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Molecular modelling of mitofusin 2 
for a prediction for Charcot-Marie-
Tooth 2A clinical severity
Małgorzata Beręsewicz   1, Łukasz Charzewski2, Krystiana A. Krzyśko2, Andrzej Kochański3 & 
Barbara Zabłocka   1

Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant neuropathy caused by 
mutations in the mitofusin 2 gene (MFN2). More than 100 MFN2 gene mutations have been reported so 
far, with majority located within the GTPase domain encoding region. These domain-specific mutations 
present wide range of symptoms with differences associated with distinct amino acid substitutions in 
the same position. Due to the lack of conclusive phenotype-genotype correlation the predictive value 
of genetic results remains still limited. We have explored whether changes in the protein structure 
caused by MFN2 mutations can help to explain diseases phenotypes. Using a stable protein model, 
we evaluated the effect of 26 substitutions on the MFN2 structure and predicted the molecular 
consequences of such alterations. The observed changes were correlated with clinical features 
associated with a given mutation. Of all tested mutations positive correlation of molecular modelling 
with the clinical features reached 73%. Our analysis revealed that molecular modelling of mitofusin 2 
mutations is a powerful tool, which predicts associated pathogenic impacts and that these correlate 
with clinical outcomes. This approach may aid an early diagnosis and prediction of symptoms severity in 
CMT2A patients.

Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant axonal peripheral neuropathy 
caused by mutations in the mitofusin 2 gene (MFN2) [MIM: 608507]. The disease presents complex phenotypes 
including not only neuropathy-related features but also impairment of the central nervous system, sensorineural 
hearing loss, optic atrophy and these vary with severity and time of onset1–3. In genetic counseling, a reliable 
pathogenicity assessment of MFN2 mutations is still needed.

Mitofusin 2 is a GTPase protein present in the outer mitochondrial membrane and responsible for regulation of 
mitochondrial network architecture via the fusion of mitochondria and in endoplasmic reticulum-mitochondria 
juxtaposition4–7. Fusion is an essential process for maintaining cellular dynamics because it allows exchange of 
contents, mtDNA and metabolites between neighboring mitochondria. MFN2, together with mitofusin 1, forms 
homo- and hetero-oligomers that promote tethering of adjacent mitochondria outer membranes and mediate 
their fusion8,9. Membrane fusion is a GTP-dependent process that depends on mitofusin 2 GTPase activity and 
consists of the following sequence of events: (i) binding of GTP to the GTPase domain leading to conformational 
changes of the GTP binding site; (ii) dimerization of two adjacent MFN2 molecules, which facilitates membrane 
proximity and their tethering and (iii) GTP-dependent outer membrane fusion associated with proper closure of 
mitofusin 210. Several studies have demonstrated that MFN2 mutations affecting its GTPase domain (95–339 aa) 
alter mitochondria fusion, leading to changes in the mitochondrial shape from tubular to more oval9,11. Moreover, 
in mitofusin 2-mutant cells, mitochondria seem to extensively aggregate around nucleus and are nonfunctional 
for fusion9,12. Mitochondrial network dysfunctions were also accompanied by reticular stress, diminished res-
piratory capacity and changes in mtDNA in patient–derived fibroblasts11–13. Another report suggested that mito-
chondrial network dysfunction is associated with impaired GTPase activity9 while we have recently reported 
that p.Arg274Trp mutation does not influence GTP binding or GTPase activity11. All these indicate significant 
functional heterogeneity of MFN2 mutants that underlie CMT2A.
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So far, more than 100 MFN2 gene mutations have been reported of which majority is located within the 
GTPase domain-encoding region. Patients carrying mutations within GTPase domain present wide range of 
symptoms starting from classical form of CMT2A and ending with impairment of the central nervous system2. 
Moreover, significant differences in symptoms are also noticeable when distinct amino acid substitutions occurs 
at the same position11,14. Therefore, given that it is difficult to establish a categorical genotype - phenotype corre-
lation, we have investigated whether the protein structure alterations caused by mutations in the MFN2 gene can 
inform the diseases phenotypes.

We collected information on all the GTPase domain mutations reported in the literature. Of these, 26 muta-
tions resulting in an amino acid in a position being replaced by no fewer than two distinct amino acids were 
selected for further analysis. Using a stable model of MFN2, described earlier11, we evaluated the effects of each 
mutation on the protein structure and, on this basis, predicted the molecular/functional consequences. It turned 
out that mutation effects are related to various stages of the fusion process, such as disturbances in the rear-
rangement of the GTP binding site, impairment of mitofusin 2 dimerization, of GTP hydrolysis and also MFN2 
closure, which is an essential element in the fusion process10. In parallel, the clinical features associated with 
the given mutation and described in the literature, were carefully analyzed in an unbiased manner and our own 
internal score of neurological deficits has been generated. Finally, both analyzes were cross-referenced to establish 
whether specific protein structure changes caused by the mutation position and properties of substituted amino 
acids correlate with the observed symptoms.

As a result, we established that using the newly obtained stable model of mitofusin 2 and the available molecu-
lar modelling tools it is possible to predict the pathogenic effect of a mutation in the MFN2 gene and to anticipate 
the patient’s prospective clinical outcome.

Results
Of all 68 identified mitofusin 2 mutations within the GTPase domain, 26 in which the amino acid in the same 
position was replaced by at least two other amino acids were selected for further analysis. Nominated mutations 
in 11 groups, together with corresponding clinical features of patients are listed in Table 1. We developed our own 
phenotypic assessment scale to determine symptom severity of each patient. Then, the potential impact of each 
mutation on the MFN2 structure was evaluated using molecular modelling. Finally, both analyses were combined 
to answer if predicted molecular effects caused by a specific mutation correlate with the phenotype severity.

