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Simple Summary: Arma custos is a predatory insect that can attack Spodoptera frugiperda and many
other important agricultural and forest pests. In this study, we built a model to predict the potential
distribution of A. custos under current and future climatic conditions for supporting its current
and future use. Currently, the potential highly suitable areas of A. custos are mainly distributed in
Hebei, Henan, Shandong, Anhui, Hubei, Jiangsu, and Zhejiang Provinces. Under the climate change
scenarios of RCP2.6, 4.5, 8.5 in the 2050s and 2070s, the suitable areas for A. custos will decrease and
shift towards Northeast China. Considering the currently suitable distribution area of S. frugiperda,
artificially reared A. custos is suitable for release in Fujian, Zhejiang, Jiangxi, Hunan, and southeastern
Sichuan Provinces under the current climatic condition. Under the future climate scenarios, Northeast
China is not suitable for the survival of S. frugiperda. Thus, A. custos does not need to be released here.

Abstract: Spodoptera frugiperda is a notorious pest that feeds on more than 80 crops, and has spread
over 100 countries. Many biological agents have been employed to regulate it, such as Arma custos.
A. custos is a polyphagous predatory heteropteran, which can effectively suppress several agricultural
and forest pests. Thus, in order to understand where A. custos can survive and where can be released,
MaxEnt was used to predict the potentially suitable areas for A. custos in China under climate change
conditions. The results show that the annual mean temperature (bio1) and annual precipitation
(bio12) are the major factors influencing the distribution of A. custos. The optimal range of the two
are 7.5 to 15 ◦C, 750 to 1200 mm, respectively. The current climate is highly suitable for A. custos in
Hebei, Henan, Shandong, Anhui, Hubei, Jiangsu, and Zhejiang Provinces. Considering the currently
suitable distribution area of S. frugiperda, artificially reared A. custos is suitable for release in Fujian,
Zhejiang, Jiangxi, Hunan, and southeastern Sichuan Provinces. Under the future climatic scenarios,
the suitable area will decrease and shift towards the north. Overall, this result can provide a reference
framework for future application of A. custos for biological control.

Keywords: Arma custos; MaxEnt; climate change; climatic suitability; ecological niche model;
Spodoptera frugiperda

1. Introduction

The global transportation and trade have caused the spread of invasive species, greatly threatening
crop production globally [1]. This constitutes a serious threat to developing countries that have poor
agricultural productivity and huge food demands. Among the invasive pests of economic importance,
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the fall armyworm (Spodoptera frugiperda, FAW) is one of the most aggressive pests due to its strong
flight ability and adaptation to a wide range of environments [1–3]. FAW is a polyphagous pest with
broad host range, known to feed on 353 host plants globally, especially maize [4,5]. FAW is native
to North America but has spread rapidly to at least 40 countries of sub-Saharan Africa [6]. In recent
years, FAW has been detected in several Asian countries, such as India, Sri Lanka, Thailand, Yemen,
Myanmar, and China [7–9]. In China, FAW was first discovered in Yunnan Province in late December
2018. Until now, it has spread to 26 provincial regions of the whole country and the damaged area
exceeds one million ha, constituting a severe threat to food security in China [8–10].

After a severe worldwide outbreak of FAW, chemical insecticides were used as the main control
method [11]. However, due to the intensive application of pesticides, FAW has developed resistance in
several countries [12,13]. In order to avoid insecticidal resistance and protect environment, it is better to
apply biological control to regulate FAW in the long term. There are many effective biological measures
against FAW, such as natural enemies [14] and pathogenic microorganisms (fungi, bacteria, viruses,
and nematode) [15–19]. The predators of FAW mainly include Coccinellidae, Carabidae, Reduviidae,
Lygaeidae, and Pentatomidae [20]. In America and Brazil, Podisus maculiventris and Podisus nigrispinus
have been applied to control FAW [21,22]. In China, many parasitoids, such as Microplitis simili [23]
and Chelonus munakatae [24], as well as some predatory insects, such as Arma custos [25], have been
used to check the continuous spreading of FAW.

Arma custos (Hemiptera: Pentatomidae) is an important predaceous insect, which is adaptable
and easy to mass produce [26]. It is widely distributed in the Palaearctic and frequently found on
various trees, as well as in cotton and soybean fields [27,28]. A. custos has received global attention
because of its ability to effectively suppress several pests, including species of Lepidoptera, Coleoptera,
Hymenoptera, and Hemiptera [28–31]. A. custos is suitable for artificial rearing and released adults
easily establish a natural population under suitable ecological conditions, providing continuous control
of the pest population [32]. In China, A. custos has been successfully applied to control many important
pests. As early as the 1970s, some researchers have released artificially reared A. custos to control
Ambrostoma quadriimopressum and obtained good effects [33]. Since then, some other institutes have
applied A. custos to test pests, such as Parocneria furva, Stilpnotia candida, Cnidocampa flavescens, and
achieved good control effects [34]. A. custos could also prey on FAW according to laboratory and field
experiments. A. custos is most likely to attack FAW when in its 4th–5th nymphal instars, attacking
mostly 3rd instar FAW larvae [35]. Among all instars of A. custos, the 5th instars are more active
in predation of FAW [36]. At present, most of the researches about A. custos focus on its biological
characteristic [28], morphology [37], artificial rearing [38], storage technology [39], and the predatory
ability [40]. However, it is essential to know the potential distribution of A. custos for better sampling
and releasing to control FAW and other pests.

