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Abstract

Introduction: Prolonged bed rest without repositioning can lead to pressure injuries. However, it can be challenging

for caregivers and patients to adhere to repositioning schedules. A device that alerts caregivers when a patient has

remained in the same orientation for too long may reduce the incidence and/or severity of pressure injuries. This paper

proposes a method to detect a person’s orientation in bed using data from load cells placed under the legs of a hospital

grade bed.

Methods: Twenty able-bodied individuals were positioned into one of three orientations (supine, left side-lying, or right

side-lying) either with no support, a pillow, or a wedge, and the head of the bed either raised or lowered. Breathing

pattern characteristics extracted from force data were used to train two machine learning classification systems (Logistic

Regression and Feed Forward Neural Network) and then evaluate for their ability to identify each participant’s orien-

tation using a leave-one-participant-out cross-validation.

Results: The Feed Forward Neural Network yielded the highest orientation prediction accuracy at 94.2%.

Conclusions: The high accuracy of this non-invasive system’s ability to a participant’s position in bed shows potential

for this algorithm to be useful in developing a pressure injury prevention tool.
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Pressure injuries

Pressure injuries (PIs), also known as decubitus ulcers,

pressure ulcers, bed sores, and pressure sores, are a

surprisingly common problem for patients who have

limited mobility,1 particularly for those who are con-

fined to a bed. These individuals are at risk of devel-

oping PIs due to a lack of blood flow to tissues that are

deformed (strained) either by becoming compressed

between the bed and a bony prominence or stretched

from shear. One in four patients across the healthcare

system in Canada will develop a pressure injury,2

the vast majority of which are preventable.3,4

Pressure injuries can have a devastating impact on
patients by reducing quality of life,5 life expectancy,6

as well as increasing morbidity and mortality.7 These
injuries also increase the burden on caregivers,8 and are
costly for the Canadian healthcare system with the
average treatment cost of over $27,000 per pressure
injury.8
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There are two widely used best practices for prevent-
ing and managing PIs:

a. Using specialized support surfaces (mattresses) to
distribute loads more evenly.

b. Frequent repositioning to offload strained tissues.

Specialized support surfaces

Specialized support surfaces are meant to offload tis-
sues by redistributing stresses more evenly over bony
areas. However, the latest Cochrane review found that
there is not enough evidence to conclude that special-
ized surfaces are more effective at preventing pressure
injuries than standard mattresses.9 More importantly,
specialized mattresses cannot replace the need for repo-
sitioning.4 A recent study that attempted to use an air-
inflated viscoelastic foam mattresses to remove the
need for repositioning found that 75% of the partici-
pants needed to be put back on repositioning schedules
because they either got new pressure injuries, (40% of
participants), or their existing pressure injuries got
worse.10

Frequent patient repositioning

Frequent repositioning, which is a commonly accepted
best practice both for prevention and treatment of
PIs,11–13 allows tissues to return to their original shape
to re-establish blood flow that delivers oxygen and
nutrients to previously deformed tissue. Normally,
patients are cycled between three orientations: supine,
left side-lying, and right side-lying. In supine position, it
is recommended that the head of the bed be elevated no
more than 30� (to reduce shear forces acting on tissues
near the coccyx), and that supporting pillows be placed
under the calves to offload the heels.14 Similarly, in side-
lying positions, a pillow should be placed between the
legs to offload the malleoli or reduce contact between
the knees. Pillows or foam wedges are also used to keep
to the patients from rolling onto their backs while in the
side-lying position.

Many sources recommend repositioning patients
every 2 h,11–13 though there appears to be no direct
evidence to support this particular frequency as the
optimal rate of repositioning. In fact, a recent study
was unable to find differences between repositioning
schedules of 2, 3, or 4 h.15 However, Fernie and
Dornan did show that consistently turning patients to
expose their pressure injuries to a placebo treatment for
30min every 2 h saw dramatic reductions in wound
size.16 Still, the recent Cochrane review concludes
that there is no clear evidence to support the effective-
ness of repositioning, but recommends the practice
continue because it is theoretically sound.9

Despite widespread clinical acceptance of the need,
adherence to repositioning schedules remains poor with
adherence rates of 38%–66%.17–23 Difficulty in contin-
uous monitoring of the patient’s position, lack of
reminders/alerts, and reduced staffing ratios have
been suggested as possible reasons for poor adherence
to repositioning protocols7 and the use of automated
prompting systems have been introduced to address
this issue.24

Existing repositioning prompting systems

There are a number of intelligent systems that have
been developed to identify the need for patient reposi-
tioning in bed as a basis for providing prompts to care-
givers.7,25–30 Existing commercially available systems
fall into one of two categories: pressure mats and iner-
tial sensors.

