
RESEARCH ARTICLE

Photo-degradation dynamics of five

neonicotinoids: Bamboo vinegar as a

synergistic agent for improved functional

duration

Rui Liang1, Feng Tang2, Jin Wang2, Yongde YueID
2*

1 School of Resource & Environment, Anhui Agricultural University, Hefei, China, 2 State Forestry

Administration Key Open Laboratory, International Centre for Bamboo and Rattan, Beijing, China

* yueyd@icbr.ac.cn

Abstract

The effects of photo-degradation on the utilization of pesticides in agricultural production

has been investigated. Various influencing factors were compared, with results showing that

the initial pesticide concentration, light source, water quality and pH possessed different

effects on neonicotinoids photo-degradation. The initial concentration and pH were found to

be most critical effects. The photo-degradation rate decreased by a factor of 2–4 when the

initial concentration increased from 5 mg L-1 to 20 mg L-1, particularly for acetamiprid and

imidacloprid. The photo-degradation pathways and products of the five neonicotinoids were

also investigated, with similar pathways found for each pesticide, except for acetamiprid.

Degradation pathways mainly involved photo-oxidation processes, with products identified

using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS)

found to be consistent with literature reported results. Bamboo vinegar exerted a photo-

quenching effect on the neonicotinoids, with an improved efficiency at higher vinegar con-

centrations. The photo-quenching rates of thiamethoxam and dinotefuran were 381.58%

and 310.62%, respectively, when a 30-fold dilution of vinegar was employed. The photo-

degradation products in bamboo vinegar were identical to those observed in methanol, with

acetic acid being the main factor influencing the observed quenching effects.

Introduction

Neonicotinoids are a relevant class of insecticides, following pyrethroids, organophosphorus,

and carbamates, successfully developed based on nicotine modifications [1,2]. Since entering

the market at the end of the 1980s, neonicotinoids have been extensively employed in the con-

trol of piercing-sucking mouth insects including aphids, aleyrodidae and delphacidae, due to

their good root uptake, broad spectrum, high efficiency and low toxicity to mammals [3,4].

Neonicotinoids function by selectively acting as effective agonists of the nicotine acetylcholine

receptors (nAChRs) which play a key role in the nervous system of insects. These insecticides

can consequently lead to nerve damage and eventually paralysis and death by causing severe
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neurotoxic effects. The discovery of new nicotine-related compounds can also be regarded as a

milestone in insecticide research, potentially being able to provide an improved understanding

of the functional properties of insect nAChRs [5,6]. However, the stability and functional dura-

tion of neonicotinoids is limited after conventional treatments due to their unique structures.

A systematic study of the photo-degradation of neonicotinoids and the effect of different envi-

ronmental conditions is therefore required to develop efficient synergistic agents to enhance

insecticidal duration.

Most pesticides are sensitive to photolysis because of their structural properties; thus,

photo-degradation commonly occurs for pesticides in the presence of light [7]. Photo-degrada-

tion of pesticides in water, a major degradation pathway after spraying, has a direct impact on

the sustainability and degradation dynamics of pesticides [8,9]. This aqueous photo-degradation

process can be influenced by a number of factors and may lead to two distinct phenomena,

namely, photosensitization and photo-quenching [10,11]. Furthermore, photo-degradation

itself is a complex process, as the photo-degradation pathways and formed intermediates/prod-

ucts of different (even the same) pesticides may greatly vary as a result of variable factors under

different conditions [12,13]. Consequently, investigations on the effects of different factors on

the photo-degradation of pesticides are of remarkable environmental significance. Presently,

the photo-degradation of neonicotinoid insecticides in the environment has attracted signifi-

cant research attention. However, most studies to date lack of a systematic approach.