Ecological Niche Models (ENMs) are widely used in ecology, biogeography, conservation biology
and other fields, which can predict species potential distribution based on its known occurrence records
and environmental predictors [41,42]. Among the ENMs, MaxEnt is one of the most widely used
models by finding the probability distribution of maximum entropy. It is based on presence-only data
and has high stability with small sample size [43–45]. Thus, in this study, MaxEnt was used to identify
potentially suitable areas for A. custos.

This study attempts to apply A. custos to regulate FAW and also provide a theoretical reference for
the control of other pests by predicting potentially suitable areas of A. custos. Overall, the objectives are:
(i) to identify the most important environmental variables that influence the distribution of A. custos;
(ii) to study the effect of climate change on the potential distribution of A. custos; and (iii) to provide a
theoretical basis for applying A. custos to biological control.
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2. Materials and Methods

2.1. Occurrence Data

The occurrence data of A. custos were primarily obtained from two sources: (i) the Global
Biodiversity Information Facility database (GBIF, https://www.gbif.org/); and (ii) specimens by field
collection. We extracted geographical coordinates of distribution sites based on Google Earth and some
data were collected from the field by using global positioning system (GPS) (Table S1-1, Table S1-2).

We first performed initial cleaning of occurrence data. The distribution sites without coordinates,
low precise (decimal < 2), and duplicate coordinates were removed from initial data. Sample bias
is frequently present in the occurrence records because the selection of sampling sites is easy to be
subjectively selected as accessible areas, such as areas close to cities or other human settlements [46,47].
In order to eliminate imbalance and spatial autocorrelation caused by sampling bias, occurrence records
were sub-sampled based on the function “gridSample” of R package “dismo”. After cleaning and
filtering, 271 occurrence points remained (Figure 1). The workflow was conducted in QGIS version
3.12.2 (https://www.qgis.org/).
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Figure 1. Worldwide geographic distribution records of A. custos.

2.2. Environmental Variables

Climatic and topographic variables are used to characterize species niches in multivariate
environmental space [48]. In a large spatial scale, climatic variables are considered as the primary
factors to determine species niches [49,50]. In this study, 20 environmental variables including 19
bioclimatic variables (bio1-bio19) and one elevation data (altitude) for both current and future scenarios
(Table S2) were downloaded from the WorldClim database (https://www.worldclim.org/) with 2.5
arc-minute spatial resolution (about 5 km at the equator). Two topographic factors, i.e., slope (slo) and
aspect (asp), were extracted from altitude in QGIS version 3.12.2.

Data for future climatic conditions (2050s, average for 2041–2060; 2070s, average for 2061–2080)
were derived from downscaled global circle models (GCMs). The Beijing Climate Center System Model
version 1.1 (BCC-CSM1-1) is one of the most commonly used models for climate change simulation in
China [51,52]. Thus, the present study adopted the GCM to predict the future suitable distribution of
A. custos. In the fifth report assessment (AR5) of the International Panel on Climate Change (IPCC), four
representative concentration pathways (RCPs) (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) were established,
which represented the possible future emission of greenhouse gases [53,54]. The four RCPs, ranging
from lowest (RCP2.6) to highest (RCP8.5) values, are defined by the possible range of global radiative
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forcing values (2.6, 4.5, 6.0, and 8.5 W/m2, respectively) in the year 2100. To better understand the
change of suitable distribution of A. custos under different levels of climatic scenarios, RCP2.6 as
the minimum emission scenario, RCP4.5 as the medium, RCP8.5 as the maximum, were selected to
simulate the potential future distribution in the 2050s and 2070s.

Variable selection is a crucial step for species distribution modeling. Both large and small subsets
of environmental layers can greatly impact the performance of the models [55]. Model built with high
multi-collinear variables is easily over-fitting [56]. Hence, in the current study, three methods (principal
components analysis, Pearson correlation analysis, and the jackknife analysis) were combined to
select the environmental variables with low correlation but high significance. Principal components
analysis (PCA) and Pearson correlation analysis, as the main correlation-reducing techniques, are both
widely used in the process of variable selection [57,58]. First, five principal components (PC1-PC5)
were selected by PCA performed in R package “kuenm”, which explained almost 86% of variation in
environmental variables. The three variables with highest correlation coefficient were selected from
the five principal components as principal variables (Table S3-1, Table S3-2). Next, correlation analysis
was performed using the R package “ellipsenm” and retained only one variable from each pair of
highly correlated variables (|r| ≥ 0.8), based on the percent contribution of each variable in the initial
model by jackknife analysis in MaxEnt (Figure 2, Figure S1 and Table S4). Then, combining the result
of PCA, six variables with low correlation but high importance (bio1, bio12, bio15, bio16, bio17, alt)
were screened.
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Figure 2. Pearson correlation analysis for environmental variables. The vertical scale represents the
value of the correlation coefficients, and the absolute values represent the magnitude of correlation.
The pair of high correlated variables (|r| ≥ 0.8) is represented by a circle that is magnified by 1.5 times
and its color is darker than others.

2.3. Modeling Procedure

There are many ENMs used for modeling prediction, such as CLIMEX, BIOCLIM, and
GARP [45,59,60]. MaxEnt is a presence-only model that performs well regardless of the number
or geographical extent of species records as compared to the performance of other methods [43,50,61].
In this study, MaxEnt version 3.4.1 was used.

