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The research interest in the field of inorganic medicinal chemistry had a large increase
after the serendipitous discovery of the cytotoxic activity of cisplatin by Rosenberg at the
end of 1960s [1]. Since then, cisplatin has entered clinical practice and become one of
the most common treatments for solid tumors. Unfortunately, the use of cisplatin and its
derivatives is associated with undesired side effects, such as general toxicity and intrinsic
and acquired drug-resistance [2]. For these reasons, alternative metallodrugs based on non-
Pt metals have been synthetized, characterized and tested for biological activity in recent
years [3–5]. Although, initially, DNA seemed the exclusive target for metallodrugs [6],
successive studies have revealed that various metabolites, peptides and proteins have a
central role in the recognition, transport and mechanism of action of these compounds [7–9].
Thus, a deeper understanding of the molecular bases of the interaction of metallodrugs
with these molecules is needed.

The aim of this Special Issue was to collect computational and experimental data on the
biological activity of well-established and novel metallodrugs, in addition to information on
the interactions of metals and metal-based drugs with metabolites, nucleic acids, peptides
and proteins. Herein, the 11 original articles published in this Special Issue are summarized
and discussed in the frame of recent advances in the field.

Four manuscripts submitted for this Special Issue report new data on the cytotoxic and
potential antitumor actions of Pt(II), Fe(III), Cu(II), Zn(II) and Ir(III) compounds [10–13].

Annunziata et al. describe the synthesis, characterization and cytotoxic activity of
square-planar cationic Pt(II) complexes containing glucoconjugated triazole ligands [10].
The results obtained with the newly synthetized compounds were compared to those
found using parent five-coordinate (5C) complexes bearing the same triazole ligands [14].
The square-planar species were more stable and less cytotoxic than the corresponding
5C compounds, but they exhibited a certain selectivity. These results suggest that the
stability of Pt compounds is important for preserving their performance as cytotoxic agents,
and support the hypothesis that coordinative saturation can be a point in favor of their
biological action [15].

In the paper by Marchetti and coworkers, the in vitro anticancer activity of piano stool
mononuclear and binuclear Ir(III) complexes based on the pentamethylcyclopentadienyl
ligand (Cp*) was evaluated [11]. Various compounds were synthetized, characterized and
assessed for their cytotoxicity against six human and rodent cancer cell lines. The results
of the study indicated that the 2-phenylpyridyl (PhPy) mononuclear derivatives [Ir(η5-
C5Me4H)(kN,kCPhPy)Cl] and [Ir(η5-C5Me4(4-C6H4F))(kN,kCPhPy)Cl] were the most active
molecules among those under investigation. They showed good selectivity, were inactive
towards healthy cells, and had a triple effect on cancer cells. Their cytotoxic activity was
reached through proliferation inhibition, apoptosis activation and senescence induction.
This latter effect is significant to note, since it is rarely observed for organoiridium complexes.

Verreault and coworkers investigated the cytotoxic activity of six iron-based ferrocifens
against 15 glioblastoma patient-derived cell lines. The authors found that the studied
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molecules showed an IC50 value ranging from nanomolar to micromolar [12]. The results
provide new information on the mechanism of action of ferrocifens, and indicate that
differences in the chemical structures of these molecules significantly alter their behavior
against brain cancer.

Klein and coworkers extensively characterized three complexes of Fe(III), Cu(II) and
Zn(II) bearing the redox active, non-innocent ligand opo (opo = 9-oxido-phenalenone)
by 1H nuclear magnetic resonance, electron paramagnetic resonance, UV-vis absorption
spectroscopy and electrochemical analysis [13]. They assessed their stability in different
organic solvents and tested their cytotoxic activity. They found that the compounds
showed antiproliferative activity against colon and breast cancer cell lines in the micromolar
range [13].

The work by Szefler et al. presents a computational study on the affinity of carboplatin
to B vitamins, aiming to establish if the vitamins—as components of beet and carrot juice—
could possibly lead to a reduction in the efficacy of this drug. Their data indicated that
carboplatin can bind vitamins B3 and B6, and their computational prediction was also
verified by experimental data [16].

Hemphill and coworkers investigated the potential cellular and molecular targets of a
trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine [17],
which inhibits the protozoan parasites Toxoplasma gondii and Trypanosoma brucei. Trans-
mission electron microscopy (TEM) images revealed structural alterations of parasite
mitochondria after a few hours’ exposure to the drug. Furthermore, Ru complex molecular
targets were analyzed by differential affinity chromatography coupled to shotgun–mass
spectrometry, and a mitochondrial ATP-synthase subunit was identified as the main Ru
complex target. Altogether, these results demonstrated that the trithiolato-bridged arene
ruthenium complex can interfere with key steps of cellular metabolism.