Bamboo vinegar has recently attracted research interest as an environmental synergistic

agent [14]. A brown liquid with unique smoky taste, bamboo vinegar is collected via condensa-

tion of gases during bamboo pyrolysis or distillation. The vinegar, which contains over 80

components, comprises 80–90% water and 7–11% organic acids, mostly acetic acid (approxi-

mately 6%), formic acid, butyric acid, propionic acid, phenols, ketones, aldehydes, alcohols,

esters as well as other components [15]. Bamboo vinegar possesses antimicrobial and antioxi-

dant activities, also promoting plant growth, being employed as a soil improver, fertilizer syn-

ergistic agent, feed supplement, edible fungi production supplement, etc. [16,17]. In addition,

bamboo vinegar can be utilized as a pesticide synergistic agent in agricultural production activ-

ities [18]. However, studies on the utilization of bamboo vinegar as a light-stabilizing agent in

pesticide formulations are scarce in literature, particularly for neonicotinoids.

In this study, the photo-degradation dynamics of imidacloprid, acetamiprid, clothianidin,

thiamethoxam and dinotefuran (Fig 1) were investigated based on effects of initial concentra-

tion, light source, water quality and pH. Furthermore, the five neonicotinoids and the photo-

degradation products were identified and characterized using liquid chromatography-quadru-

pole time-of-flight mass spectrometry (LC-Q-TOF-MS) (Figs A-J in S1 File), with degradation

pathways also evaluated. The influence of bamboo vinegar on the photo-degradation of neoni-

cotinoids was also determined, and the photo-degradation products in vinegar were investi-

gated. Finally, the photo-degradation patterns of the five neonicotinoids were analyzed and

their synergism with bamboo vinegar was evaluated to provide a scientific basis for an

improved utilization of neonicotinoids.

Materials and methods

Chemicals

Standards of imidacloprid, acetamiprid, clothianidin, thiamethoxam and dinotefuran were

purchased from Dr. Ehrenstorfer Industrial Corporation, Germany. Methanol, acetonitrile,

and acetone were obtained from Xilong Chemical Reagent Co., China, and dichloromethane

was purchased from Shanghai Zhenxing Chemical Reagent Co., China. Bamboo vinegar was

provided by the International Centre of Bamboo and Rattan, Beijing, China.
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Neonicotinoids photo-degradation in water

All five neonicotinoids were dissolved in methanol as solvent to prepare standard solutions

and analyzed using high-performance liquid chromatography (HPLC) with variable-wave-

length ultraviolet detection to obtain standard curves. The initial concentration, light source,

water quality, and pH were employed as parameters to systematically determine the photo-

degradation characteristics of the neonicotinoids in water. The selected initial concentrations

were 5 mg L-1, 10 mg L-1, and 20 mg L-1; 20 mL of each solution was added to a stoppered

quartz tube, and a high-pressure mercury lamp (300 W, 3300–5700 Lux, cold water reflux) was

utilized as light source. The quartz tube was placed 7.0 cm away from the light source, and the

temperature in the photo-degradation apparatus was carefully controlled (20 ± 2˚C). Each

experiment was repeated three times.

A high-pressure mercury lamp and sunlight were employed to determine the influence of

different light sources in the photo-degradation efficiency. Standard solutions of the

Fig 1. The structures of five neonicotinoids.

https://doi.org/10.1371/journal.pone.0223708.g001
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neonicotinoids were diluted to 5 mg L-1 using ultra-pure water, and 20 mL of each solution

was added to a stoppered quartz tube. Darkness experiments (in the absence of light) were

conducted as control, and all samples were irradiated at different times.

Additionally, the standard solutions of the five neonicotinoids were diluted to 5 mg L-1

using ultra-pure water, tap water or pond water, and sunlight was employed as light source to

investigate the influence of water quality on neonicotinoid photo-degradation. Neonicotinoids

were also diluted to 10 mg L-1 using a disodium hydrogen phosphate-citric acid buffer to

obtain pH values of 4.0, 5.5, 7.5, 8.5, and 10.0. A high-pressure mercury lamp was used for illu-

mination to determine the pH effect on neonicotinoid photo-degradation.

All quantitative photo-degradation analyses were performed in an Agilent 1200 HPLC

equipped with a Thermo Acclaim 120 C18 column (4.6 mm × 250 mm, 5 μm). Mobile phase A

was acetonitrile and mobile phase B was ultra-pure water, employing a 30:70 (A:B) solvent

ratio. The flow rate, column temperature and injection volume were 1000 μL min−1, 30˚C, and

20 μL, respectively.