Species distribution parameters in MaxEnt determine the performance of the models. However,
many pieces of researches adopted default parameters to execute models, which could result in
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severe fitting deviation for models [48]. Regular Multiplier (RM) and Feature Class (FC) are included
in MaxEnt for optimizing the models. RM promotes to smooth the model and minimize model
over-fitting. FC, corresponding to the response type of suitability values to each variable, determines
the potential shape of response curves. There are five FCs in MaxEnt, which include Linear (L), Product
(P), Quadratic (Q), Threshold (T), and Hinge (H) [43,62]. In the process of parameter optimization,
the RM value ranged from 0.5 to 4 with an increment of 0.5 and six combinations of FCs (L, LQ, LQP,
LQT, QPT, PHT), were chosen to build candidate models for selecting the optimized model. The R
package “ENMeval” was used to execute the process and “the checkerboard2” method of “ENMeval”
was applied to calculate the standardized Akaike information criterion coefficient (AICc), which has a
criterion for evaluating the models. The lowest AICc score with the sets of parameters was selected to
run the final model in MaxEnt. In the study, the optimal parameter set was PHT for FC and 1.5 for RM
(Table S5, Figure S2).

In the process of MaxEnt outputting, the convergence threshold and the maximum number of
iterations were set to 10−5 and 500, respectively. Ten-fold cross-validation was used to execute MaxEnt
for preventing random errors from the predicted samples, which were randomly partitioned into ten
equivalent subsets, in which one was for model testing, and nine for model training. The logistic
format was set to illustrate the results of MaxEnt. The binary suitable/non-suitable habitats were
defined by a 10th percentile training presence logistic threshold, which has been widely applied
to species distribution modeling, especially when data were collected by different collectors [63].
We adopted the median of all the bootstrapped replicates to better present the geographic predictions
of final models [64]. The distribution maps were classified into four levels: <threshold, unsuitable;
threshold–0.4, marginally suitable; 0.4–0.6, moderately suitable; and 0.6–1, highly suitable.

2.4. Model Evaluation

There are many indices applied to model evaluation, such as the area under the curve of the
receiver operating characteristic (AUC), kappa statistic (kappa), and the true skill statistic (TSS) [65].
Although AUC is widely used, it can neither provide information on the spatial distribution of model
errors nor weigh omission and commission errors equally [50,66,67]. To handle this problem, the partial
AUC (pAUC) was applied to assess model performance. This metric gives priority to omission error
over commission error and could consider the amount of error known or estimated among occurrences.
In addition, it was recommended to set the type of replication as bootstrap running 1000 replicates [68].
In the study, pAUC was calculated by NicheToolbox (http://shiny.conabio.gob.mx:3838/nichetoolb2/)
with 1000 iterations and error (E) = 0.05.

3. Results

3.1. Model Performance

In the present study, the mean value for pAUC (at E = 0.05) was 0.811777 (mean AUC: 0.891), which
represented good credibility for the model. Moreover, the distribution of the AUC ratio calculated as
AUCpartial/AUCrandom was significantly greater than the random AUC ratio (p < 0.001), which shows
high performance of the model (Figure 3).

http://shiny.conabio.gob.mx:3838/nichetoolb2/
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3.2. Effects of Environmental Variables

3.2.1. Contributions of Environmental Variables

The annual mean temperature (bio1) and the annual precipitation (bio12) were the major factors
influencing the distribution of A. custos. The contributions of bio1 and bio12 were 58.4% and 24.8%,
respectively, which contained most of the environmental information (Table 1). Other variable
contributions were: precipitation seasonality (bio15), 1.9%; precipitation of wettest quarter (bio16), 4%;
precipitation of driest quarter (bio17), 8.6%; and altitude (alt), 2.3%.

Table 1. The contributions of environmental variables.

Variable Percent Contribution (%)

Annual Mean Temperature (bio1) 58.4
Annual Precipitation (bio12) 24.8

Precipitation Seasonality (bio15) 1.9
Precipitation of Wettest Quarter (bio16) 4
Precipitation of Driest Quarter (bio17) 8.6

Altitude (alt) 2.3

3.2.2. Response to the Environmental Variables

The response curves show how the climatic suitability of A. custos changes with the environmental
variables (Figure 4). The suitability of A. custos decreased after the altitude (alt) reached about 150 m,
where the curve trends for alt and precipitation seasonality (bio15) were roughly equal. Before the
annual mean temperature (bio1) reached about 8 ◦C, there was a rise in the curve with the increasing
temperature, and the rate of increase gradually decreased after 15 ◦C. The curve trend of bio1 was
roughly consistent with that of the precipitation of driest quarter (bio17). When the annual precipitation
(bio12) reached between 1200 mm to 1400 mm, the suitability of A. custos dropped sharply and the
curve of bio12 varied consistently with the precipitation of wettest quarter (bio16). Overall, the
response curves illustrated that the high probability of presence of A. custos was at altitude (alt) of
0 to 150 m, annual mean temperature (bio1) of 7.5 to 15 ◦C, annual precipitation (bio12) of 750 to
1200 mm, precipitation seasonality (bio15) of 5 to 35 mm, precipitation of wettest quarter (bio16) of 250
to 700 mm, and precipitation of driest quarter (bio17) of 110 to 300 mm.
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environmental variables. The curves show the mean response of the 10 replicate MaxEnt runs (red) and
the mean±SD (blue). (a) Altitude; (b) The annual mean temperature; (c) The annual mean precipitation;
(d) Precipitation seasonality; (e) Precipitation of wettest quarter; (f) Precipitation of driest quarter.

