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Abstract

Prenatal di(2-ethylhexyl) phthalate (DEHP) exposure can produce reproductive toxicity in animal models. Only limited data
exist from human studies on maternal DEHP exposure and its effects on infants. We aimed to examine the associations
between DEHP exposure in utero and reproductive hormone levels in cord blood. Between 2002 and 2005, 514 pregnant
women agreed to participate in the Hokkaido Study Sapporo Cohort. Maternal blood samples were taken from 23–35 weeks
of gestation and the concentration of the primary metabolite of DEHP, mono(2-ethylhexyl) phthalate (MEHP), was
measured. Concentrations of infant reproductive hormones including estradiol (E2), total testosterone (T), and progesterone
(P4), inhibin B, insulin-like factor 3 (INSL3), steroid hormone binding globulin, follicle-stimulating hormone, and luteinizing
hormone were measured from cord blood. Two hundred and two samples with both MEHP and hormones’ data were
included in statistical analysis. The participants completed a self-administered questionnaire regarding information on
maternal characteristics. Gestational age, birth weight and infant sex were obtained from birth records. In an adjusted linear
regression analysis fit to all study participants, maternal MEHP levels were found to be associated with reduced levels of T/
E2, P4, and inhibin B. For the stratified analyses for sex, inverse associations between maternal MEHP levels T/E2, P4, inhibin
B, and INSL3 were statistically significant for males only. In addition, the MEHP quartile model showed a significant p-value
trend for P4, inhibin B, and INSL3 decrease in males. Since inhibin B and INSL3 are major secretory products of Sertoli and
Leydig cell, respectively, the results of this study suggest that DEHP exposure in utero may have adverse effects on both
Sertoli and Leydig cell development in males, which agrees with the results obtained from animal studies. Comprehensive
studies investigating phthalates’ exposure in humans, as well as their long-term effects on reproductive development are
needed.
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Introduction

Diesters of phthalic acid (phthalates) have been used as

plasticizers for various plastic compounds, such as toys, food

containers, furniture, personal care products, medical devices, and

housing materials. Phthalates are not chemically bonded to

polyvinyl chloride (PVC) in plastic products and, as a result, they

can leach and migrate into the air, foodstuffs, and other materials.

Consequently, humans are constantly exposed to phthalates and

biomonitoring studies have shown the widespread exposure of the

general population to these chemicals [1–4].

Di(2-ethylhexyl) phthalate (DEHP) is one of the major phthalate

compounds and constitutes more than 50% of the phthalates used

in production in Japan [5]. Phthalates are known to exert

endocrine-disrupting effects, which have been the cause of some

concern [6]. Animal studies have shown that fetal exposure to

DEHP may induce abnormalities in the reproductive system,
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reduce testosterone (T) and insulin-like factor 3 (INSL3) levels, and

cause disruption to Leydig and Sertoli cell maturation [7–10].

In a study that looked at the effects of DEHP on humans, male

study participants, who were mainly recruited from an infertility

clinic and had elevated levels of phthalate metabolites in their

urine, were found to exhibit lower sperm concentrations and T

levels, higher levels of follicle-stimulating hormone (FSH), and

have a higher incidence of damaged sperm DNA [11–16]. In

female study participants the phthalate exposure level was

associated with physical signs of puberty, such as breast

enlargement, the growth of pubic and axillary hair, premature

thelarche, and central precocious puberty [17–19].

However, epidemiological studies on the effects of DEHP

exposure of infants in utero or in early life are limited. Swan et al.