First, based on our analysis it turned out that mutation effects are related to various stages of the fusion pro-
cess, such as (i) disturbance in the rearrangement of the GTP binding site (His277), (ii) impairment of MFN2 
dimerization (Arg104, His165, Arg259, Arg274, Gln276), (iii) impairment of mitofusin 2 GTP hydrolysis 
(Gly127), (iv) impairment in MFN2 closure, which is an essential element in the fusion process (Asp210, Arg250) 
and (v) other yet unknown mechanisms (Val244, Pro251).

Disturbance in rearrangement of the GTP binding site.  Binding of GTP to the GTPase domain leads 
to conformational changes of the GTP binding site, which is an essential element of stabilization of the attached 
ligand and promotion of subsequent dimerization. Histidine in the position 277 is an amino acid significantly 
involved in this process. Binding of GTP initiates sequential intramolecular interactions between His277 and 
its adjacent amino acids (Asn257, Cys281, Ser229 for details see Supplement, Fig. S1) which guarantees cor-
rect rearrangements of GTP binding site. Two different substitutions in His277 have been reported in CMT2A 
patients, to date (Table 1). The p.His277Arg mutation is responsible for the classical phenotype and assigned 1 
point in our phenotypic scale3. The p.His277Tyr mutation is associated with a more severe phenotype where clas-
sical neuropathy is associated with pyramidal signs and vasomotor abnormalities15. According to our phenotypic 
assessment scale, this mutation receives 3.5 points. Molecular dynamics simulations revealed that both mutations 
lead to the disruption in intramolecular interactions leading to impaired rearrangement of the mitofusin 2 GTP 
binding site (Supplement, Fig. S1). However, comparison of molecular consequences of these two mutations is 
ambiguous, both retain certain parts of wild type interactions and behavior. In the current state of knowledge it 
is unclear which of them might generate stronger disturbances in MFN2 mechanistic properties, while clinical 
studies reveal that the p.His277Tyr mutation is responsible for more severe phenotype. Most likely, His277 is 
involved in another unknown aspect, therefore further studies are needed.

Impaired dimerization of mitofusin 2.  Arg104, His165, Arg259, Arg274 and Gln276 seem to be engaged 
in the dimerization process of two adjacent mitofusin 2 molecules. The involvement of these amino acids may be 
direct, as in the case of Arg259 and His165, or indirect as in the case of Arg104, Arg274 and Gln276. Dimerization 
facilitates membrane proximity, tethering and fusion of mitochondrial outer membranes.

Arg259 is the key amino acid responsible for the dimerization of mitofusin 2. It is known that mutagenesis of 
analogical residue in mitofusin 1 (p.Arg238Ala) prevents its dimerization16. We have found three different substi-
tutions in Arg259: p.Arg259Cys, p.Arg259His and p.Arg259Leu17–19. The p.Arg259His mutation is responsible for 
the classical phenotype and assigned 1 point in our phenotypic scale19. Patient bearing the p.Arg259Cys mutation 
presents late onset disease and severe sudden visual loss17. According to our assessment scale, this was rated at 2 
points. In contrast, the p.Arg259Leu variant has been associated with a classical CMT2A phenotype with accom-
panying pyramidal signs, which was rated at 2.5 points18. Molecular dynamics simulations indicate that leucine 
and cysteine substitutions have similar deleterious effects on mitofusin 2 structure (Supplement, page 2). Both 
prevent dimerization and probably also disrupt the hydrolysis of GTP. Moreover, it seems that the effect of these 
two mutations can be more deleterious than the effect caused by histidine substitution. Hence, it is not surprising 
that patients with p.Arg259Cys and p.Arg259Leu mutations manifest with CMT2A with additional symptoms 
such as the involvement of the central nervous system, albeit affecting different regions (the optic nerve and 
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Nucleotide 
change Protein change

Clinical details Phenotype

Score References

Age of 
onset 
(years)

CMAP 
(median 
nerve) [mV]

CMTNS/
FDS Peripheral neuropathy CNS/cranial nerves

c.311 G > A p.Arg104Gln — — −/− healthy individual with normal results 
of electrophysiological examination — 0 27

c.310 C > T p.Arg104Trp 1–10 0.0, 0.1, 0.8, 
1.6; 1.8, 2,7 22/726

early onset CMT2A (1.5)
or
classical CMT2A (1)

pyramidal signs (2)
optic atrophy (1)
mental retardation (1)
other minor symptoms (0.5)

5.5–6 15,25,26,28–30

c.380 G > A p.Gly127Asp 16 11.9 4/2 classical CMT2A (1) extensor plantar responses (2) 3 2

c.380 G > T p.Gly127Val 6–62 0.8, 2.0, 8.4 −/−
late onset CMT2A (0.5)
or
classical CMT2A (1)

— 0.5–1 35

c.494 A > G p.His165Arg 6–16 1.0, 5.2, 11.5, 
20.1 5/1 classical CMT2A (1) subcortical lesions in MRI (0.5)

sensorineural hearing loss (0.5) 2 2,3,22

c.493 C > G p.His165Asp 4–20 5.0, 5.0, 7.0, 
11.0 −/−

classical CMT2A (1)
or
early onset CMT2A (1.5)

pyramidal signs (2) 3–3.5 21,24

c.494 A > T p.His165Leu + ALS 14 2.2 −/−
classical CMT2A (1)
ALS is rather casual and not associated 
with MFN2 mutation

— 1 23

c.493 C > T p.His165Tyr 12 — −/− classical CMT2A (1) — 1 3

c.629 A > T p.Asp210Val 1.5 — −/− early onset CMT2A (1.5)

pyramidal signs (2)
cerebellar ataxia (0.5)
deafness (0.5)
optic atrophy (1)
cataracts (0.5)
learning difficulties (0.5)
mitochondrial myopathy (0.5)