3.3. Current Potential Distribution

The 10th percentile training presence logistic threshold was 0.1893. According to this,
the distribution of A. custos was reclassified into four classes (Figure 5). Most of the highly suitable
areas (0.6–1) were located in Hebei, Shandong, Anhui, Jiangsu, and parts of in Henan, Hubei, Guizhou,
Zhejiang, and Taiwan Provinces. The moderately suitable regions (0.4–0.6) included most of the eastern
and central areas (Liaoning, Shanxi, Shaanxi, Hubei, eastern Sichuan, Guizhou, Hunan, Jiangxi, and
Fujian Provinces), and parts of Taiwan Province. Marginally suitable areas (0.1893–0.4) were regions
of northern China, such as Xinjiang, Inner Mongolia, Heilongjiang, Jilin Provinces, most of southern
China (Yunnan, Guangxi, Guangdong, Taiwan Provinces), and a few places in southeastern Tibet.
The unsuitable habitats of A. custos (<0.1893) were mostly in western China and some in the far north
of China. The area of potentially highly suitable areas was approximately 1.10 × 106 km2, accounting
for about 11.46% of the total land area of China. The area of moderate and marginal suitability habitats
were approximately 2.50 × 106 km2 each, accounting for about 26.04% of the total area each. Overall,
the area of suitable habitats for A. custos under the current climate accounts for about 63.54% of the
total land area of China (Table 2).
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Table 2. Area of habitats with different suitability for A. custos under current and future climatic
scenarios (km2). The values in brackets represent the proportion of the corresponding area to the
total area.
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3.4. Future Potential Distribution

The potential distribution of A. custos under future climate scenarios is significantly different from
that under the current climatic conditions (Figure 6). In general, (i) the suitable areas under current
climate may massively decrease and highly suitable regions may vanish; (ii) some unsuitable regions
in northern China may become suitable habitats under future climatic scenarios.

In the 2050s, most of the moderately suitable regions will be in northeastern Inner Mongolia and
northwestern Heilongjiang, and with smaller areas in Jilin and Xinjiang Provinces. Marginally suitable
areas will be in Xinjiang, Tibet, Qinghai, Sichuan, and Gansu Provinces. With the range from RCP2.6 to
RCP8.5, the suitable regions would be smaller. The area of moderately suitable habitats for A. custos
under RCP2.6 is approximately 1.80 × 105 km2, accounting for about 1.88% of the total land area of
China. Compared to the area of moderately suitable habitats under the current climatic condition,
this area is reduced by 24.16%.
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In the 2070s, the distribution of A. custos will be approximately the same as that in the 2050s.
Under RCP2.6, the moderately suitable area will be the biggest, which is about 1.99 × 105 km2,
accounting for about 2.08% of the total land area. Compared to the area of moderately suitable habitats
in the 2050s, the area would have increased by 0.2%. The general area of suitable regions in the 2070s
would be less than that of the 2050s, excluding that under RCP2.6.
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4. Discussion

The current study firstly focuses on the potentially suitable areas of A. custos in China. We applied
MaxEnt to predict the potential distribution area of A. custos based on occurrence data and environmental
variables under current and future climatic conditions in China. The evaluation result of model proves
the high performance of the current model, indicated by that predictive AUC ratio is significantly
greater than the random ratio.

The annual mean temperature (bio1) and the annual precipitation (bio12) are the main constraining
factors for the distribution of A. custos. The survival rate of A. custos is highest in regions with medium
precipitation (800 mm–1000 mm), which include most of the potentially highly suitable regions both
under current and future climate conditions (current: Hebei, Shandong, Henan Provinces; future:
Heilongjiang, central Sichuan, southern Qinghai, and Gansu Provinces). Therefore, areas with medium
precipitation should be focused on in the future. In this study, the optimal range of annual mean
temperature is between 7.5 to 15 ◦C. Zhou et al. [69] set three temperature gradients (20 ◦C, 25 ◦C, and
30 ◦C) to study their effects on A. custos. The results suggested that adults had the longest lifespan
and highest survival rate at 20 ◦C. In addition, Liao and his colleague [70] studied on the growth and
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development of A. custos at temperature conditions of 10 ◦C and 15 ◦C. They found that A. custos can
develop normally at both temperatures, but developmental duration is significantly prolonged with
decreasing temperature. These results are nearly consistent with the predicted optimal temperature of
A. custos in the current model, which has proved that our results are credible.

Qin et al. [71] predicted the potential geographical distribution of FAW in China under the current
climatic condition based on its year-round and seasonal distribution. Most medium and low suitable
areas of FAW nearly overlap with high suitability areas of A. custos (Guizhou, Hubei, Anhui, Jiangsu,
Henan, and Shandong Provinces). Highly suitable areas for FAW mostly overlap with A. custos’s
medium and low suitability habitats (Yunnan, Guangxi, Guangdong, Fujian, Zhejiang, Jiangxi, and
Hunan Provinces). Therefore, under the current climatic conditions, releasing A. custos in Fujian,
Zhejiang, Jiangxi, Hunan, and the southeast of Sichuan Provinces could be useful. However, IPCC
estimated that the average global temperature will rise by at most 2.6–4.8 ◦C and at least 0.3–1.7 ◦C
in the 21st century, which will trigger radically different patterns of distribution [72]. With rise in
temperature, the temperature of currently highly suitable habitats may not remain suitable for A. custos
survival. Our results show that most of the current highly suitable areas will decrease and mainly shift
towards northeastern China under climate change scenarios of RCP2.6, 4.5, 8.5 in the 2050s and 2070s.
However, these high latitude areas are not suitable for FAW survival, as reported by Xie et al. [73].
Therefore, there is no need to apply A. custos for bio-control in the northeast of China under future
climatic scenarios.