[20] indicated that maternal phthalate exposure was inversely

related to the anogenital distance (AGI) of male infants and Huang

et al. [21] reported that the levels of phthalates in amniotic fluid

were inversely related to the AGI of female infants. Only two

studies have examined the effects of phthalates on the reproductive

hormone levels of infants. In one study maternal urinary

metabolites were measured and the level of DEHP was found to

be inversely correlated with free T (fT) and the fT/estradiol (E2)

ratio in cord blood among female infants [22]. In another study

reproductive hormone levels were measured from males with

cryptorchidism and healthy control subjects at three months of

age, as well as phthalate metabolites in breast milk. Phthalate

metabolites (dimethyl phthalate (DMP), diethyl phthalate (DEP),

and dibutyl phthalate (DBP)) positively correlated with the

luteinizing hormone (LH)/fT ratio, and DEP and DBP showed

positive correlations with steroid hormone-binding globulin

(SHBG), while DBP was also found to inversely correlate with

fT [23]. However, phthalate exposure has not been found to relate

to cryptorchidism directly [23].

Although there is some evidence to suggest that fetal and

neonatal phthalate exposure has an adverse effect on human

reproductive development in both male and female infants,

comprehensive studies are limited. Therefore, the aim of this

study was to examine the associations between DEHP exposure in
utero and reproductive hormone levels in cord blood in the general

population in Japan.

Materials and Methods

Population
This prospective birth cohort study was based on the Sapporo

Cohort, Hokkaido Study on Environment and Child Health

[24,25]. Study details regarding the population, data collection,

sampling of the biological specimens, and the contents of the

questionnaire have been described elsewhere [24,25]. Briefly,

native Japanese women living in Sapporo City or the surrounding

areas were enrolled into the study at 23–35 weeks of gestation from

July 2002 to October 2005 at the Sapporo Toho Hospital, which is

an obstetrics and gynecology hospital in Sapporo, Hokkaido,

Japan. Among the 1796 pregnant females approached, 25% were

excluded as they were enrolled in the Japanese cord blood bank or

delivered the baby at another hospital. Ultimately, 514 pregnant

females were enrolled in this study (participation rate: 28.6%).

Assessment of exposure
Blood samples of approximately 40 mL were obtained from

participants at the time of their hospital examination after

recruitment. If the blood sample could not be taken during

pregnancy due to maternal anemia, a blood sample was collected

during hospitalization within a week after delivery. All samples

were stored at 280uC until analysis. The concentration of

mono(2-ehtylhexyl) phthalate (MEHP), which is the primary

metabolite of DEHP, in the blood was determined. The method

of Instrumental analysis, general method validation, and quality

controls were previously described elsewhere with the following

modifications of sample preparation in this study [26]. Blood

samples (30 uL) were mixed with 120 uL 1N HCl, 350 uL

saturated saline solution and 50 uL of 10 uM MEHP-d as an

internal standard. MEHP was then extracted twice with 500 ul

ethyl acetate after shaking for 15 min. The ethyl acetate layer was

evaporated, and the sediments were dissolved into 40 uL ethyl

acetate. After adding 20 uL N-methyl-N-(tert-butyldimethylsilyl)

trifluoroacetamide (GL Sciences, Tokyo, Japan), the tube was left

at room temperature for 60 min, and the MEHP tert-butyldi-

methylsilyl derivative concentration formed was measured by a

GC-MS under the analytical conditions mentioned previously

[26]. Under these conditions, the extraction recovery of MEHP

was 95.661.9 (n = 6, mean6SD) [26]. Two ions, m/z 227 and

339 for quantification ion and confirmation ion, respectively, were

used to detect MEHP [27]. The limit of detection (LODs) was

1 pmol/mL (0.278 ng/mL). MEHP levels in a tube containing the

same medium as the reaction vial were measured to determine

background levels. To exclude the possibility of environmental

contamination of DEHP, all glassware used for MEHP measure-

ments was heated at 200uC for 2 h. Ultimately, MEHP level was

available in 493 maternal blood samples.