Pressure mats provide a color-coded real-time visu-
alization of the pressure distribution under a patient
without disruption to the patient.21 A number of com-
panies market these pressure mats: Wellsense, Tekscan,
and XSensor. The findings of studies using these devi-
ces are mixed. Studies demonstrated that pressure mats
reduced hospital-acquired pressure injuries,29

decreased the amount of time between patient
turns21,30 and promoted skin inspection of high-risk
areas30 while one study found no benefit.31

Inertial sensors are adhered to an individual’s chest
or embedded into their clothing to wirelessly monitor a
patient’s position and movement. There are two brands
of inertial sensors for pressure injury management that
we are aware of: Leaf (Leaf Healthcare, Pleasanton,
CA) and MovinSense (Kinematix, Porto, Portugal).
Leaf is a single use device while MovinSense allows
reuse. In the case of the Leaf system, healthcare pro-
viders are given color-coded output that counts down
to a scheduled turn and provides real-time patient posi-
tion. This system was shown to increase adherence with
hospital turn protocols from 44% to 98%.24 The
MovinSense system has been used by researchers to
compare how often patients are repositioned by nurs-
ing staff and how often they move spontaneously.32

Limitations of existing systems

Pressure mats are expensive, (�$10,000), require stor-
age space when not in use and have the potential to
spread infection, particularly if a pressure injury is
already present. Caregivers must ensure that disinfect-
ing procedures are followed diligently.

Similarly, tissue damage can occur if the patient rolls
onto a body worn inertial sensor or from adhesives
used to hold the sensors on the patient’s skin, which
can cause skin tears for those with fragile skin. In fact,
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the risk of skin tears and sensitivity to the adhesive

dressings used to attach the sensors were exclusion cri-
teria in a study that investigated the need for reposi-

tioning among those at highest risk of developing
pressure injury.32 Other shortcomings include the

need for recurring costs associated with single-use sen-
sors (purchase, transport, storage, and disposal), and

the need for patient compliance with wearable devices.

Monitoring patients using load cells

The present work attempts to overcome the limitations
above by developing a system based on a set of four

load cells placed under the legs of the patient’s bed.

With this design, the device does not come into direct
contact with the patient, which minimizes demands on

healthcare providers, and would likely cost less to pur-
chase, install, and maintain. This project builds on the

work of Beattie et al.27 and Duvall et al.,26,27 who have
investigated similar systems.

Beattie et al.27 used their system to determine the
poses of healthy individuals in bed for monitoring

sleep. In particular, they demonstrated that small

cyclic changes in the center of mass of the bed-patient
system can be seen with each inhalation/exhalation

cycle. The excursion of the center of mass over each
cycle traces an ellipsoid with a principal axis that

changes its angle relative to the longitudinal axis of
the bed as the patient changes poses. The authors dem-

onstrated this change in angle can be used to detect the
patient’s orientation with 83% accuracy.27 Duvall

et al.26 used a similar load cell-based system to detect
and classify four-patient movements in bed (rolls, turns

in place, extremity movements, and assisted turns).

They found a machine learning K-nearest neighbor
classification system was able to classify the four move-

ments with 94.2% accuracy.26

The current study builds on this past work by com-

bining the center of mass movement measurement from
Beattie et al.27 with the use of machine learning classi-

fication to categorize a simulated mobility-impaired
patient’s orientation in bed as either supine, left side-

lying, or right side-lying. In particular, this project

focused on the use of Logistic Regression and Feed
Forward Neural Network predictive models, which

are the most widely used models in medical domains
for diagnostic and prognostic tasks.33 Classifiers based

on these approaches can be improved incrementally if
they incorporate new patient data into their models to
customize the classifier for a particular user. Our ulti-
mate goal is to develop a prompting system that can
detect when a patient needs to be repositioned. In this
context, we envision an initial calibration period could
be used to tune the base classifier model to improve
accuracy for each patient using incremental learning.34

Objective

To train and evaluate machine learning classifiers using
Logistic Regression and Feed ForwardNeural Network
(with and without incremental learning), using bed reac-
tion forces to categorize the orientation of participants
as supine, left side-lying lying, or right side-lying.