Although this model has high credibility, there are still some deficiencies. Generally, ecological
niche model is mainly affected by abiotic and biotic factors [74], whereas biotic interactions are
often excluded from ENMs as they are difficult to quantify [75]. We only considered climatic and
topographical variables in current study. Actually, there are many other factors also influencing
the result of model, such as land use [76], edaphic variables [77], and vegetation [43]. In addition,
the calibration area that has been accessible to the species during its evolutionary history will impact
the final results of the model prediction either [78]. However, in our study, we did not compare
calibration area of different sizes, so perhaps the current choice is not optimal.

In general, ENMs are effective prediction tools to grasp the potential distribution area of species,
and are widely utilized in the field of ecology. In order to improve model accuracy, we suggest various
factors that affect the ability of species distribution should be considered. Moreover, as an important
predatory insect in agriculture and forestry, A. custos needs to be paid more attention in the future.

5. Conclusions

This study on the potentially suitable habitats of A. custos in China indicates that the annual mean
temperature and annual precipitation are the most important environmental factors that influence
the distribution of A. custos. The highly suitable regions for A. custos are in Hebei, Shandong, Anhui,
Jiangsu, Henan, Zhejiang, and Guizhou Provinces, under the current climatic conditions. Under climate
change, the originally suitable areas will decrease, but some currently unsuitable regions (Heilongjiang,
Inner Mongolia) may become suitable. Considering the suitable distribution area of FAW, A. custos is
suggested to be released in Fujian, Zhejiang, Jiangxi, Hunan, and the southeast of Sichuan Provinces
under the current climatic condition. Under future climatic scenarios, it may not be necessary to apply
A. custos to control FAW in the high latitude areas.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/10/674/s1,
Figure S1: the contribution of environmental variables for MaxEnt modeling by Jacknife, Table S1-1: Occurrence
Data from field collection, Table S1-2: Occurrence Data from GBIF Database, Figure S2: The change of delta.AICc
by setting different values of RM and FC, Table S2: The list of original environmental variables downloaded at
the WorldClim, Table S3-1: PCA Results Summary, Table S3-2: Component matrix of PCA, Table S4: Correlation
analysis of environmental variables for Arma chinensis, Table S5: The relevant parameters for the best model.

Author Contributions: Conceptualization, J.W. and S.F.; methodology, C.C. and S.F.; software, S.F.; validation, Q.Z.,
C.C. and S.F.; formal analysis, S.F.; investigation, C.C.; resources, C.C.; data curation, S.F. and C.C; writing—original
draft preparation, S.F.; writing—review and editing, S.F. and J.W.; visualization, Q.Z.; supervision, H.Z.; project

http://www.mdpi.com/2075-4450/11/10/674/s1


Insects 2020, 11, 674 11 of 14

administration, H.Z.; funding acquisition, H.Z., Q.Z., and J.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research project was supported by the National Science Foundation of China [Nos. 31872272,
31501876], Research Project Supported by Shanxi Scholarship Council of China [Nos. 2020-065, 2020-064], Scientific
and Technological Project of Shanxi Province [No. 20150311010-7].

Acknowledgments: We would like to thank Cheng Lifang, Yu Tiancheng, and Gao Xiaoyun for their
technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zacarias, D.A. Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera:
Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Clim. Chang.
2020, 1–12. [CrossRef]

2. Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First report of outbreaks of the fall armyworm
Spodoptera frugiperda (J.E. Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central
Africa. PLoS ONE 2016, 11, e0165632. [CrossRef]

3. Early, R.; González-Moreno, P.; Murphy, S.T.; Day, R. Forecasting the global extent of invasion of the cereal
pest Spodoptera frugiperda, the fall armyworm. NeoBiota 2018, 40, 25–50. [CrossRef]

4. Montezano, A.D.G.; Specht, A.; Montezano, D.G.; Specht, A. Host Plants of Spodoptera frugiperda (Lepidoptera:
Noctuidae) in the Americas Published by: Entomological Society of Southern Africa Review article Host
plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300.
[CrossRef]

5. Firake, D.M.; Behere, G.T. Bioecological attributes and physiological indices of invasive fall armyworm,
Spodoptera frugiperda (J.E. Smith) infesting ginger (Zingiber officinale Roscoe) plants in India. Crop. Prot.
2020, 137, e105233. [CrossRef]

6. Feldmann, F.; Rieckmann, U.; Winter, S. The spread of the fall armyworm Spodoptera frugiperda in Africa—What
should be done next? J. Plant Dis. Prot. 2019, 126, 97–101. [CrossRef]

7. Mallapur, C.P.; Naik, A.K.; Hagari, S.; Prabhu, S.T. Status of alien pest fall armyworm, Spodoptera frugiperda
(J.E. Smith) on maize in Northern Karnataka. J. Entomol. Zool. Stud. 2018, 6, 432–436.