Outcome measures
At the time of delivery, a blood sample (10–30 mL) was

collected from the umbilical cord and stored at 280uC until

analysis. Concentrations of E2, total T, and progesterone (P4) were

measured using liquid chromatography–tandem mass spectrome-

try (LC–MS/MS) [28,29]. An immunoradiometric assay (IRMA)

was used to measure the concentrations of LH (Spac-S LH Kit,

TFB, Inc., Tokyo Japan), FSH (Spac-S FSH Kit, TFB, Inc., Tokyo

Japan), SHBG (IRMA-Count SHBG, Siemens, Berlin, Germany),

and prolactin (PRL) (Spac-S Prolactin kit, TFB, Inc., Tokyo,

Japan). The concentration of inhibin B was measured by an

enzyme-linked immunosorbent assay (ELISA) (inhibin B Gen II

ELISA, Beckman Coulter, Inc., CA, USA). The concentration of

INSL3 was measured using an enzyme immunoassay (EIA)

(insulin-like 3 (INSL3)/RLF (human) EIA kit, Phoenix Pharma-

ceuticals, Inc., CA, USA). Inhibin B is a marker of Sertoli cell

function [30], and INSL3 is a major Leydig cells product and an

early marker of the testicular descent during fetal [31], and All

reproductive hormone measurements were performed at Aska

Pharma Medical Co., Ltd (Kanagawa, Japan).

Questionnaire and medical record
The participants completed a self-administered questionnaire

regarding information on maternal age, educational level,

household income, smoking status, alcohol intake, and medical

history. Maternal alcohol intake was classified into two categories:

no, who never intake alcohol since the first trimester, and yes, who

still drink alcohol after the first trimester [25]. Maternal smoking

status during pregnancy was classified into two categories: non-

smokers, who never smoked or quit smoking during the first

trimester, and smokers, who still smoked after the first trimester

[25]. Medical records were obtained at delivery for information

regarding pre-pregnancy body mass index (BMI), pregnancy

complications, gestational age, infant gender, parity, congenital

anomalies, including hypospadias and cryptorchidism, and infant

weight.
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Statistical analyses
From 514 participants, ten were excluded from the study due to

miscarriage, stillbirth, relocation, or voluntary withdrawal from

the study before delivery. There were 493 available maternal

blood samples for MEHP measurements. Maternal blood samples

collected during hospitalization after delivery were excluded from

analysis due to the relatively short biological half-life of DEHP.

Two hundreds and ninety-five infant cord blood samples were

available for reproductive hormone measurements. Finally, 202

samples were included in the statistical analysis, for which both

MEHP levels and reproductive hormone levels had been assessed.

In preliminary data analysis the association between MEHP

exposure and the characteristics of mothers and infants were

calculated by a Spearman correlation test and a Mann–Whitney U

test. Associations between maternal MEHP exposure and infant

reproductive hormone levels were first calculated with a Spearman

correlation test, and then multivariable linear regression analysis

was performed. MEHP levels and the concentration of reproduc-

tive hormones were converted to a log10 scale as their data did not

fall into a normal distribution. To evaluate whether the

relationship between hormone levels and MEHP exposure differs

based on sex, a multivariable linear regression model for all study

participants was also constructed with the interaction term for

hormone levels to sex and MEHP interaction. To improve

interpretability, the interquartile range (IQR) for the MEHP

concentration and the least squares means (LSM) of log-

transformed hormone levels were calculated and back trans-

formed. Linear trends of LSM were tested by modeling IQR as a

continuous variable. The first quartile was also compared to the

2nd, 3rd and 4th quartile MEHP, and the P values were adjusted

using Bonferroni’s correction. The limit of detection (LOD) was

determined and half LOD values were used when levels were

below the LOD for individual hormones. Inclusion of covariates

was based on biological considerations and included: maternal age

(continuous), maternal smoking during pregnancy (yes or no),

maternal alcohol consumption during pregnancy (yes or no),

gestational age (continuous), and the blood sampling week of

gestation (continuous). All statistical analyses were performed using

JMP pro 10 (SAS Institute Inc., NC, USA).

Ethical approval
The study was approved by the institutional ethical board for

epidemiological studies at Hokkaido University Graduate School

of Medicine, Hokkaido University Center for Environmental and

Health Sciences, and Nagoya University Graduate School of

Medicine, in accordance of with principles of the Declaration of

Helsinki. All participants provided written informed consent.