7 12

c.628 G > T p.Asp210Tyr 0.5 no values −/− early onset CMT2A (1.5)

pyramidal signs (2)
microcephaly (0.5)
tremor (0.5)
sensorineural hearing loss (0.5)
optic atrophy (1)
developmental delay (1)

7 36

c.730 G > C p.Val244Leu 4 6.3 −/− early onset CMT2A (1.5) periventricular leukomalacia 
(0.5) 2 40

c.730 G > A p.Val244Met <5 — −/− early onset CMT2A (1.5) — 1.5 15,39

c.749 G > A p.Arg250Gln 12–21 — −/−
late onset CMT2A (0.5)
or
classical CMT2A (1)

— 0.5–1 3,37

c.748 C > T p.Arg250Trp +  
Arg400* + Arg476* 4–10 2.7 −/−

classical CMT2A (1)
or
early onset CMT2A (1.5)

— 1–1.5 3,38

c.751 C > G p.Pro251Ala 8–50 — −/− classical CMT2A (1)
tremor (0.5) — 1.5 31

c.752 C > G p.Pro251Arg 1, 2 — 11–20/− early onset CMT2A (1.5) wheelchair 
(1) — 2.5 37,41

c.752 C > T p.Pro251Leu 25 — 13/2 late onset CMT2A (0.5) — 0.5 42

c.775 C > T p.Arg259Cys >30 decreased −/− late onset (0.5) sudden visual loss (1.5) 2 17

c.776 G > T p.Arg259Leu 19 — −/− classical CMT2A (1) mild pyramidal signs (1.5) 2.5 18

c.776 G > C p.Arg259His 17 — 10/2 classical CMT2A (1) — 1 19

c.821 G > A p.Arg274Gln 11–35 — −/− classical CMT2A (1) — 1 31

c.820 C > T p.Arg274Trp 10 — −/− classical CMT2A (1)

markedly reduced nerve 
conduction velocity in the motor 
fibers of the median nerve (0.5)
proximal weakness (0.5)
mental retardation (1)

3 1

c.827 A > G p.Gln276Arg 10 — −/− classical CMT2A (1) optic nerve atrophy (1) 2 32

c.828 G > C p.Gln276His 9 decreased −/− classical CMT2A (1) optic nerve atrophy (1) 2 33

c.830 A > G p.His277Arg <15 — −/− classical CMT2A (1) — 1 3

c.829 C > T p.His277Tyr <10 — −/− classical CMT2A (1) pyramidal signs (2)
vasomotor troubles (0.5) 3.5 15

Table 1.  Clinical and electrophysiological characteristics of CMT2A patients bearing mutation within MFN2 
GTPase domain. Legend: “-“ the results of the analysis were not reported, “−/−“ nor CMTNS, neither FDS 
score was reported, CMTNS-Charcot Marie Tooth Neuropathy scale, FDS- Functional disability scale, CMAP- 
compound muscle amplitude potential, CNS-central nervous system.
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pyramidal tracts). The above comparison reveals that predicted changes in the mitofusin 2 structure correlate 
with the observed symptoms (Table 2).

Another residue, which mutation leads to dimerization impairment is His165. Analogously to mitofusin 1, 
upon GTP hydrolysis, tightening of two adjacent mitofusins 2 occurs resulting in formation of new contacts 
between its subunits20. The following amino acids are responsible for these new intermolecular interactions: 
His165-Glu268 and His168-Glu272 (Supplement, Fig. S2) and Lys120-Glu266.

His165 can be substituted by four other amino acids: arginine, aspartic acid, leucine and tyrosine, which all 
produce CMT2A phenotype2,3,21–24. Patients with p.His165Leu and p.His165Tyr mutations present a classical 
CMT2A and therefore, these were assigned 1 point3,23. It is important to note that in the patient with the p.His-
165Leu mutation the classical CMT2A was accompanied by motor neuron disease, consistent with amyotrophic 
lateral sclerosis (ALS)23. Most likely, the co-occurrence of these two rare neuromuscular disorders was a coin-
cidence. Patients bearing p.His165Arg mutation, in addition to typical neuropathy, developed other symptoms 
such as subcortical lesion and sensorineural hearing loss2,3,22. In the patient harboring p.His165Asp mutation 
CMT2A with pyramidal signs were diagnosed21,24. Therefore, we assigned the patient with p.His165Arg mutation 
2 points and the patient with p.His165Asp 3–3.5 points in our internal score. Substitutions of histidine to leucine 
or tyrosine at position 165 do not cause significant changes in the mitofusin 2 structure which correlates with the 
classical CMT2A phenotype observed in patients with these mutations. Both mutations disables intermolecular 
interactions with Glu268 and any other effects are not observed. In contrast, substitution to arginine or aspartic 
acid causes minor or major disturbances in interactions with Glu268, respectively and this is reflected in various 
phenotypes, all more severe than classical CMT2A (Supplement, Fig. S2). Most probably the observed pheno-
types are a consequence of disordered mitofusin 2 dimerization. p.His165Asp mutation leads to unfavorable 
contact with Glu268 preventing dimer formation, while p.His165Arg strengthens the interaction with Glu268, 
potentially impeding mitofusin 2 dissociation.

Concluding, in accordance with bioinformatics analysis, the clinical outcome of Tyr and Leu substitutions at 
the 165th position are limited to the classical phenotype, while arginine or aspartic acid substitutions reflect in 
various phenotypes, all more severe than classical CMT2A. It is another example where predicted changes in the 
mitofusin 2 structure are mirrored in clinical outcome.