Methods

Participants

A convenience sample of 20 healthy participants
(female: 12 and male: 8) were recruited from Toronto
Rehabilitation Institute, University Health Network
(TRI-UHN). The study protocol received approval
from the UHN Research Ethics Board and all partic-
ipants provided informed consent. A summary of
demographic characteristics of our participants is
shown in Table 1.

Instrumentation

All data were collected from patients lying on one of
two different hospital beds: Spirit Select (n¼ 12,
Carroll Hospital Group, Kalamazoo, MI) and
Resident (n¼ 8, Hill-Rom, Chicago, IL). Single axis
load cells were placed under each of the four wheels
of the hospital bed frame (Figure 1). Each load cell was
comprised of four load sensors (model DLC902-30KG-
HB, Hunan Detail Sensing Technology, Changsha,
Hunan, China) arranged to create a full Wheatstone
bridge circuit. Each sensor had a resolution of 1.8 g
and measures remained within 0.2% of the full-scale
value. The load cells were connected to a signal condi-
tioner (GEN 5, AMTI, Watertown, MA) for amplifi-
cation, filtering, and analog to digital conversion. The
signal conditioner was configured for 5.0 VDC excita-
tion and a gain of 500 for each channel. NetForce

Table 1. Demographics characteristics of the 20 participants recruited for this study (waist and hip measurements are of
circumference).

Height (cm) Weight (kg) BMI (kg/m2) Waist (cm) Hip (cm) Age (years)

Mean 169 67.8 23.5 80.3 98 31

Standard deviation 9.2 15.7 3.8 11.5 8.4 15.2

Wong et al. 3



software (version 3.5.2, AMTI, Watertown, MA) run-

ning on a laptop PC (Thinkpad T520, Lenovo, Hong

Kong, China, 2.5GHz Intel Core i5 CPU and 4GB of

RAM) was used to collect the load cell data at 50Hz

with 16-bit resolution. The sampling frequency was set

to 50Hz to allow us to capture changes in load cell

signals resulting from respiration (frequency response

of 0.1–0.5Hz) and cardiac activity (frequency response

of 0.5–20Hz)35 though we ultimately focused on the

respiration signals only.

Data collection

Each participant, wearing regular clothing, was

instructed to lie comfortably in the bed and refrain

from moving (acting as a mobility-limited patient) or

speaking. Participants were encouraged to stay relaxed

and were allowed to fall asleep if they wished. A

member of the research team played the role of a care-

giver actor and positioned the participant through a

sequence of unique poses (shown in Figure 2) typically

used with mobility-limited patient populations. The

first four participants were positioned in seven poses

(Figure 2(a) to (g)) while the remaining 16 participants

adopted all 12 poses shown in Figure 2. These positions

were selected after reviewing best practice guidelines14

and following discussions with nursing and physiother-

apy staff in a rehabilitation hospital (TRI-UHN). Each

position consisted of a different combination of three

variables:

• Angle of the head of the bed (flat or elevated to 30�).
• Patient position category (supine, right side-lying,

left side-lying).
• Use of a positioning device in the side-lying position

(no device, 30� wedge, or pillow).

Participants were asked to stay in each pose for

approximately 3 min. For the side-lying pillow sup-

ported position, participants were turned onto their

sides and a folded pillow was placed behind them to

support the torso and pelvis. Participants were then

rolled back onto the folded pillow. For the wedge

(model 554026, Skil-Care, Yonkers, NY) supported

side-lying positions, participants were turned onto

their sides, the wedge was placed such that it supported

the torso and pelvis and the participant was rolled back

onto the wedge.
For the first four participants, the poses involving

raising the head of the bed to 30� were omitted. The

remaining 16 participants were positioned into all

12 poses.

Data processing

Load cell signals were exported from Netforce and
processed offline using MATLAB R2016b
(Mathworks Inc. Natick, MA). The data were manu-
ally segmented into trials by removing sections where
the participants were changing positions.

Next, the center of mass of the bed-patient system
was calculated using equations (1) and (2) below where
CoMx and CoMy refer to the center of mass in the x
(parallel to the short axis of the bed) and y (parallel to
the long axis of the bed) directions, respectively
(Figure 1).