Results

The characteristics of the participants included in the present

study with the corresponding median MEHP concentrations

(n = 202) are shown Table 1. In the present study, there were no

cases of cryptorchidism or hypospadias included, and all infants

were born vaginally. MEHP was detected in 100% of samples and

the median concentration was 10.4 ng/mL (IQR: 5.88–15.3 ng/

Table 1. Maternal mono(2-ethylhexyl) phthalate (MEHP) concentrations in relation to the characteristics of mothers and infants.

Characteristics n (%) Mean ± SD MEHP (ng/mL)

Med. (25th–75th) p-value

Maternal characteristics

Age at delivery (years) 202 29.864.9 Spearman’s r= 0.035 0.624a

Pre-pregnancy BMI (kg/m2) 202 21.163.1 Spearman’s r= 0.002 0.978a

Parity Primiparous 110 (54.5) 10.4 (5.65–15.3) 0.672b

Multiparous 92 (45.5) 10.4 (6.08–15.5)

Annual household income (million
yen per year)

,5 142 (71.0) 10.1 (5.56–15.2) 0.177b

$5 58 (29.0) 11.7 (6.40–15.7)

Educational level (years) !12 91 (45.0) 10.4 (5.94–14.4) 0.960b

§13 111 (55.0) 10.5 (5.68–15.5)

Smoking during pregnancy Nonsmoker 158 (78.2) 10.5 (6.01–15.6) 0.158b

Smoker 44 (21.8) 7.80 (4.99–14.4)

Alcohol consumption during pregnancy Nondrinker 132 (65.3) 10.5 (6.08–16.2) 0.386b

Drinker 70 (34.7) 10.2 (5.34–14.7)

Type of delivery Vaginal 202 (100)

Caesarian section 0 (0.0)

MEHP (ng/mL) 202 10.4 (5.88–15.3) -

Infant characteristics

Sex Male 93 (46.0) 10.2 (6.30–14.3) 0.734b

Female 109 (54.0) 10.4 (5.60–16.3)

Birth weight (g) 202 3138.66331.3 Spearman’s r= 20.023 0.376a

Gestational age (weeks) 202 39.561.0 Spearman’s r= 0.002 0.959a

ap-values were calculated by the Spearman’s r test,
bp-values were calculated by the Mann–Whitney U test.
doi:10.1371/journal.pone.0109039.t001
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mL). The concentration of MEHP was not significantly associated

with any of the maternal or infant characteristics.

Table 2 shows the levels of reproductive hormones among male

and female infants. For females, the detected percentage of LH,

FSH, and inhibin B was 1%, 0%, and 24.1%, respectively, and

thus, these hormones were excluded from further analysis. In

addition, INSL3 was measured in only 20 samples from female

infants and was consequently also omitted from further analysis.

The correlations between the MEHP levels and the concentra-

tions of reproductive hormones are shown in Table 3. There were

significant negative correlations between the MEHP level and P4,

PRL, and inhibin B concentrations for all participants, P4, inhibin

B, and INSL3 concentrations among male infants, and PRL

concentrations among female infants. The results of our linear

regression are shown in Table 4. MEHP level was inversely

associated with T/E2 ratio, P4, and inhibin B concentrations in

the linear regression model fit to all study participants, and the

relationship between MEHP levels and these hormones was not

statistically significant between males and females (Pinternaction.

0.05). In the stratified analyses, inverse associations were

statistically significant between MEHP level and T/E2 ratio, P4,

inhibin B, and INSL3 concentrations among males, but not

females.