Analysis of photo-degradation products

Standards of imidacloprid, acetamiprid, clothianidin, thiamethoxam and dinotefuran were

prepared at a concentration of 10 mg L-1 in methanol. Solutions were photo-treated under UV

irradiation, and a darkness control was established. Samples were then filtered using a mem-

brane filter with a pore size of 0.22 μm and analyzed using LC-Q-TOF-MS equipped with

diode array detection.

LC separations were carried out in an Agilent 6540 Infinity II series LC system (Agilent

Technologies, Santa Clara, CA) equipped with an Agilent Eclipse Plus C18 column (2.1 mm × 150

mm, 1.8 μm). Mobile phase A was acetonitrile, mobile phase B was ultra-pure water; the elution

gradient was as follows: 0–4 min, 25% A; 4–7 min, 25–80% A; and 7–10 min, 80–25% A. The flow

rate, column temperature and injection volume were 250 μL min−1, 25˚C and 2 μL, respectively.

An Agilent 6540 Q-TOF-MS (Agilent Technologies, Santa Clara, CA) equipped with an automatic

jet stream electrospray ionization (AJS-ESI) interface was employed for assay development. The

typical ion source parameters were as follows: capillary voltage, +4000/-3500 V; nozzle voltage,

+500/-500 V; gas temperature, 300˚C; gas flow rate, 5 L min−1; sheath gas temperature, 250˚C;

sheath gas flow rate, 11 L min−1; and nebulizer pressure, 45 psi.

Influence of bamboo vinegar

All five neonicotinoids were dissolved in methanol (concentration 1000 mg L-1) and combined

with bamboo vinegar for a final neonicotinoid concentration of 10 mg L-1 and bamboo vinegar

dilution rates of 30- and 100-fold. The mixed solutions (20 mL) were placed in stoppered

quartz tubes and set in the photo-degradation apparatus 7 cm away from the high-pressure

mercury lamp. The temperature was carefully controlled (20 ± 2˚C) in the photo-degradation

apparatus. Each experiment was conducted in triplicate, and samples were analyzed after dif-

ferent times of irradiation.

Analytical methodologies

The photo-degradation efficiency was calculated using the following formula:

Photodegradation rateð%Þ ¼
Cd� Cl

Cd
� 100;

where Cd and Cl are neonicotinoid concentrations (darkness control) and different experi-

ments, respectively.
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The photo-degradation kinetics of the five neonicotinoids in solution were described by a

first-order kinetic equation:

Ct ¼ C0 � e� kt;

where C0 and Ct are the initial concentration of the neonicotinoids and that at an arbitrary

time t, respectively, and k is the photo-degradation rate constant.

Results and discussion

Effect of the neonicotinoid initial concentration on photo-degradation

Fig 2 illustrates the rate constant dynamics and attenuation curve for the photo-degradation of

the five neonicotinoids at different initial concentrations. The rate constants of the aqueous

neonicotinoids were negatively correlated with the initial concentration (5 mg L-1, 10 mg L-1,

and 20 mg L-1). The half-lives of imidacloprid, acetamiprid, clothianidin, thiamethoxam and

dinotefuran were 45.2 min, 902.1 min, 34.7 min, 21.2 min and 163.2 min, respectively, at an

initial concentration of 20 mg L-1. Comparably, 17.6 min, 223.6 min, 14.7 min, 10.6 min and

Fig 2. Photo-degradation of five neonicotinoids at different initial concentrations. a = imidacloprid, b = acetamiprid, c = clothianidin,

d = thiamethoxam, and e = dinotefuran.

https://doi.org/10.1371/journal.pone.0223708.g002
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111.4 min, respectively, were obtained as half-lives for the same insecticides at an initial con-

centration of 5 mg L-1. Larger initial pesticide concentrations correspond to a higher content

of pesticide molecules in aqueous solution; this ensures more photon absorption competition

and thus less light energy absorbed per unit molecule, which leads to a lower photo-degrada-

tion rate [19,20]. In addition, many intermediate products can form from neonicotinoids

photo-degradation and then compete for photons, thereby reducing the quantum yield of

absorbed photons [21–23].

