pavitt GD, Asano K: Change in nutritional status modu-
lates the abundance of critical pre-initiation intermediate
complexes during translation initiation in vivo. | Mol Biol 2007,
370(2):315-330.

Jorgensen F, Kurland CG: Processivity errors of gene expression
in Escherichia coli. | Mol Biol 1990, 215(4):511-521.

Arava Y, Boas FE, Brown PO, Herschlag D: Dissecting eukaryotic
translation and its control by ribosome density mapping.
Nucleic Acids Res 2005, 33(8):2421-2432.

Buchan JR, Stansfield I: Halting a cellular production line:
responses to ribosomal pausing during translation. Biol Cell
2007, 99(9):475-487.

Pisareva VP, Hellen CU, Pestova TV: Kinetic analysis of the inter-
action of guanine nucleotides with eukaryotic translation ini-
tiation factor elF5B. Biochemistry 2007, 46(10):2622-2629.

Page 14 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15189156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15189156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16405910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16405910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14698289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14698289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14698289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10852917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17332751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17332751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17332751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17242201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17242201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17242201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17925388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17925388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17925388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17157507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17157507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17353896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17353896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17353896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9362495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9362495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9362495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12406227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12406227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16916930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16916930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17187058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17187058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17187058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16699522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15326222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15326222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15326222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12952525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12952525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12952525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9845373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9845373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12660367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11882647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11882647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9990050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9990050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17689889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1089627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1089627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1089627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5824444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5824444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4557192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4607959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4607959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1097403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1097403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10542411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17957260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17957260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=321129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=321129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7050661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7050661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7050661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=343781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=343781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17483513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17483513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17483513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17187982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17187982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17062564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17062564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17062564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16246152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16246152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17512538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17512538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17512538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2121997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2121997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17696878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17696878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17297921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17297921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17297921

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Raw datasets
	Pairwise study comparisons
	Construction of a curated dataset
	Calculation of global gene expression parameters
	Analysis of ribosome densities
	Modelling of nucleotide exchange

	Results and discussion
	Comparison of genome-wide datasets
	Analysis of ribosomal protein abundances
	Extent of systematic errors
	Use of data sets for parameter prediction
	Estimation of cell-wide translational activity
	The relation between protein synthesis rates and active ribosome numbers
	Analyses of nucleotide exchange rates

	Conclusion
	Additional material
	Acknowledgements
	References