CoM x ¼ w

2
� LHþ LF�RH�RF

LHþ LFþRHþRF
(1)

CoM y ¼ l

2
� LHþRH� LF�RF

LHþ LFþRHþRF
(2)

where LH and RH correspond to the vertical forces
measured by left and right sensors at the head of the
bed respectively, LF and RF corresponds to the

Figure 1. Schematic depicting the four load cells placed under
the bed: LH (left head), LF (left foot), RH (right head), RF (right
foot), and how the signals from the system are collected, proc-
essed, and analyzed. The distances between the load cells are
labeled as w (width) and l (length), and the coordinate axis is
shown.
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vertical forces measures by the left and right sensors at
the foot of the bed respectively, and l and w refer to the
distances between the load cells.

To isolate the changes in the CoM signals associated
with respiration, CoM_x and CoM_y signals were low
pass filtered using a fifth order Chebyshev Type II filter
(0.5Hz passband frequency, 0.9Hz stopband frequency,
and 30dB stopband attenuation). This filter was applied
using MATLAB’s filtfilt function (ensuring zero-phase
shift) to obtain CoM_resp_x and CoM_resp_y.

The times when maxima (tmax) and minima (tmin)
occurred in the CoM_resp_x and CoM_resp_y signals
were found by finding zero crossings for the first deriv-
ative of each signal. These times correspond with the
end of each exhalation and inhalation respectively.27

The angle of the principal axis of the ellipsoid traced
by the resultant CoM_resp signal relative to the posi-
tive x axis (positive angle measured clockwise) was cal-
culated using equation (3) for each tmax and
subsequent tmin.

CoM resp ANG ¼ arctan
CoM resp yðtmaxÞ � CoM resp yðtminÞ
CoM resp xðtmaxÞ � CoM resp xðtminÞ

�
�
�
�

�
�
�
�

(3)

Finally, we also isolated components of the signal
that captured changes resulting from the cardiac cycle
(rmsPulse). MATLAB’s filtfilt function was used to
bandpass filter the sum of the LH and RH signals
using an equiripple finite impulse response filter
(0.5Hz lower stopband frequency, 0.75Hz lower pass-
band frequency, 1.5Hz upper passband frequency,
1.75Hz upper stopband frequency, passband ripple of
1, and 40 dB stopband attenuations).

Twelve features were extracted from the signals
above (shown in Table 2). Each data point used for

training/testing our machine learning classifier was

the average of a 45 s moving window with a new

value computed by shifting the window by 15 s. Since

each pose was maintained for approximately 3 min,

roughly 10 data points were calculated for each pose

with each participant. In order to avoid overfitting

given the small number of observations, each of the

12 poses shown in Figure 2 were labeled as either

right side-lying, left side-lying, or supine. The poses

shown in Figure 2(a) and (h) were labeled as supine;

Figure 2(b), (d), (f), (i) and (k) were labeled as right-

side-lying; Figure 2(c), (e), (g), (j) and (l) were labeled

as left side-lying. This data were used to train a series of

machine learning classifier models.

Data analysis

Logistic Regression and Feed Forward Neural

Network classifiers were implemented using the

twelve extracted features. Feature selection was

informed by Beattie et al.’s work27 as well as our own

series of pilot investigations. A leave-one-participant-

out cross validation was done to evaluate the accuracy

of each classifier model where at each iteration, one

subject’s entire data were left out of the training set

and used as the test sequence to measure the accuracy

of the classifier. To evaluate the potential for improved

performance of the classification model to adapt to the

unseen participant, an incremental learning approach

was used. Using this approach, the machine learning

classifier was trained using a percentage (c, with

c¼ 0%, 10%, 20%, or 30%) of the left-out partici-

pant’s data. In other words, c¼ 30% indicates that

30% of the left-out participant’s data were used for

retraining the model and the remaining 70% was

used only for accuracy testing. This incremental

Table 2. The 12 features extracted from the load cell signals that were used to train the machine learning classifiers to predict the
participant’s body orientation.