Effect of the light source

In general, pesticides are exposed to sunlight or other light sources to investigate the effect of

the light source on their photo-degradation behaviour [24,25]. Sunlight and a high-pressure

mercury lamp were herein employed to evaluate such effects on the photo-degradation of the

five neonicotinoids in this study, with results shown in Fig 3. Photo-degradation occurred

under irradiation with both light sources, following a first-order kinetic equation. The photo-

degradation rate under high-pressure mercury lamp irradiation was significantly higher as com-

pared to that observed under sunlight irradiation. According to the regression equation of the

photo-degradation reaction kinetics, the half-life of thiamethoxam under sunlight (20.8 min)

was comparably higher to that under high-pressure mercury lamp irradiation (10.8 min) by a

factor of 2, whereas the half-lives of the other pesticides were higher by a factor of over 1.5.

This difference may be related to the emission spectra of the light sources and the absorp-

tion spectra of the neonicotinoids. The emission spectrum of a high-pressure mercury lamp

ranges from 190 nm to 1000 nm [26], while the maximum absorption wavelengths of the tested

neonicotinoids are concentrated in the ultraviolet region near 260 nm [27]. Therefore, under

irradiation from the high-pressure mercury lamp, photo-degradation of the neonicotinoid

pesticides can rapidly occur. In contrast, the emission spectrum of sunlight is mainly in the vis-

ible region and less in the ultraviolet region; thus, the neonicotinoids absorb only part of sun-

light. The absorption efficiency of photon energy under sunlight irradiation is comparatively

lower to that of the high-pressure mercury lamp, which results in the expected lower photo-

degradation rate under sunlight irradiation [28–30].

Effect of water quality

The effects of ultra-pure water, tap water and pond water on the photo-degradation of neoni-

cotinoids were subsequently investigated, with results depicted in Fig 4.

No significant differences could be observed in the photo-degradation rates or half-lives of

thiamethoxam or dinotefuran in the different water media. Imidacloprid exhibited the largest

differences, with half-lives of 19.5 min, 67.4 min, and 73.9 min in ultra-pure water, tap water

and pond water, respectively. The photo-degradation rate constants of acetamiprid were

0.00390 K min-1, 0.00385 K min-1 and 0.00288 K min-1 in ultra-pure, tap, and pond water,

respectively, whereas those of clothianidin were 0.01350 K min-1, 0.01190 K min-1, and

0.01090 K min-1, respectively.

Ultra-pure water exhibits the lowest conductivity (1.0 × 10−4 S m-1), lowest amount of dis-

solved substances and almost no light absorption and transmission scattering; thus, pesticides

exhibited the fastest photo-degradation rate in this medium [31,32]. The electrical conductivity

of tap water (1.4 × 10−2 S m-1) is higher with respect to that of ultra-pure water due to the pres-

ence of certain ions, soluble substances, and so forth. These substances can have a shielding

effect in the absorption and transmission of light and may thus play a role in quenching the

photo-degradation of pesticides in tap water [33,34]. Pond water contains a large amount of

inorganic ions and dissolved organic matter, including humic acids, which can produce singlet

Photo-degradation dynamics of five neonicotinoids

PLOS ONE | https://doi.org/10.1371/journal.pone.0223708 October 17, 2019 6 / 18

https://doi.org/10.1371/journal.pone.0223708


oxygen molecules with a stronger oxidation capacity as compared to molecular oxygen when

exposed to sunlight [35,36]. These molecules can rapidly react with organic pollutants in

water, thus promoting pollutant decomposition. However, humic acids and other organic mat-

ter may also reduce the photo-degradation rate of pesticides through competitive absorption

of photons [37–39]. Importantly, dichromate oxidizability (CODCr) of pond water (126.5 mg

Fig 3. Photo-degradation of five neonicotinoids under different light source irradiation. a = imidacloprid, b = acetamiprid, c = clothianidin, d = thiamethoxam, and

e = dinotefuran.

https://doi.org/10.1371/journal.pone.0223708.g003
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L-1) was found to be significantly higher with respect to ultra-pure water and tap water (0 mg

L-1 and 1.7 mg L-1, respectively). In view of these premises, water quality seem to influence

photo-degradation rates via competitive absorption of photons as dominant process [40–42].