Two mutations at Arg104 position: p.Arg104Gln and p.Arg104Trp have been found15,25–30. The p.Arg104Trp 
mutation was identified by a number of independent groups15,25,26,28–30. All reports agreed that this variant is 
responsible for an extremely severe phenotype, where the classical CMT2A is accompanied by symptoms such as 
pyramidal signs, optic atrophy and mental retardation. The described symptoms however, were slightly different 
between case reports hence these patients were assigned by us from 5.5 to 6 points. Molecular dynamics revealed 
that in the dimer structure where both subunits carry this mutation, the side chains of Trp104 form a stacking 
interaction that stabilizes the dimer and hinders its decomposition (Fig. 1).

The p.Arg104Gln amino acid substitution was identified in a healthy carrier, in whom electrophysiological 
examination did not reveal any abnormality27. Thus, in terms of autosomal dominant trait of inheritance, this 
MFN2 gene variant may be classified as harmless polymorphism or extremely weak mutation acting in autosomal 
recessive manner. Similarly, in molecular modelling experiments, this substitution seems not to influence the 
dimer stability. This indicates that the substitution to glutamine at position 104 does not affect the mitofusin 2 
structure while the substitution to tryptophan has deleterious effect (Supplement, page 4). This result is consistent 
with the presence of two completely different phenotypes and confirms that molecular modelling reflects clinical 
outcomes of CMT2A.

Arg274 is an amino acid that indirectly participates in mitofusin 2 dimerization since it is involved in the 
formation of GTP binding site. Two different substitutions of arginine at position 274 such as p.Arg274Gln and 
p.Arg274Trp have been identified1,31. The patient bearing the p.Arg274Trp mutation presents with a moderate, 
early-onset CMT2A with peripheral axonal neuropathy coexisting with mental retardation11 while clinical course 
of the p.Arg274Gln was clearly milder. According to our assessment scale the patient with p.Arg274Gln mutation 
received 1, while the p.Arg274Trp 3 points.

Amino acid 
position Clinical outcome Structure impairment

Arg104 Trp > Gln Trp > Gln

Gly127 Asp > Val Asp > Val

His165 Asp > Arg > Leu = Tyr Asp > Arg > Leu = Tyr

Asp210 Tyr = Val Tyr > Val

Val244 Leu ≥ Met Leu = Met

Arg250 Trp > Gln Trp > Gln

Pro251 Arg > Ala > Leu Arg > Ala = Leu

Arg259 Leu ≥ Cys > His Leu = Cys > His

Arg274 Trp > Gln Trp > Gln

Gln276 Arg = His Arg = His

His277 Tyr > Arg Tyr = Arg

Table 2.  Comparison of clinical outcome and the predicted changes in the mitofusin 2 structure due to 
mutations position and properties of substituted amino acids.
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In our simulations of both mutations, we observed a mechanics disorder that stabilizes the GTPase domain in 
the inactive state, resulting in dimer formation regardless of the GTP binding (Supplement, Fig. S3). It seems also 
that the p.Arg274Trp substitution has more deleterious effect on mitofusin 2 structure than p.Arg274Gln what 
correlates with more severe phenotype.

Another amino acid involved in mitofusin 2 dimerization is Gln276 located close to the Glu272, which similar 
to His165-Glu268 is responsible for intermolecular interactions in dimeric form.

Two substitutions of Gln276: p.Gln276Arg and p.Gln276His have been described32,33. Patients, regardless of 
the mutation, present classical CMT2A with accompanying optic nerve atrophy - each was assigned 2 points. 
Molecular dynamics simulations indicate that both mutations have similar effect on mitofusin 2 structure and 
promote the formation of new interactions with Gly272 within a single molecule which can affect the dimer for-
mation (Supplement, Fig. S4). Due to the presence of the classical CMT2A phenotype and optic nerve atrophy in 
the patients with both mutations, we suggest that these variants induce the same molecular defect within MFN2 
protein.

Impaired GTP hydrolysis.  For GTP hydrolysis the following processes must take place: (i) binding of GTP 
to the GTPase domain and (ii) dimerization of two adjacent MFN2 molecules including transient dimerization of 
the GTPase domains in a parallel head-to-head fashion34.

His128 is an amino acid significantly involved in this process and assisted by Gly127 which maintains the 
water molecule in the proper position during the GTP hydrolysis (Supplement, Fig. S5). Two different substi-
tutions have been identified in 127 position so far, including the p.Gly127Val and p.Gly127Asp2,35. The result-
ing clinical characteristics were significantly different – from patient with mild phenotype (p.Gly127Val) to the 
patient who, in addition to the classical CMT2A, had also pyramidal signs (p.Gly127Asp) indicating involve-
ment of the central nervous system. According to our scale, the p.Gly127Val mutation was assigned 0.5–1 while 
p.Gly127Asp was given 3 points. Molecular dynamics simulations indicate that p.Gly127Val mutation impairs 
His128 placement for GTP hydrolysis, while the p.Gly127Asp mutation disturbs not only GTP hydrolysis but also 
mitofusin 2 dimerization. It indicates that p.Gly127Asp variant has more deleterious effect on MFN2 structure 
which correlates with more severe phenotype in comparison to p.Gly127Val.

Impaired MFN2 closure.  In order to conduct membrane fusion, mitofusins undergo domain reorientation 
rendering closed, diamond-shaped structure. We have identified internal long-range factors (electrostatic inter-
actions) within individual domains enabling such closure (Fig. 2).