The associations between MEHP and the levels of reproductive

hormones in infants were assessed for potential non-linear

relationships. The MEHP concentration was divided into four

sections and the LSM of each hormone in each MEHP quartile is

shown in Figure 1 and Figure 2 for all participants and male

infants, respectively. The adjusted LSM hormone levels in relation

to the MEHP quartile showed a significant p-value trend for T/E2

and P4 in the model fit to all study participants. Sex did not

modified the association of either MEHP and T/E2 or P4

(Pinternaction.0.05). When compared to the LSM of the 1st MEHP

quartile, the 4th MEHP quartile of T/E2, P4 significantly

decreased, whereas the 2nd quartile of T/E2 significantly

increased. The 3rd and 4th MEHP quartile of inhibin B

significantly decreased when compared to the LSM of the 1st

quartile, and inhibin B levels differ in the 2nd quartile in the

interaction term for MEHP and sex (Pinteraction = 0.008). For sex

stratification, the adjusted LSM hormone levels in relation to the

MEHP quartile showed a significant p-value trend for P4, inhibin

B, and INSL3 in males. In addition, when compared to the LSM

of the 1st MEHP quartile, the 4th MEHP quartile of P4, inhibin B,

and INSL3 significantly decreased.

Discussion

In the present study maternal MEHP levels were found to be

associated with reduced levels of T/E2, P4, and inhibin B in an

adjusted analysis when the model was fit to all study participants.

For the stratified analyses for sex, inverse associations between

maternal MEHP levels and T/E2, P4, inhibin B, and INSL3 were

statistically significant for males. INLS3 is a major product

secreted by Leydig cells. The testosterone produced by Leydig cells

is regulated by a negative feedback loop, which is controlled by the

hypothalamic–pituitary–gonadal axis, and is chronically influ-

enced by the long-term differentiation status of the cells [32]. On

the other hand, INSL3 is constitutively expressed by Leydig cells,

and is thus more advantageous over testosterone as a marker of

Leydig cell differentiation [32]. Fetal exposure to phthalates and

their effect on Leydig cell development has been the subject of

several review papers that have examined evidence from

experiment in vitro cell studies and animal models [33,34]. The

results obtained from the present study are consistent with

previous research.

In the multivariable linear regression model fit to all study

participants, MEHP level was inversely associated with T/E2

ratio, and there was no statistical significance between males and

females. Similar in Taiwan, Lin et al. [22] found that the fT

concentration and fT/E2 ratio in cord blood were inversely

correlated with two DEHP metabolites among females. In a

Danish–Finnish cohort study, Main and co-workers measured

phthalate monoesters in breast milk and found an inverse

association between the level of monoesters and the concentration

of testosterone, as well as positive associations with the levels of

SHBG and the LH/fT ratio in males [23]. An inverse association

between T/E2 and MEHP was significant in males but not in

females suggesting a more pronounced effect in males than in

females in this study. Interestingly, an inverted J-shaped curve was

Table 3. Correlations between MEHP concentrations and hormone levels.

All participants Males females

r p-value r p-value n p-value

T (pg/mL) 20.091 0.198 20.089 0.398 20.107 0.269

E2 (ng/mL) 0.015 0.830 0.101 0.334 20.035 0.716

T/E2 20.086 0.224 20.147 0.160 20.043 0.660

P4 (ng/mL) 20.202 0.004 20.218 0.036 20.184 0.056

LH (mIU/mL) n.d. 20.024 0.822 n.d.

LH/T n.d. 0.075 0.478 n.d.

FSH (mIU/mL) n.d. 0.205 0.052 n.d.

SHBG (nmol/L) 20.047 0.508 20.037 0.722 20.050 0.606

T/SHBG 20.055 0.436 20.045 0.668 20.070 0.470

PRL (ng/mL) 20.229 0.001 20.119 0.260 20.301 0.002

Inhibin B (pg/mL) 20.235 0.001 20.474 ,0.001 n.d.

INSL3 (ng/mL) n.d. 20.241 0.022 n.d.