The photo-degradation kinetics of pesticides in natural water are related to the physical and

chemical properties of water as well as the absorption and transmission of light by soluble

Fig 4. Photo-degradation of five neonicotinoids in water of different quality. a = imidacloprid, b = acetamiprid, c = clothianidin, d = thiamethoxam, and

e = dinotefuran.

https://doi.org/10.1371/journal.pone.0223708.g004
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substances in the water and the differences in the photochemical reactions [43,44]. Tap water

and pond water contain a large amount of ions including NO3
-, SO4

2-, and Cl-, and soluble

organic matter, which exhibit different behaviours in terms of photosensitization and photo-

quenching of different pesticides [45,46]. No significant differences could be observed in the

photo-degradation rates of imidacloprid and clothianidin in tap water and pond water, aceta-

miprid in ultra-pure water and tap water or thiamethoxam and dinotefuran in all three types

of employed water.

Effect of pH

The pH has a significant influence on the photo-degradation of organic pollutants [47,48]. In

this study, a disodium hydrogen phosphate-citric acid buffer was employed to obtain pH val-

ues of 4.0, 5.5, 7.5, 8.5, and 10.0 in order to investigate pH effects on the photo-degradation of

neonicotinoids. As listed in Table 1, the photo-degradation rate was low in an acidic buffer

solution, whereas photodegradation rates were relatively high (and generally increased at

increasing pH) in neutral and alkaline buffer solutions. At pH 4.0, the photo-degradation rates

of all neonicotinoids were the lowest, with that of imidacloprid being similar at all tested pH

values. Furthermore, the degradation rate of acetamiprid increased at increasing pHs, whereas

that of clothianidin increased at pH 8.5 and 10.0. The photo-degradation rates of thia-

methoxam and dinotefuran were similar at pH 7.5, 8.5, and 10.0.

Neonicotinoids readily produce hydroxyl radicals in alkaline solutions as compared to in

acidic and neutral solutions, with such radicals being correlated to greater pesticide degrada-

tion [49,50]. The acidic buffer solution is more likely to absorb photons near 260 nm, maxi-

mum absorption wavelength of neonicotinoids, consequently competing with photon

absorption (for photo-degradation) of the five pesticides, and resulting in reduced photo-deg-

radation rates [51,52]. In alkaline solution, an increase in photo-degradation rates can be cor-

related to a higher photo-quantum yield and protonation level of the excited pesticide

molecules [53–55].

Photo-degradation products of neonicotinoids

The photo-degradation products of the five neonicotinoids in methanol were subsequently

investigated. The product peaks in the total ion flow (TIC) diagram were compared to those in

the parent standard TIC diagram. The mass spectra of the products was collected, and the

attributes of the characteristic ions were analysed. The products and possible photo-degrada-

tion pathways were then compared to those reported in the existing literature.

As shown in Fig 5A, the photo-degradation product of imidacloprid is C7H14N2O2, in good

agreement to that previously reported by Ding et al. [56]. The possible photo-degradation

pathway proceeds via an imidacloprid molecule absorbing a photon under illumination, fol-

lowed by N-N bond cleavage and NO2 removal from the molecule. The C = N bond then com-

bines with a hydroxyl radical (�OH) in water to form a C = O bond via substitution reaction

[57].

The possible photo-degradation pathway of acetamiprid is shown in Fig 5B, for which

C10H12N4O was detected as photo-degradation product. Such pathway for acetamiprid can be

stimulated under light irradiation. A Cl atom linked to the pyridine ring is replaced by O,

forming a double bond, with C bonds at positions 1 and 4 on the pyridine ring leading to bicy-

clic olefins [58, 59].