Around these specific amino acids there are residues, which “tighten” the structure at a smaller distance by 
Van der Waals and hydrogen bonds interactions. Therefore, mutations that destroy the above electrostatic inter-
actions cause difficulties in the mitofusin 2 closure. The amino acids initiating and terminating the closing of the 
structure are the most important. In this study, among the mutations selected for analyses, four affect amino acids 
essential for proper MFN2 closure (Asp210 and Arg250). Two mutations at the codon 210 involving substitutions 
to valine and tyrosine result in an extremely severe mitochondrial, systemic disorder phenotype associated with 
axonal neuropathy12,36. Regardless of the mutation, patients presented with an early-onset disease with pyramidal 
signs and optic atrophy. Therefore, both p.Asp210Val and p.Asp210Tyr mutations were equally rated at 7 points. 
Molecular dynamics simulations reveled that both variants impair mitofusin 2 closure with the difference, that 
substitutions to tyrosine seems to be more deleterious than valine (Supplement, page 7). This is not entirely con-
sistent with the clinical data of patients which were equally evaluated by us.

Another group of mutations affects arginine at position 250 that, similarly to Asp210, is engaged in crea-
tion of the interdomain interaction. Arginine substitutions by glutamine and tryptophan (p.Arg250Gln, p.Ar-
g250Trp) were described3,37,38. The glutamine substitution was reported by two independent groups3,37. Both 
cases presented mild CMT2A and differed only in symptom onset times. Patient with the later onset, described 
by Verhoeven and coworkers was rated at 0.5 while, one described by McCorquodale and coworkers diagnosed 
at the age of 12, was rated at 1 point. The p.Arg250Trp substitution was associated with an additional inherited 

Figure 1.  Trp104 of the two opposite subunits of mitofusin 2 form contact with each other through the stacking 
interaction. Such interaction is absent in WT protein.
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in trans stop codon change of arginine at positions 400 or 4763,38 (nonsense mutations are predicted to behave as 
a not disease causative). The p.Arg250Trp mutation causes a mild neuropathy with early age of onset, thus rated 
at 1.5 points.

Molecular dynamics simulations reveled that both variants impair mitofusin 2 closure with the difference, 
that substitutions to tryptophan seems to be more deleterious than glutamine (Supplement, page 8). Therefore, 
of these two mutations, the p.Arg250Trp should cause a more severe phenotype. This molecular prediction is 
consistent with the clinical features.

Amino acids at positions 210 and 250 are involved in mitofusin 2 closure, which is an essential step in the 
mitochondrial fusion. Interestingly, mutations at these positions produce very distinct phenotypes with a more 
severe one for position 210. Most likely, this amino acid plays a much more important role in the mitofusin 
2-closure hierarchy than the amino acid at 250 position. Thus, mutation in 210 amino acid is associated with more 
severe symptoms.

Unknown mechanisms.  Two more mutations affecting Val244 (p.Val244Leu and p.Val244Met) have been 
identified15,39,40. Leucine and methionine, like valine, are hydrophobic amino acids, although they are longer. 
Their side chains are located in this hydrophobic region and don’t disturb it - in simulations we do not observe any 
significant structural changes. At this moment it is difficult to explain in what processes they might be involved 
(Fig. 3). Nevertheless, patients with these mutations present with an early onset CMT2A and the p.Val244Leu 
variant was additionally linked to periventricular leukomalacia40. Therefore, p.Val244Met and p.Val244Leu muta-
tions were assigned 1.5 and 2.0 points, respectively15,39.

In case of Pro251 three mutations have been identified, namely p.Pro251Ala, p.Pro251Arg and p.Pro-
251Leu31,37,41,42. The most severe phenotype of the wheel-chair dependency resulted from the p.Pro251Arg muta-
tion37,41. In the patient harboring the p.Pro251Ala mutation tremor accompanied the classic CMT2A phenotype 
while the p.Pro251Leu mutation resulted in a classical CMT2A with late age of onset31,42. Therefore, p.Pro251Arg, 
p.Pro251Ala and p.Pro251Leu mutations were assigned 2.5, 1.5 and 0.5 points, respectively.

At the molecular level, leucine and alanine share the same chemical characteristics as proline (Fig. 3). While, 
leucine is slightly larger, alanine is smaller than proline and for these no significant changes have been observed in 
simulations. Arginine is a much larger amino acid and also charged, therefore it does not match the hydrophobic 
environment of that region. It’s side chain comes out and attempts to interact with Glu598 (HR2), but the distance 
between these residues is too large to form a strong contact. While the Arg251 side chain exits that region, it does 
not destroy the mitofusin 2 backbone structure.

Based on the chemical properties of these substitutions, it could be predicted that arginine should have a much 
more deleterious effect on structure than leucine or alanine. In full agreement with this prediction, the patient 

Figure 2.  The following amino acids (sticks) form electrostatic intramolecular interactions driving MFN2 
closure: Asp210 (GTPase) - Arg476 (HR2) - interaction tightening paddle domain, Lys243 (GTPase) - Asp480 
(HR2) - interaction tightening paddle domain, Arg250 (GTPase) - Glu598 (HR2) - interaction tightening HR2 
domain, Glu542 (HR2) - Lys732 (HR1) - interaction tightening HR2 domain, Asp377 and Glu370 (HR1) - 
Arg564 (HR2) - interaction tightening HR1 domain, Glu359 (HR1) - Arg575 (HR2) - interaction tightening 
HR1 domain. Colors represent domain composition: GTPase (blue), HR1 (green), HR2 (yellow) and paddles 
(orange).
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with p.Pro251Arg presented with a more severe phenotype. However, we are currently not able to explain the 
phenotypic differences between p.Pro251Ala, and p.Pro251Leu variants.

In summary, of 11 tested groups of analyzed mutations (Table 1) positive correlation of molecular modelling 
and the clinical features has been demonstrated for 8, which constitutes 73% of agreement (Table 2).