The use of dinuclear trithiolato-bridged arene ruthenium complexes as drugs in vivo
is limited by their scarce solubility in water. An attempt to overcome this limitation and
increase their selectivity for cancer cells was carried out by encapsulating the trithiolato-
bridged arene ruthenium complex Diruthenium-1 within a horse spleen apo-ferritin (hsAFt)
nanocage [18]. hsAFt was also used to encapsulate Au, Pt, Ru and heterobimetallic com-
pounds [19].

The same approach was also used to encapsulate arsenoplatin-1 (AP-1) within hsAFt [20].
AP-1 is a dual-action anticancer metallodrug with a promising pharmacological profile that
features the simultaneous presence of a cisplatin-like center and an arsenite center [21,22]. The
adduct formed upon the encapsulation of AP-1 within hsAFt was structurally characterized
(Figure 1A): AP-1 binds the side chain of His49 upon the release of the chloride ligand
(Figure 1B). The adduct was less toxic than the free drug, but more selective, since the
concentration needed to kill cancer cells is half that needed to kill immortalized cells [20].

Structural data have been also collected on adducts formed upon the reaction of
a model protein hen egg white lysozyme with the paddlewheel dirhodium tetraacetate
complex (Rh2(act)4, act = acetate) under different experimental conditions [23]. This
compound exhibited in vivo anticancer activity against Ehrlich ascites, L1210 tumors,
sarcoma 180 and P388 leukemia [24–26]. The structures revealed that Rh2(act)4 degrades
under the investigated conditions, at a variance with that observed upon the reaction of the
same compounds with other proteins [27]. Dimeric Rh-Rh units and monomeric fragments
mainly bind the protein close to His, Asp and Lys side chains. The work, which describes
rare examples of structures of Rh/protein adducts [28], demonstrates that Ru2(act)4 reacts
with lysozyme differently from the analogous Ru2(act)4 complex [29] and from RhCl3 [30].

Moreover, the interaction of metal ions and metal complexes with peptides is also
distinctly important. Three papers in the Special Issue report studies based on metals or
metal compounds and peptide recognition processes.
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Figure 1. Cartoon representation of the overall structure of the hsAFt nanocage (A) and details of
AP-1 binding site (B). An AP-1 moiety binds to the ND1 atom of His49. In panel (B), the 2Fo-Fc
electron density map is colored in blue and contoured at 0.5σ.

D. Marasco and coworkers studied the possible use of three Pt(II) compounds (bearing
1, 10-phenathroline, 2, 2′:6′, 2′ ′-terpyridine (terpy) and 2, 2′-bipyridine) as inhibitors of
the aggregation of the β-amyloid (Aβ) peptide Aβ21–40 [31]. The misfolding of Aβ, its
aggregation, the formation of fibrils and deposition in the brain all play major roles in the
development of Alzheimer’s disease [32]. The investigated compounds inhibited Aβ21–40
aggregation and modulated the peptide disaggregation via the formation of adducts where
the metal center loses chloride ligands. The compound with terpy induced the formation
of soluble monomeric forms of Aβ21–40 and reduced the toxicity of the peptide in human
SH-SY5Y neuroblastoma cells. These results pave the way for the future application of
metal-based drugs in the treatment of neurodegenerative diseases.

La Mendola and coworkers studied the interaction between copper and different
peptides [33,34], including: a peptide derived from the N-terminal domain of Angiogenin
(Ang) [33]; a ribonuclease essential for angiogenesis stimulation [35]; and peptides belong-
ing to the N-terminal domain of nerve growth (NGF) [34], a member of the neurotrophin
family that is essential for neuron survival [36]. They demonstrated that sequence 1–17 of
Ang is involved in copper uptake and that the acetylation of the terminal amino group of
the peptide decreases the intracellular metal level [33]. Since several diseases are charac-
terized by an upregulated Ang expression together with an altered copper metabolism,
these alterations can be used as potential targets for the design and development of specific
therapies [37,38].

Furthermore, the stability constants of copper complex species formed with the dimeric
forms of the sequence 1–15 of NGF have been studied [34]. At a physiological pH, NGF
peptides bind copper ion with a higher affinity than N-terminal peptides of Aβ, and a
lower affinity than that observed for peptides derived from human copper transporter 1
(hCtr1), the protein responsible for copper uptake in neurons. This interaction suggests
NGF as a possible regulator of copper homeostasis in the synaptic space, which has a key
role in the process of memory formation.

Altogether, these new studies show once again the importance of metals in regulating
the activity and function of peptides, and the importance of studying metal compounds
endowed with unique biological properties. The data suggest that the investigations on the
design and development of new metal-based drugs will continue, since new therapeutic
applications of metal complexes can be explored. We hope that, in the near future, we
can gain a better understanding of these mechanisms of action, as well as of the targeting
and activation strategies of these compounds; a deeper knowledge of these aspects will
lead to future generations of metallodrugs with reduced side effects and a wider spectrum
of activity.
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