Fig 5C illustrates the possible photo-degradation pathway of clothianidin (C6H8N3OSCl as

photo-degradation product), similar to that observed for imidacloprid, and different from

results reported by Mulligan et al. [60].
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As shown in Fig 5D, the photo-degradation product of thiamethoxam is C6H8SN3OCl, with

a plausible photo-degradation pathway involving the absorption of a photon by thiamethoxam

molecules which induces N-N bond cleavage followed by -NO2 removal. As indicate before,

the C = N bond combines with a hydroxyl radical (�OH) in water and forms a C = O bond

through a substitution reaction; the five-membered ring is finally separated -C2H2O to obtain

the product [61–63].

The possible photo-degradation pathway of dinotefuran is illustrated in Fig 5E, leading to

the formation of C7H14N2O2, identical to that observed for imidacloprid and clothianidin [64–

66].

On the basis of the identified photo-degradation products of the five neonicotinoids in

methanol, it can be inferred that the degradation pathways mainly consist of photo-oxidation

processes [67,68].

Effect of bamboo vinegar

The effect of bamboo vinegar on the photo-degradation of neonicotinoids was also investi-

gated, with results illustrated in Fig 6. The addition of bamboo vinegar significantly decreased

the photo-degradation rate of the five neonicotinoids. Under the irradiation of the high-pres-

sure mercury lamp, bamboo vinegar diluted 30-fold and 100-fold had significant effects on the

photo-degradation half-lives of the pesticides, where the photo-degradation rate decreased at

increasing vinegar concentration.

Table 1. Photo-degradation of five neonicotinoids at different pH values.

Neonicotinoids pH value Kinetic equation

lnCt = lnC0-kt

Rate constant

K min-1
Half-life period

T1/2 min-1

Imidacloprid 4.0 lnCt = 2.1351–0.0121t 0.01210 57.3a

5.5 lnCt = 2.1757–0.0198t 0.01980 35.0b

7.5 lnCt = 2.1412–0.0208t 0.02080 33.3b

8.5 lnCt = 2.1504–0.0213t 0.02130 32.5b

10.0 lnCt = 2.1609–0.0220t 0.02200 31.5b

Acetamiprid 4.0 lnCt = 2.0396–0.0704t 0.00117 590.8a

5.5 lnCt = 2.1135–0.0768t 0.00128 541.5b

7.5 lnCt = 2.1521–0.0909t 0.00152 457.5c

8.5 lnCt = 2.2300–0.1075t 0.00179 386.9d

10.0 lnCt = 2.1022–0.1305t 0.00218 318.7e

Clothianidin 4.0 lnCt = 1.9161–0.0210t 0.02100 33.0a

5.5 lnCt = 1.8984–0.0191t 0.01910 36.3a

7.5 lnCt = 1.8803–0.0225t 0.02250 30.8a

8.5 lnCt = 1.8988–0.0256t 0.02560 27.1b

10.0 lnCt = 1.9102–0.0259t 0.02590 26.8b

Thiamethoxam 4.0 lnCt = 1.8123–0.0250t 0.02500 27.7a

5.5 lnCt = 1.9628–0.0425t 0.04250 19.3b

7.5 lnCt = 2.1090–0.0561t 0.05610 12.4c

8.5 lnCt = 2.1701–0.0605t 0.06050 11.5c

10.0 lnCt = 2.1357–0.0571t 0.05710 12.1c

Dinotefuran 4.0 lnCt = 1.9168–0.0120t 0.01200 57.8a

5.5 lnCt = 2.0342–0.0146x 0.01460 47.5b

7.5 lnCt = 2.3123–0.0211t 0.02110 32.9c

8.5 lnCt = 2.4425–0.0239t 0.02390 29.0c

10.0 lnCt = 2.2540–0.0224t 0.02240 30.9c

https://doi.org/10.1371/journal.pone.0223708.t001
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The photo-quenching rates of imidacloprid, acetamiprid, clothianidin, thiamethoxam, and

dinotefuran reached 67.35%, 125.00%, 143.13%, 381.58%, and 310.62%, respectively, when the

neonicotinoids were mixed with diluted 30-fold bamboo vinegar. Comparably, 6.49%, 28.57%,