Prediction of clinical outcome severity by mutation assessment tools.  To compare the results 
of our analysis to those derived from existing predictors of clinical significance, the following mutation assess-
ment tools were used: PROVEAN, Fathmm, MutationTaster, PolyPhen-2 and Mutation Assessor. All used tools 
cluster analyzed mutation as deleterious with one exception - the PROVEAN has classified p.Arg250Gln as neu-
tral. The obtained predictions allowed us to organized the analyzed mutation according to their potential sever-
ity (Supplement, Table S1), thus in turn was correlated with clinical features associated with a given mutation. 
Depending on the test, we received 18–45% compatibility between the clinical features and mutation assessment. 
The highest correlation was obtained for Mutation Assessor, PROVEAN and Fathmm.

Discussion
Here, we present a comprehensive bioinformatics analysis of the molecular effects of selected MFN2 mutations 
affecting the GTPase domain, which were correlated with the clinical features of patients bearing these mutations. 
Eight groups out of eleven of analyzed mutations showed a positive correlation of molecular modelling with the 
clinical features indicating 73% agreement (Table 2). In three groups (p.Asp210, p.Pro251, p.His277) compati-
bility between the comparative protein modelling and the severity of clinical symptoms was incomplete but not 
discordant. Therefore, the study of the effects of mutations by comparative molecular modelling methods might 
be helpful in predicting and explaining the pathogenicity of CMT2A, irrespective of incomplete knowledge about 
the dynamics of mitofusin 2.

Since the patients analyzed here were examined by different neurologists using various examination schemes 
we had to abandon the use of the standard Charcot-Marie-Tooth disease (CMT) neuropathy score (CMTNS)43 in 
favor of our own scoring system for the clinical evaluation.

We are aware that creating a uniform scale based on the literature data can limit the validity of our results e.g. 
we cannot exclude other causes, not described in the publications and/or identified later that might be responsible 
for the development of non-classical CMT2A symptoms. Noteworthy, in case of CMT2A patients manifesting 
with additional symptoms and, in some cases, even with systemic mitochondrial disorder, the usage of CMTNS 
focused on the severity of peripheral neuropathy does not reflect a complete phenotype. In the creating of our 
assessment scale we decided to treat CMT2A disease as a systemic mitochondrial disorder. Therefore, every addi-
tional symptom of mitochondrial disease (myopathy, hearing impairment, visual loss, demyelinating changes in 
the central nervous system, etc.) was taken into account in our scale. Parallel to CMNTS, the Functional Disability 
Scale (FDS) is sometimes used. FDS reflects severity of the motor deficit from normal subjects (0 points) to the 
bedridden patients (8 points). However, even in coexistence with CMTNS, FDS does not reflect systemic mito-
chondrial damage observed in some CMT2A patients. Moreover, in mutation analyzed by us information about 
CMNTS and FDS are available only for limited group of patients. Thus, we were not able to compare the clinical 
severity using both CMTNS and FDS.

In contrast, our score reflects the sequence of processes occurring in pathophysiology of mitochondrial 
disease evolving from peripheral nerve damage (one system) to the multisystem disease characterized by the 
involvement of the central nervous system and cranial nerves. In our opinion, this method of scoring could be 
serviceable for all CMT2A patients with mutations in the GTPase domain. Here, using a blind approach, we have 
reached a high level of compliance between the clinical picture of CMT2A and the corresponding structural 
analysis. This, on the one hand, confirms the effectiveness of our internal scoring method and, on the other hand, 
indicates the value of molecular modelling in the diagnosis process. Similar approach to understand the variabil-
ity in the severity of CMT2A disease was proposed by Rouzier and coworkers14, and this will be discussed later.

Figure 3.  In wild type mitofusin 2 Pro251 and Val244 sidechains are oriented towards the hydrophobic 
interior of the protein forming Van der Waals interactions. Reported mutations in both positions (p.Val244Leu, 
p.Val244Met, p.Pro251Ala, p.Pro251Arg, p.Pro51Leu) do not cause significant structural changes.
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Results obtained in molecular modelling showed 73% compatibility with the clinical outcome. While, the 
same comparison using commonly used mutation assessment tools (Supplement, Table S1) showed at most 45% 
compatibility indicating greater efficiency of our approach. The mutation assessments tools provide prediction 
regardless of the mutation localization. In our approach we compared the severity of mutations only in cases 
when variants are in the same amino acids position and affect the same biological function. This limitation, how-
ever, has its significant advantages, including greater efficiency prediction. Such approach is consistent with the 
clinical picture, which proves its performance. Therefore, the molecular modelling approach seems applicable for 
analysis where only one mutation occurs in particular site. As the analysis is based on the changes taking place in 
the proper structure it would be always possible to compare mutated system to wild-type and predict the severity.