8. Jiang, Y.Y.; Liu, J.; Zhu, X.M. Analysis on the occurrence dynamics and future trend of the invasion of
Spodoptera frugiperda in China. China Plant Prot. 2019, 39, 33–35.

9. Jing, D.P.; Guo, J.F.; Jiang, Y.Y.; Zhao, J.Z.; Sethi, A.; He, K.L.; Wang, Z.Y. Initial detections and spread
of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using
molecular techniques. Insect Sci. 2020, 27, 780–790. [CrossRef] [PubMed]

10. Wang, L.; Chen, K.W.; Lu, Y.Y. The trends and dynamics of the invasion and expansion of Spodoptera frugiperda
in China. J. Environ. Entomol. 2019, 41, 683–694.

11. Koffi, D.; Kyerematen, R.; Eziah, V.Y.; Agboka, K.; Adom, M.; Goergen, G.; Meagher, R.L. Natural Enemies
of the Fall Armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in Ghana. Fla. Entomol.
2020, 103, 85–90. [CrossRef]

12. Da, R.B.; Cruz, I.; Maria, D.L.C. Efficiency of chemical pesticides to control Spodoptera frugiperda and validation
of pheromone trap as a pest management tool in maize crop. Rev. Bras. Milho Sorgo 2010, 9, 107–122.

13. Yu, S.J.; Nguyen, S.N.; Elghar, G.E. Biochemical characteristics of insecticide resistance in the fall armyworm,
Spodoptera frugiperda (J.E. Smith). Pestic. Biochem. Physiol. 2003, 77, 1–11. [CrossRef]

14. Shapiro, D.I.; Gouge, D.H.; Piggott, S.J.; Fife, J.P. Application technology and environmental considerations
for use of entomopathogenic nematodes in biological control. Biol. Control. 2006, 38, 124–133. [CrossRef]

15. Food and Agriculture Organization of the United Nations (FAO). Integrated Management of the Fall Armyworm
on Maize. A Guide for Farmer Field Schools in Africa; FAO of the United Nations: Rome, Italy, 2018; pp. 1–139.

16. Shylesha, A.N.; Jalali, S.K.; Gupta, A.; Varshney, R.; Venkatesan, T.; Shetty, P.; Ojha, R.; Ganiger, P.C.; Navik, O.;
Subaharan, K. Studies on new invasive pest Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and
its natural enemies. J. Biol. Control. 2018, 32, 145–151. [CrossRef]

http://dx.doi.org/10.1007/s10584-020-02722-5
http://dx.doi.org/10.1371/journal.pone.0165632
http://dx.doi.org/10.3897/neobiota.40.28165
http://dx.doi.org/10.4001/003.026.0286
http://dx.doi.org/10.1016/j.cropro.2020.105233
http://dx.doi.org/10.1007/s41348-019-00204-0
http://dx.doi.org/10.1111/1744-7917.12700
http://www.ncbi.nlm.nih.gov/pubmed/31209955
http://dx.doi.org/10.1653/024.103.0414
http://dx.doi.org/10.1016/S0048-3575(03)00079-8
http://dx.doi.org/10.1016/j.biocontrol.2005.09.005
http://dx.doi.org/10.18311/jbc/2018/21707


Insects 2020, 11, 674 12 of 14

17. Ruiz, R.E.; Ruiz, R.A.; Sánchez, J.M.; Molina, J.; Skoda, S.R.; Coutiño, R.; Pinto, R.; Guevara, F.; Foster, J.E.
Occurrence of Entomopathogenic Fungi and Parasitic Nematodes on Spodoptera frugiperda (Lepidoptera:
Noctuidae) Larvae Collected in Central Chiapas, México. Fla. Entomol. 2013, 96, 498–503. [CrossRef]

18. Jakka, S.R.K.; Knight, V.R.; Jurat, J.L. Fitness Costs Associated With Field-Evolved Resistance to Bt Maize in
Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Econ. Entomol. 2014, 107, 342–351. [CrossRef] [PubMed]

19. Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen, K.; Gilioli, G.; Gregoire, J.C.;
Jaques, J.A.; Navarro, M.N.; et al. Pest categorisation of Spodoptera frugiperda. EFSA J. 2017, 15, 4927.

20. Leyva, H.A.; Garciá, C.; Ruíz, J.; Calderón, C.L.; Luna, A.; Garciá, S. Evaluation of the Virulence of Steinernema
riobrave and Rhabditis blumi against Third Instar Larvae of Spodoptera frugiperda. Southwest. Entomol. 2018,
43, 189–197. [CrossRef]

21. Prasanna, B.M.; Joseph, E.H. Fall Armyworm in Africa: A Guide for Integrated Pest Management; USAID:
Washington, DC, USA, 2018; pp. 1–109.

22. Jesus, F.G.; Boiça, A.L.; Alves, G.C.S.; Zanuncio, J.C. Behavior, Development, and Predation of Podisus
nigrispinus (Hemiptera: Pentatomidae) on Spodoptera frugiperda (Lepidoptera: Noctuidae) Fed Transgenic
and Conventional Cotton Cultivars. Ann. Entomol. Soc. Am. 2014, 107, 601–606. [CrossRef]

23. Shapiro, J.P.; Legaspi, J.C. Assessing Biochemical Fitness of Predator Podisus maculiventris (Heteroptera:
Pentatomidae) in Relation to Food Quality: Effects of Five Species of Prey. Ann. Entomol. Soc. Am. 2006, 99,
321–326. [CrossRef]

24. Chen, Z.M.; Zhao, L.C.; Liu, H. Parasitic behavior and effect of Microplitis similis on Spodoptera frugiperda
larvae. Plant Prot. 2019, 45, 71–74.