E2, estradiol; FSH, follicle stimulating hormone; INSL3, insulin like factor 3; LH, luteinizing hormone; MEHP, mono(2-ehylhexyl) phthalate; n.d., not determined; P4,
progesterone; PRL, prolactin; SHBG, steroid hormone binding globulin; T, testosterone.
doi:10.1371/journal.pone.0109039.t003
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observed for T/E2 and MEHP quartile associations. Andrate et al.

observed that DEHP exposure showed aromatase inhibition at low

doses and stimulation at high doses in animal study [35]. However,

the non-monotonic biological effect of DEHP exposure to

aromatase activity within the range of MEHP quartiles in this

study is questionable. In this study the MEHP level was found to

be inversely related to P4 in infants. Previous in vitro research

shown that MEHP can suppress steroidogenesis and down-

regulate P4 production in MA-10 Leydig cell [36]. Reduced

progesterone values in combination with normal testosterone

values indicate that the steroidogenesis pathway from progesterone

to testosterone is not affected in the DEHP exposure. Meanwhile,

an association between MEHP concentration and testosterone

level showed p values of 0.059 in all participants. Thus,

insignificance of reducing testosterone maybe due to low statistical

power, and thus, additional studies with larger sample size are

needed.

Sertoli cells may also be the targets of reproductive toxicity

induced by phthalate exposure in utero [37]. The MEHP level in

maternal blood samples was inversely related to inhibin B in cord

blood in males suggesting the fetal exposure of DEHP affected

Sertoli cells in human infants, although in Main et al., the

associations between phthalate monoesters and inhibin B were not

clear [23]. These findings are in agreement with animal studies

that have shown that neonatal exposure to DEHP reduces Sertoli

cell numbers and proliferation in rodents [38,39]. The establish-

ment of appropriate Sertoli cell numbers during development is

critical for the production of sperm in adulthood [40]. Further

study to evaluate the long-term effects of DEHP exposure in utero
on testicular function should be considered. In this study, an

inverse association between inhibin B and all participants was also

observed, with the significant interaction term for MEHP and sex

in quartile model. However, this significance may be due to the

low detection rate of inhibin B in females. Therefore, more studies

are needed to confirm these results.

The levels of MEHP detected in this study were slightly higher

when compared to other populations, with the exception of one

study carried out in Italy. For example, the median (IQR) MEHP

levels in American adults (NHANES 1999–2000), elderly Swedish

subjects, and pregnant women in Australia were 5.4 (3.4–8.9) ng/

mL, 4.5 (2.0–15.5) ng/mL, and 1.18 (,LOD, 3.10) ng/mL,

respectively [41–43]. One study performed with pregnant woman

in Italy showed a mean MEHP concentration of 0.6860.85 mg/

mL [44], which is almost two orders of magnitude higher than

Figure 1. X-axis shows the MEHP quartiles, and Y-axis shows each hormone level. The adjusted LSMs (95% confident intervals) of each
hormone level in cord blood in relation to the MEHP concentration quartile fit to all study participants are shown with p-value for trend, and p for
interaction, respectively, for (A) T/E2 (0.017, 0.846), (B) P4 (0.010, 0.520), and (C) inhibin B (0.004, 0.042). First quartile (!5.90 ng/mL) is also compared
to the 2nd (5.91–10.39 ng/mL), 3rd (10.40–15.30 ng/mL) and 4th (15.31+ ng/mL) quartile MEHP. Statistical significance of the P value was *p,0.017,
**p,0.002 based on Bonferroni’s correction. When compared to the LSM of the 1st MEHP quartile, the 4th MEHP quartile of T/E2, P4, and the 3rd and
4th inhibin B significantly decreased, whereas the 2nd MEHP quartile of T/E2 significantly increased. LSMs were adjusted for maternal age, smoking
during pregnancy, alcohol consumption during pregnancy, gestational age, and the blood sampling week, infant sex, and interaction of sex and
MEHP.
doi:10.1371/journal.pone.0109039.g001
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what has been found in other studies, including the present work.

However, the exposure levels of DEHP in this cohort are not

externally comparative to previous studies due to the difference in

measurement methods of each study. The majority of the recent

studies assessed phthalate exposure based on urine samples.

Unfortunately, urine samples were not available for the purposes

of this cohort study.