Feature Description

meanCoM_x The mean of CoM_x

meanCoM_y The mean of CoM_y

ratio_meanCoM The quotient of meanCoM_y divided by meanCoM_x

stdCoM_x The standard deviation of CoM_x

stdCoM_y The standard deviation of CoM_y

ratio_stdCoM The quotient of stdCoM_y divided by stdCoM_x

CoM_resp_ANG COM angle during inhalation phase only, averaged for all occurrences

stdCoM_resp_ANG Standard deviation of CoM_resp_ANG

rmsCoM_resp_x The root mean square of the x-component of CoM_resp during both inhale and

exhale phases, normalized to the 97th percentile

rmsCoM_resp_y The root mean square of the y-component of CoM_resp during both inhale and

exhalation phases, normalized to the 97th percentile

ratio_rmsCoM_resp The quotient of rmsCoM_resp_y divided by rmsCoM_resp_x

rmsPulse The root mean square of the load cell signals filtered to capture changes resulting from the cardiac cycle

Wong et al. 5



learning approach simulates the potential benefits of a

calibration protocol that could be undertaken with

each new patient user.
The classifiers were evaluated and compared using a

nested cross validation procedure, where an inner cross

validation loop was used for hyper-parameter tuning

and an outer loop was used to measure the accuracy

of the classifier on the test sequence. The machine

learning classifier was trained using Keras with a

Tensorflow backend. The hyper-parameters were

found via a Gaussian-process optimization toolbox

GPyOpt36 version 1.2.0 on the validation set. To elim-

inate statistical variations arising from the randomness

of parameter estimation and orientation prediction,

each nested cross validation was run 10 times.
Mean relative feature weights were calculated for

each trained classifier along with their respective stan-

dard errors to determine how important each feature

was to each model and if any features should be

removed.

An ANOVA was run to determine if there was a

significant main effect of model and a series of post

hoc Bonferroni-adjusted pairwise comparisons were

done to compare each model to adjacent c values

within each model type. In other words, c¼ 0% was

compared to c¼ 10%, c¼ 10% was compared to

c¼ 20%, and c¼ 20% was compared to c¼ 30%.

Finally, post hoc comparisons were also done to com-

pare between the Feed Forward Neural Network

classifiers and Logistic Regression classifiers for each

c value (0%, 10%, 20%, and 30%).

Results

In total, 4932 observations from 20 participants were

included in the dataset with a mean (SD) of 246.8 (60.1)

observations per participant. Figure 3 shows the angle

created by the primary axis of the ellipsoid created by

the center of mass excursion with each breath

(CoM_resp_ANG, green arrow) for the three

Figure 2. The 12 unique poses that participants were asked to adopt in this study. (a) Supine, flat bed. (b) Right side-lying, flat bed. (c)
Left side-lying, flat bed. (d) Right side-lying with wedge, flat bed. (e) Left side-lying with wedge, flat bed. (f) Right side-lying with pillow,
flat bed. (g) Left side-lying with pillow, flat bed. (h) Supine, head of bed raised 30�. (i) Right side-lying with wedge, head of bed raised
30�. (j) Left side-lying with wedge, head of bed raised 30�. (k) Right side-lying with pillow, head of bed raised 30�. (l) Left side-lying with
pillow, head of bed raised 30�.
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orientations categorized in this study, for one represen-
tative participant.

The overall accuracy of the eight classifier models
and the performance of all eight combinations of the
machine learning classification system ranged between
72.9% and 94.2% (shown in Figure 4). There was a
significant main effect of the model (F(2.865,
54.427)¼ 35.148, p< 0.0005) and post hoc comparisons
showed that the Feed Forward Neural Network

classifier models significantly outperformed the
Logistic Regression models for the same c value.
Comparisons within the Logistic Regression models
found significant differences between the models with
c¼ 0% and c¼ 10%. Similarly, for the Feed Forward
Neural Network models, the classifier with c¼ 0% was
found to be significantly different from c¼ 10% and
the c¼ 10% model was significantly different from
the c¼ 20% model. The confusion matrices for the

Figure 3. Representative samples of the resultant center of mass excursion (CoM_resp, in blue) and the corresponding angle the
primary axis of the ellipsoid created by the centre of mass excursion with each breath (CoM_resp_ANG, green arrow) for the three
orientations categorized in this study.

Figure 4. Classification accuracy of Feed Forward Neural Network (FFNN) and Logistic Regression (LR) classifier models evaluated
using a leave-one-participant-out cross-validation where c represents the percentage of the left-out participant’s data that was used
for incremental learning.

Wong et al. 7



Logistic Regression and Feed Forward Neural
Network classifiers are displayed in Tables 3 and 4,
respectively.