25. Li, F.; Wang, L.K.; Lu, B.Q. The Report of Chelonus munakatae Parasitizing Fall Armworm Spodoptera frugiperda
(Lepidoptera: Noctuidae) in Hainan, China. Chin. J. Biol. Control. 2019, 35, 992–996.

26. Xiao, G.R. Forest Insects of China; China Forestry Publishing House: Beijing, China, 1992; pp. 304–306.
27. Thomas, D. Taxonomic synopsis of the Old World asopine genera (Heteroptera. Pentatomidae). Insecta

Mundi 1994, 8, 145–212.
28. Zou, D.; Wang, M.; Zhang, L.; Zhang, Y.; Zhang, X.; Chen, H. Taxonomic and bionomic notes on Arma

chinensis (Fallou) (Hemiptera: Pentatomidae: Asopinae). Zootaxa 2012, 52, 41–52. [CrossRef]
29. Chai, X.M.; He, Z.H.; Jiang, P. Studies on natural enemies of Dendrolimus punctatus in Zhejiang Province.

J. Zhejiang For. Sci. Technol. 2000, 20, 1–56.
30. Liang, Z.P.; Zhang, X.X.; Song, A.D. Biology of Clostera anachoreta and its control methods. Chin. Bull.

Entomol. 2006, 43, 147–152.
31. Gao, C.Q.; Wang, Z.M.; Yu, E.Y. Studies on artificial rearing of Arma chinensis Fallou. J. Jilin For. Sci. Technol.

1993, 103, 16–18.
32. Yan, J.H.; Tang, W.Y.; Zhang, H. Bionomics of the leafhopper Macropsis matsudanis. Chin. Bull. Entomol. 2006,

43, 245–249.
33. Gao, Z. Biological Characteristics and Releasing Techniques of Arma chinensis. Master’s Thesis, Heilongjiang

University, Harbin, Heilongjiang, China, 5 July 2010.
34. Xu, C.H.; Yan, J.J.; Yao, D.F. The relation between the development of Arma chinensis and temperatures.

Scientia Silvae Sinicae 1984, 1, 96–99.
35. Wang, Y.; Zhang, H.M.; Yin, Y.Q. Predation of adult of Arma chinensis to larvae of Spodoptera frugiperda.

Plant Prot. 2019, 45, 42–46.
36. Tang, Y.T.; Li, Y.Y.; Liu, C.X. Predation and Behavior of Arma chinensis to Spodoptera frugiperda. Plant Prot.

2019, 45, 65–68.
37. Zhang, J.; Zhang, X.; Liu, C.; Meng, L.; Zhou, Y. Fine structure and distribution of antennal sensilla of stink

bug Arma chinensis (Heteroptera: Pentatomidae). Entomol. Fenn. 2014, 25, 186–198. [CrossRef]
38. Zou, D.Y.; Wu, H.H.; Coudron, T.A.; Zhang, L.S.; Wang, M.Q.; Liu, C.X.; Chen, H.Y. A meridic diet for

continuous rearing of Arma chinensis (Hemiptera: Pentatomidae: Asopinae). Biol. Control. 2013, 67, 491–497.
[CrossRef]

39. Li, X.P.; Song, L.W.; Coudron, T.A.; Zuo, T.T.; Chen, Y.Q.; Zhang, Y.; Wu, S.A. Effects of two natural diets on
the response of the predator Arma chinensis (Hemiptera: Pentatomidae: Asopinae) to cold storage. Appl.
Ecol. Environ. Res. 2019, 17, 15329–15347. [CrossRef]

40. Gao, Q.; Wang, D.; Zhang, W.H. Study on Predatory Function of Arma chinensis on Spodoptera litura (Fabricius).
Chin. Tob. Sci. 2019, 40, 55–59.

http://dx.doi.org/10.1653/024.096.0215
http://dx.doi.org/10.1603/EC13326
http://www.ncbi.nlm.nih.gov/pubmed/24665719
http://dx.doi.org/10.3958/059.043.0111
http://dx.doi.org/10.1603/AN13100
http://dx.doi.org/10.1603/0013-8746(2006)099[0321:ABFOPP]2.0.CO;2
http://dx.doi.org/10.11646/zootaxa.3382.1.4
http://dx.doi.org/10.33338/ef.84629
http://dx.doi.org/10.1016/j.biocontrol.2013.09.020
http://dx.doi.org/10.15666/aeer/1706_1532915347


Insects 2020, 11, 674 13 of 14

41. Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space
and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [CrossRef]

42. Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett.
2005, 8, 993–1009. [CrossRef]

43. Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for
ecologists. Divers. Distrib. 2011, 17, 43–57. [CrossRef]

44. Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics
on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [CrossRef]

45. Phillips, S.B.; Aneja, V.P.; Kang, D.; Arya, S.P. Maximum entropy modeling of species geographic distributions.
Ecol. Model. 2006, 190, 231–259. [CrossRef]

46. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate
surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [CrossRef]

47. Kadmon, R.; Farber, O.; Danin, A. Effect of Roadside Bias on the Accuracy of Predictive Maps Produced by
Bioclimatic Models. Ecol. Appl. 2004, 14, 401–413. [CrossRef]