Until now, all studies on the pathogenicity of mitofusin 2 mutations have been related to impaired function 
of MFN2 protein and its consequences. Therefore, the alterations were studied mainly in the mitochondrial and 
endoplasmic reticulum morphology, mtDNA integrity and respiratory chain activity in patient-derived cells and 
tissues. The problem with these studies, however, is that they are long-lasting and the access to the material is 
increasingly limited. Effects of p.Asp210Tyr mutation in muscle and skin biopsies were studied by Renaldo and 
coworkers36. The biopsy (m. quadriceps) showed denervation and revealed that most fibers were cytochrome 
c-oxidase negative. In muscle samples they showed decrease of mitochondrial complex I and III activities. 
Analysis of mitochondrial DNA from the muscle biopsy display significant reduction in the mitochondrial copy 
number. Moreover, in patient-derived fibroblasts, low global mitochondrial activity and poor cell respiration 
were observed. According to our structural analysis, Asp210 is considered as one of the amino acids responsible 
for forming interdomain interaction driving MFN2 structure closure, which is an essential element in the mito-
chondrial membrane fusion. Substitution of Asp210 by tyrosine prevents the interaction with Arg476 as well as 
Lys243-Asp480 (Fig. 2), which makes the enclosement of MFN2 difficult or even impossible. It is no wonder that 
a patient harboring p.Asp210Tyr mutations was evaluated by us at 7 points - as one of the most severe clinical 
case. Our comprehensive analysis of clinical data and the influence of mutation on molecular structure of MFN2 
are consistent in terms of severity of symptoms and, additionally, they bring us closer to understanding the mech-
anism of protein function. Mutation in the same codon was reported by Rouzier and coworkers (p.Asp210Val) 
with the clinical course similar to p.Asp210Tyr14. Likewise to our study, authors compared impact of these two 
mutations affecting amino acid in position 210 in human mitofusin 2 structure14. The difference, however, is that 
our study was made on the whole structure of MFN2, while the Rouzier’s only on a fragment of protein covering 
residues from 122–30614. They found that Tyr in position 210 has more deleterious effect than Asp210Val muta-
tion and this is in line with both their clinical assessment of these two patients and our structural analysis. Indeed, 
according to our data, Asp210Val substitution impairs the formation of intramolecular interactions but to a lesser 
extent than Asp210Tyr, even the studies present by Rouzier and coworkers are not entirely consistent with our 
assessment scale14. This may be caused by the obvious discrepancies between scoring method used by us and 
clinical assessment of neuropathy based on the direct observation and description of patients.

Another example is the case of p.Arg274Trp mutation described by us elsewhere11. We showed, using the 
patient-derived fibroblasts, that mitochondrial and endoplasmic reticulum morphology and mtDNA content 
were affected significantly by the presence of the mutant MFN2 protein. Subsequently, we revealed that the muta-
tion did not affect the GTPase activity nor the GTP binding. Therefore, we suggested that the biological malfunc-
tions observed in our in vitro experiments were not the consequences of impaired GTPase activity but rather 
reflected an impaired contribution from the GTPase domain into other MFN2 molecular activities involving that 
region. Here, employing molecular modelling we showed that p.Arg274Trp substitution leads to impairment of 
dimerization of two adjacent mitofusin 2 molecules. Moreover, dimerization impairment can cause extensive 
aggregation of nonfunctional mitochondria around nucleus what is actually visible in patient-derived fibroblasts7. 
The observed disturbances in protein structure correlate with the severity of symptoms in the patient. In molec-
ular dynamics simulations of the p.Arg274Gln mutation we observed a much smaller effect than in p.Arg274Trp, 
which is consistent with the milder clinical phenotype described by Zuchner and coworkers31. This is also in 
line with data by Detmer and coworkers who showed that p.Arg274Gln mutation did not affect mitochondrial 
network in wild type MEFs and showed a considerable restoration of mitochondrial tubules in double Mfn-null 
cells9. Moreover, Detmer and coworkers assessed the effect of p.Pro251Ala on mitochondria morphology and 
ability to mediate mitochondrial fusion. In wild-type MEFs p.Pro251Ala caused substantial mitochondrial aggre-
gation only when cells were transfected at high multiplicity of infection9. In our study, substitution of the Pro251 
by alanine or leucine did not have a great impact on protein structure while substitution for arginine resulted 
in the appearance of a second positive charge on the protein surface (adjacent to Arg250). It might enhance the 
local charge in a region involved in domain rearrangement, which might stabilize the closed MFN2 conformer. 
Even though it was not clearly confirmed by molecular dynamics, it would justify the higher severity of disease 
symptoms.

In conclusion, we found here that molecular modelling of mitofusin 2 mutations is a powerful tool, which 
predicts associated pathogenic impacts and that these correlate with clinical outcomes. This approach may aid 
an early diagnosis and prediction of symptoms severity progression in CMT2A patients. To further confirm 
the prognostic value of bioinformatics analysis of MFN2 mutations, our results should be confirmed in a larger 
cohort of CMT2A patients. In terms of clinical studies, the group of CMT2A-affected patients described in the 
literature is still small. Nevertheless, our data indicates the predictive value of the MFN2 protein modelling, at 
least with respect to the mutations located within GTPase domain. There is a needed to study the specific correla-
tion between MFN2 mutations affecting protein dynamics and cell defects in patients with complex and unusual 
phenotypes involving the central and peripheral nervous systems.
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Methods
Analysis of MFN2 gene mutations affecting its GTPase domain.  According to our MFN2 structure 
prediction, the amino acids 95 to 339 form the GTPase domain. The following databases have been searched to col-
lect all MFN2 mutation affecting its GTPases domain: disease mutation database: Mitofusin 2 project (http://www.
progettomitofusina2.com/en/malattia_ricerca/Database_mutazioni_MFN2 and Inherited Peripheral Neuropathies 
Mutation Disease (http://www.molgen.ua.ac.be/cmtmutations/Mutations/Mutations.cfm) as well as PubMed. The 
review by Stuppia was also exploited44. Of all 68 identified mutations, those resulting in amino acid in the same posi-
tion being replaced by at least two other amino acids were selected and used for further analysis (Table 1). Due to the 
lack of clinical data, p.Arg104Leu and p.Thr105Ala variants45 were excluded from our analysis. Moreover, we did not 
include double mutation in cis (p.Thr105LeufsX2 and p.Phe223Tyr) reported by Park46.