Figures 5 and 6 show the mean relative feature
weights for the Logistic Regression and Feed Forward
Neural Network classifier models, respectively.

Both figures include error bars showing standard error
of the mean.

Discussion

Figure 4 shows that the Feed Forward Neural Network
models consistently outperformed the Logistic
Regression models for each c value. We suspect this
difference is likely because our computed features
have non-linear characteristics and a Feed Forward
Neural Network is better able to handle this non-
linearity. Although a Feed Forward Neural Network
model without a hidden layer is identical to Logistic
Regression model with a sigmoid activation function,37

the Feed Forward Neural Network is more flexible
compared with Logistic Regression due to the non-
linear input functions and the use of a non-linear deci-
sion boundaries.33

We also found that classifier models with more of
the left-out-participant’s data used for incremental
learning tended to perform better in general although
there was no statistical significance beyond c¼ 10% for
the Logistic Regression models and no significant dif-
ference beyond c¼ 20% for the Feed Forward Neural
Network classifier models. This means that it will likely
be beneficial to design our repositioning prompting
system to include a classifier model to be further refined
for the patient by using incremental learning to
improve prediction accuracy during a calibration
period.

Our range of system performance (72.9%–94.2%)
agrees well with the 83% average accuracy achieved
by Beattie et al.27 using K-means classification. A key
difference in Beattie et al.’s27 protocol may be that
participants were able to position themselves in the
two side-lying orientations while our participants
were posed by a researcher. We expect that our use
of pillows or wedges commonly used in a clinical envi-
ronment made detection harder because these position-
ing aids resulted in side-lying poses that were closer to
supine poses. This reasoning may explain why the
Logistic Regression with c¼ 0% under our protocol
scored lower than Beattie’s K-means classifier.

Although Duvall et al.26 focused on detecting the
different types of movement as opposed to different
patient poses as in the present work, it is an encourag-
ing coincidence that their system accuracy was identical
to our best performing classifier model at 94.2%. This
suggests that a parallel implementation of movement-
and orientation-based detection could result in a
system with even higher accuracy.

The confusion matrices in Tables 3 and 4 show the
largest errors tended to be the result of misclassifica-
tions of right side-lying as supine, and vice versa.
Looking at Figures 3, 5, and 6, we may be able to

Table 3. Confusion matrices showing classification accuracies
(expressed as percentages) for Logistic Regression (LR) models
evaluated using a leave-one-participant-out cross-validation
where c represents the percentage of the left-out participant’s
data that was used for incremental learning.

Actual left Actual supine Actual right

(a) LR: c ¼ 0%

Classified as left 83.4 16.1 7.5

Classified as supine 12.0 65.5 19.4

Classified as right 5.4 20.9 69.8

(b) LR: c ¼ 10%

Classified as left 91.4 11.1 4.2

Classified as supine 7.4 79.4 10.7

Classified as right 1.9 12.0 81.9

(c) LR: c ¼ 20%

Classified as left 90.4 7.8 3.7

Classified as supine 8.6 83.6 10.5

Classified as right 1.7 11.2 82.5

(d) LR: c ¼ 30%

Classified as left 91.5 6.7 3.3

Classified as supine 7.8 85.7 8.5

Classified as right 1.4 10.0 85.1

(a) c¼ 0%, (b) c¼ 10%, (c) c¼ 20%, and (d) c¼ 30%.

Table 4. Confusion matrices showing classification accuracies
(expressed as percentages) for Feed Forward Neural Network
(FFNN) models evaluated using a leave-one-participant-out
cross-validation where c represents the percentage of the left-
out participant’s data that was used for incremental learning.

Actual left Actual supine Actual right

(a) FFNN: c ¼ 0%

Classified as left 83.5 4.6 2.3

Classified as supine 14.1 87.6 25.7

Classified as right 3.0 10.3 68.8

(b) FFNN: c ¼ 10%

Classified as left 88.3 2.3 2.8

Classified as supine 10.2 92.4 11.5

Classified as right 2.1 7.8 82.4

(c) FFNN: c ¼ 20%

Classified as left 94.5 3.1 0.5

Classified as supine 5.5 94.9 8.7

Classified as right 0.8 4.6 87.5

(d) FFNN: c ¼ 30%

Classified as left 95.3 1.4 1.3

Classified as supine 4.0 97.0 5.4

Classified as right 1.3 4.1 90.2

(a) c¼ 0%, (b) c¼ 10%, (c) c¼ 20%, and (d) c¼ 30%.
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determine the reason for difficulty in separating these
two orientations. Figures 5 and 6 show that the most
discriminating feature across all of our classifier models
was CoM_resp_ANG. Figure 3 shows the ellipsoids cre-
ated by the center of mass excursion with each breath.
The ellipsoids are more similar between right side-lying
and supine orientations than between other pairs of
orientations. This asymmetry may be caused by differ-
ences in the relative sizes of the right and left lungs (the
right lung being larger than the left). This finding high-
lights the need for future work to consider the effect of