48. Austin, M.P. Spatial prediction of species distribution: An interface between ecological theory and statistical
modelling. Ecol. Model. 2002, 157, 101–118. [CrossRef]

49. Wei, J.F.; Zhao, Q.; Zhao, W.Q.; Zhang, H.F. Predicting the potential distributions of the invasive cycad
scale Aulacaspis yasumatsui (Hemiptera: Diaspididae) under different climate change scenarios and the
implications for management. PeerJ 2018. [CrossRef]

50. Wei, J.F.; Peng, L.F.; He, Z.Q.; Lu, Y.; Wang, F. Potential distribution of two invasive pineapple pests under
climate change. Pest. Manag. Sci. 2020, 76, 1652–1663. [CrossRef]

51. Xin, X.; Wu, T.; Li, J. How Well does BCC_CSM1.1 Reproduce the 20th Century Climate Change over China?
Atmos. Ocean. Sci. Lett. 2013, 6, 21–26. [CrossRef]

52. Wu, T.; Li, W.; Ji, J.; Xin, X.; Li, L.; Wang, Z.; Zhang, Y.; Li, J.; Zhang, F.; Wei, M.; et al. Global carbon budgets
simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos.
2013, 118, 4326–4347. [CrossRef]

53. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013;
ISBN 978-1-107-05799-1.

54. Van, D.P.; Bouwman, A.F.; Beusen, A.H.W. Phosphorus demand for the 1970–2100 period: A scenario analysis
of resource depletion. Glob. Environ. Chang. 2010, 20, 428–439. [CrossRef]

55. Braunisch, V.; Coppes, J.; Arlettaz, R.; Suchant, R.; Schmid, H.; Bollmann, K. Selecting from correlated climate
variables: A major source of uncertainty for predicting species distributions under climate change. Ecography
2013, 36, 971–983. [CrossRef]

56. Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.;
Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study
evaluating their performance. Ecography 2013, 35, 1–20. [CrossRef]

57. Li, Y.; Li, M.; Li, C.; Liu, Z. Optimized maxent model predictions of climate change impacts on the suitable
distribution of cunninghamia lanceolata in China. Forests 2020, 11, 302. [CrossRef]

58. Heikkinen, R.K.; Luoto, M.; Araújo, M.B.; Virkkala, R.; Thuiller, W.; Sykes, M.T. Methods and uncertainties in
bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 2006, 30, 751–777. [CrossRef]

59. Elith, J.; Graham, C.H.; Anderson, P.R.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, J.R.; Huettmann, F.;
Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from
occurrence data. Ecography 2006, 29, 129–151. [CrossRef]

60. Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What
it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [CrossRef]

61. Xu, Z.L.; Peng, H.H.; Peng, S.H. The development and evaluation of species distribution models. Shengtai
Xuebao/Acta Ecologica Sinica 2015, 35, 557–567. [CrossRef]

62. Kong, W.Y.; Li, X.H.; Zou, H.F. Optimizing MaxEnt model in the prediction of species distribution. Chin. J.
Appl. Ecol. 2019, 30, 2116–2128.

63. Bosso, L.; Febbraro, M.D.; Cristinzio, G. Shedding light on the effects of climate change on the potential
distribution of Xylella fastidiosa in the Mediterranean basin. Biol. Invasions 2016, 18, 1759–1768. [CrossRef]

http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159
http://dx.doi.org/10.1111/j.1461-0248.2005.00792.x
http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x
http://dx.doi.org/10.1111/j.0906-7590.2006.04700.x
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.1890/02-5364
http://dx.doi.org/10.1016/S0304-3800(02)00205-3
http://dx.doi.org/10.7717/peerj.4832
http://dx.doi.org/10.1002/ps.5684
http://dx.doi.org/10.1080/16742834.2013.11447053
http://dx.doi.org/10.1002/jgrd.50320
http://dx.doi.org/10.1016/j.gloenvcha.2010.04.004
http://dx.doi.org/10.1111/j.1600-0587.2013.00138.x
http://dx.doi.org/10.1111/j.1600-0587.2012.07348.x
http://dx.doi.org/10.3390/f11030302
http://dx.doi.org/10.1177/0309133306071957
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
http://dx.doi.org/10.1111/j.1600-0587.2013.07872.x
http://dx.doi.org/10.5846/stxb201304030600
http://dx.doi.org/10.1007/s10530-016-1118-1


Insects 2020, 11, 674 14 of 14

64. Cobos, M.E.; Osorio-Olvera, L.; Peterson, A.T. Assessment and representation of variability in ecological
niche model predictions. BioRxiv 2019, 603100. [CrossRef]

65. Shabani, F.; Kumar, L.; Ahmadi, M. Assessing accuracy methods of species distribution models: AUC,
Specificity, Sensitivity and the True Skill Statistic. Glob. J. Hum. Soc. Sci. 2018, 18, 6–18.

66. Gilfillan, D.; Joyner, T.A.; Scheuerman, P. Maxent estimation of aquatic Escherichia coli stream impairment.
PeerJ 2018, 6, e5610. [CrossRef] [PubMed]

67. Zarzo-Arias, A.; Penteriani, V.; Delgado, M.; Torre, P.P.; García-González, R.; Mateo-Sánchez, M.C.; García, P.V.;
Dalerum, F. Identifying potential areas of expansion for the endangered brown bear (Ursus arctos) population
in the cantabrian mountains (NW Spain). PLoS ONE 2019, 14, 1–15. [CrossRef] [PubMed]
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