CMT2A symptoms evaluation.  To be able to analyze and compare the CMT2A clinical data reported by 
various groups, which used different examination schemes we developed an internal CMT2A scale based on 
clinical descriptions of patients found in the literature. Evaluation of neurological symptoms was standardized 
beginning from basic/classical CMT2A phenotype consisting of distal muscle wasting, weakness and sensory dis-
turbances. As a first criterion of CMT2A severity we used the parameter of age at onset. In general the early age at 
onset in neurodegenerative disorders serves as a biomarker of clinical severity. Patients manifesting with CMT2A 
symptoms in early childhood display more severe phenotype than the late onset patients1,2.

In addition to the classical symptoms of CMT2A, a clinical variety with uncommon presentation was also 
included to our internal scale i.e. central nervous system impairment, optic nerve atrophy, and mental retarda-
tion, etc. For central nervous system involvement we started from subclinical lesions (MRI abnormalities) and 
finished on the presence of pyramidal signs or even mental retardation observed in some patients. In fact we 
cannot definitively exclude that the association between central nervous system involvement and mental retar-
dation is rather casual than causal11. Moreover, we include in our scoring scale systemic nature of mitochondrial 
disorder manifesting with numerous symptoms including myopathy, demyelinating changes in the white matter 
in the central nervous system and cranial nerve involvement manifested as hearing impairment or visual loss. 
The others symptoms like vasomotor troubles or cataracts included in our score may not be pathophysiologically 
associated with CMT2A mitochondrial lesion, but we could not exclude this possibility.

We have used a following internal scoring scale: 1.5 - early onset before age of 5; 1 - age of onset between 6 and 
20 years and classical CMT2A without additional symptoms; 0.5 - late age of onset >20 years; 2 - pyramidal signs/
extensor plantar responses; 1.5 - mild pyramidal signs; 1.5 - sudden visual loss; 1 - optic nerve atrophy; 1 - mental 
retardation/developmental delay; 1 - wheelchair-bound; 0.5 - subcortical lesions in MRI; 0.5 - other symptoms i.e. 
hearing impairment/deafness, sensorineural hearing loss, cerebellar ataxia, vasomotor troubles, tremor, cataracts, 
learning difficulties, mitochondrial myopathy, microcephaly, periventricular leukomalacia, proximal weakness, 
markedly reduced nerve conduction velocity in the motor fibers of the median nerve.

Molecular modelling.  Development of a mitofusin 2 structure used for molecular modelling is described 
in our previous work11. Monomeric, GTP-bound BDLP-derived and dimeric models10 were refined using to 
newly available crystallographic data of the MFN2 closest homolog – MFN116. The apo-form of MFN2 was mod-
elled basing on 5GO4 structure16. In mechanistic considerations we also included the newly discovered dimeric 
conformation directly connected to GTP hydrolysis, in which the interface between subunits tightens and HR1 
domains are positioned closer to each other. The HR2 position in such conformation remains unknown20.

In agreement with the current mechanistic model of mitofusins, structural rearrangements during their activ-
ity cycle monomeric forms were modelled in open conformations, while the dimer was modelled as a closed, 
diamond-shaped complex.

Refined structures were directed to molecular dynamics simulations lasting 10 ns run with careful thermali-
zation and equilibration. All simulations were carried out at 310 K, under atmospheric pressure, and with 0.05 M 
ionic strength in a rectangular cuboid. The NAMD2 library47 with CHARMM27 force field was used47–50 and 
TIP3P water model was applied.

Every considered mutation was introduced into apo-form and dimeric structures or additionally to 
GTP-bound monomeric state and adjusted transitional states, when needed. At least three runs of each simula-
tion under the parameters described above, were carried out lasting 2 to 10 ns, depending on the obtained results. 
For each run, an energetic and structural analyses were performed to determine stability of the systems and 
then mutated region interactions were investigated thoroughly. For mutations placed directly in ligand-binding 
regions, additional semi-flexible molecular docking of GTP was carried out with MOE 2016.08 software in a 
AMBER10:EHT force field and directed to molecular dynamics, as described. In order to observe intermolecu-
lar interactions driving the close-shutting of the structure, additional 10 ns molecular dynamics simulations of 
GTP-bound wild-type monomeric MFN2 were performed. In these, the structure was slightly opened by HR2/
Paddle rotation at arbitrary selected HR1/HR2 hinges (Gln386-Gln387 and Ala715-Ala716) creating 6 Å gap 
between GTPase and paddles.

The severity of investigated mutations in computational part of work was assessed basing on the analysis of changes 
in systems that they triggered. All cases were compared to the reference, which was the WT system in the same particu-
lar state. We have taken into consideration the disruption of molecular interactions, formation of new ones and changes 
in their chemical character and/or energy. We have also analyzed structural changes involving backbone (those are 
generally more significant for overall structure stability) or sidechains (those are responsible for specific biological func-
tions). All those factors were analyzed including the knowledge of biological mechanisms involving particular struc-
tures. When the greater change in the interactions or structure due to the substitution was observed, the higher severity 
was ascribed. Those comparisons were restricted only to the substitutions placed in the very same residue position.

http://www.progettomitofusina2.com/en/malattia_ricerca/Database_mutazioni_MFN2
http://www.progettomitofusina2.com/en/malattia_ricerca/Database_mutazioni_MFN2
http://www.molgen.ua.ac.be/cmtmutations/Mutations/Mutations.cfm
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Prediction of clinical outcome severity by mutation assessment tools.  To predict the severity of 
analyzed mutations in conventional, commonly used approach the following mutation assessment tools were 
used: PROVEAN, Fathmm, MutationTaster, PolyPhen-2 and Mutation Assessor. The MutationTaster performs 
analysis based on nucleotide sequence, the rest of them use the amino acid sequence.
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