patient lung capacity on accuracy of the system to

determine its potential to be used with our target

patient population. Figures 5 and 6 also demonstrate

that there are no obvious features that should be

removed from our feature set as none of them stand

out as having particularly low feature weights.

Design of a prompting system

Our ultimate goal is to develop a prompting system

that can alert a caregiver when a patient needs to be

Figure 5. Average feature weights for Logistic Regression classifier models (error bars show standard error of the mean).

Figure 6. Average feature weights for Feed Forward Neural Network classifier models (error bars show standard error of
the mean).
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repositioned because he or she has remained in the
same position or orientation (supine, left side-lying or
right side-lying) for too long. We envision this system
will consist of four load cells under the patient’s bed
legs connected to a base station placed on a bedside
table that is able to process the load cell data in real-
time using a Feed Forward Neural Network classifier
that has been trained on data from a large number of
mobility-limited patients.

We envision developing a mini PC with touchscreen
user interface that will be incorporated into our exist-
ing system to prompt the caregiver via text message or
audio prompt, when a mobility-limited patient in the
home requires repositioning. We also envision the
system sending alerts to the nursing station for patients
in the institutional environment. The interface may
include a recommendation for the next pose the patient
should be put into at each prompt based on the
patient’s condition and past poses.

Based on our findings, our patient repositioning
prompting tool will include the option to calibrate
the predefined classifier model for each specific user
(patient) using incremental learning. This calibration
process will require a caregiver to manually indicate
the patient’s orientation after the system is installed
under the patient’s bed. This functionality may be
implemented using a three-way selector switch to indi-
cate whether the patient is supine, left side-lying or
right side-lying each time a caregiver enters the
patient’s room. In this study, we found the highest
accuracy with c¼ 30% the equivalent of approximately
75 data points during the calibration period. If we
assume a caregiver can provide a new indication of
patient orientation once every two hours, the calibra-
tion procedure would take just under a week to com-
plete. Future work will compare the costs and benefits
of this calibration procedure in different settings (in the
home vs in long-term care) as well as the durability of
this model in real patients who are at risk of pressure
injury.

Limitations

There are two limitations in this work that should be
noted. The first is that our system assumes the patient is
lying parallel to the long axis of the bed. Deviations
from this position will reduce the accuracy of our sys-
tem’s ability to detect the participant’s orientation.27

Further work is needed to quantify the extent to
which our target population (mobility impaired older
adults at risk of pressure injuries) is likely to be
misaligned.

The dataset used in this study is relatively small in
the context of machine learning training with an aver-
age of approximately 250 observations from each of

20 participants, none of whom were patients at risk

of developing PIs from prolonged bedrest. We expect

the generalizability/performance of our algorithm is

limited by this small dataset and that future work will

include retraining our classifiers with a larger dataset

including our patient population. For instance, we

expect there may be differences in the center of mass

excursions seen with patients with a wider range of lung

capacities and/or body mass indices that were not

taken into consideration with our current healthy par-

ticipant sample. The system will also evaluate perfor-

mance while caregivers come into contact with the bed/

patient as well as any objects such as infusion pumps,

gastrostomy tubes, or tracheostomy/ventilation tubes.

Conclusions

In this investigation, we examined the ability for

Logistic Regression and Feed Forward Neural

Network classifier models to categorize a person’s ori-

entation (supine, left side-lying, or right side-lying) in

bed using data from four load cells placed under the

bed legs. Feed forward Neural Network classifiers per-

formed better than logistic regression classifiers.

Additionally, providing a higher proportion of the

left-out participant’s data for incremental learning led

to higher accuracy predictions. Feed Forward Neural

Network classifier with 30% of the left-out participants

data used for incremental learning was found to have

the highest prediction accuracy of 94.2%.
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