It should be noted that, in the present study, only MEHP was

measured, and this is a limitation to the study. MEHP is the

primary metabolite of DEHP and there are several secondary

metabolites, such as mono(2-ethyl-5-hydroxyhexyl) phthalate,

mono(2-ethyl-5-oxohexyl) phthalate, mono(2-ethyl-5-carboxypen-

tyl) phthalate, and mono(2-carboxymethylhexyl) phthalate [45–

47]. In urine samples approximately 70% of detected phthalates

are found in one of these four oxidized metabolite forms, whereas

only 6% are found in the form of MEHP [47]. However, in blood

samples, MEHP is detected in more than 80% of samples and the

detection rates of the oxidized metabolites is less than 40% [48–

50]. Therefore, the analysis of MEHP in blood does provide an

indication of DEHP exposure. The associations between MEP and

infant T and SHBG levels have been previously reported in three-

month-old males, where MEP, monobutyl phthalate, and mono-

benzyl phthalate were found to be inversely related to the AGI

[20,23]. Other phthalates, such as DEP, DBP, and butyl benzyl

phthalate should also be considered in future studies.

It is also important to note that there may be potential

contamination of blood samples with DEHP from medical devices,

which are additional limitations of the present study. However,

speed of diester to monoester conversion of DEHP is relatively

longer [49] and the diester hydrolysis was not observed after one

hour incubation at 37uC [51]. In this study, after blood samples

were taken, they were handled at 4uC until storage at 280uC. In

addition, all samples were collected at a single hospital so that any

variation of medical devices used for withdraw blood would be

low. Thus, although there is a possibility of DEHP contamination,

the effect of ex vivo hydrolysis would have a low impact on the

results. In addition, similar associations were found between the

recorded levels of reproductive hormones and MEHP through the

use of linear regression and quartile analysis, and this approach

could be used in the future to minimize variations in MEHP

exposure [14,41,52]. Consequently, the inverse associations

observed between infant reproductive hormones and the concen-

tration of MEHP in maternal blood should be considered relevant.

Although it is unlikely to introduce a positive bias by sample

contamination, future studies are needed to confirm the results.

Another limitation of this study is that the majority of maternal

blood samples were taken during the third trimester of pregnancy.

Therefore, the effects of fetal exposure to DEHP during the earlier

stages of fetal development have not been directly assessed. In

addition, the MEHP level was measured only once. However,

Figure 2. X-axis shows the MEHP quartiles, and Y-axis shows each hormone level. In males, the adjusted LSMs (95% confident intervals) of
each hormone levels in cord blood in relation to the MEHP concentration quartile (p-value for trend) are (A) T/E2 (0.357), (B) P4 (0.028), (C) inhibin B
(,0.001), (D) INSL3 (0.005). First quartile (!6.36 ng/mL) is also compared to the 2nd (6.37–10.25 ng/mL), 3rd (10.25–14.28 ng/mL) and 4th (14.29+
ng/mL) quartile MEHP. Statistical significance of the P value was *p,0.017, **p,0.002 based on Bonferroni’s correction. LSMs were adjusted for
maternal age, smoking during pregnancy, alcohol consumption during pregnancy, gestational age, and the blood sampling week.
doi:10.1371/journal.pone.0109039.g002
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several previous reports have found that single measurements can

be useful, although there is some discussion regarding this in the

literature [14,53–55]. Lastly, there was a selection bias in this

study as only participants with available cord blood samples were

included in the analysis. Cord blood samples were only taken in

births where the infants were delivered vaginally. Compared to the

initial cohort population, the infants included in this study had an

increased gestational age and heavier birth weight than the infants

that were excluded from the study. Thus, the effects of MEHP

may be underestimated in this study.

Conclusions

This study found that maternal DEHP exposure negatively

correlates with the levels of P4, inhibin B, and INLS3 and these

associations were more pronounced in male infants than in

females. These results suggest that both Leydig and Sertoli cell

development may be adversely affected by DEHP exposure in
utero in males. The investigations of other phthalates in

comprehensive studies to facilitate full appreciation of the effects

of DEHP exposure, as well as its long-term effects on reproductive

development are needed.
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