34.78%, 114.02%, and 129.61%, respectively, accounted for photo-quenching rates of the same

insecticides mixed with diluted 100-fold vinegar. These findings indicate that bamboo vinegar

has a remarkable photo-stabilizing effect on the five neonicotinoids under high-pressure mer-

cury lamp irradiation. The dependency of the photo-quenching effect of bamboo vinegar on

the degree of dilution was similar for all five samples; as bamboo vinegar concentration

increased, its light stabilization of the neonicotinoids became more significant. In addition,

30-fold diluted bamboo vinegar exhibited the most significant effect on the photo-stability of

thiamethoxam and dinotefuran, for which the photo-quenching rates increased by a factor

over 3. All photo-degradation products of the five neonicotinoids in bamboo vinegar were

identical to those observed in methanol.

pH values of diluted 30-fold and 100-fold bamboo vinegar were 3.40 and 3.72, respectively,

whereas that of ultra-pure water was 6.50. According to the above experimental results, the

photo-degradation rate of the five neonicotinoids decreases at increasing acidity (from pH

3.40 to 6.50) in good agreement with previous reports of pH being reported as an influencing

factor [69,70]. Since bamboo vinegar is a reddish-brown solution, natural pigments may com-

pete with neonicotinoids for photon absorption [71,72]. With an increase in concentration of

bamboo vinegar, the concentration of pigments also increases, inducing significant photon

competition [73–75]. This competition is consistent with the observed correlation between the

dilution degree of bamboo vinegar and its light stabilization effect. The potential main compo-

nents involved in the quenching of neonicotinoid photo-degradation in bamboo vinegar

include acetic acid and pigments as previously reported [76–79].

Conclusions

The photo-degradation dynamics of five neonicotinoids and the influence of the initial

concentration, light source, water quality and pH were investigated in this work. The photo-

degradation half-lives of the neonicotinoids increased by nearly 1-fold when the initial neoni-

cotinoid concentration decreased from 20 to 5 mg L-1 (except for that of acetamiprid which

increased by a factor of 3). The photo-degradation rates of the five neonicotinoids under high-

pressure mercury lamp irradiation were comparably higher (by nearly a factor of 1.5) to those

under sunlight irradiation. Photo-degradation rates were also different depending on the type

of employed aqueous media, being the highest in ultra-pure water, followed by tap water and

finally pond water, following a similar trend in terms of pH (lowest in acidic buffer solution

and relatively high in alkaline and neutral buffer solutions).

Photo-degradation pathways of imidacloprid, clothianidin, thiamethoxam and dinotefuran

were similar, mainly consisting of photo-oxidation processes. Bamboo vinegar exhibited a

quenching effect on the photo-degradation of the five neonicotinoids, with this effect became

significant at high vinegar concentrations (i.e. photo-quenching rates of thiamethoxam and

dinotefuran were 381.58% and 310.62%, respectively, for 30-fold diluted vinegar). The photo-

degradation rates of neonicotinoids decrease with increasing acidity, with acetic acid in bam-

boo vinegar considered as main factor influencing the observed photo-quenching effect.

Fig 5. Photo-degradation pathways and products of five neonicotinoids. a = imidacloprid, b = acetamiprid, c = clothianidin,

d = thiamethoxam, and e = dinotefuran.

https://doi.org/10.1371/journal.pone.0223708.g005
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Fig 6. The effect of bamboo vinegar on the photo-degradation of five neonicotinoids. a = imidacloprid, b = acetamiprid, c = clothianidin,

d = thiamethoxam, and e = dinotefuran.

https://doi.org/10.1371/journal.pone.0223708.g006
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These results have great significance in terms of improving functional lifetimes of neonico-

tinoids and the environmental friendliness of pesticides via addition and concentration adjust-

ment of bamboo vinegar.
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