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Modular organization is an emergent property of brain networks, responsible for

shaping communication processes and underpinning brain functioning. Moreover, brain

networks are intrinsically multilayer since their attributes can vary across time, subjects,

frequency, or other domains. Identifying the modular structure in multilayer brain

networks represents a gateway toward a deeper understanding of neural processes

underlying cognition. Electroencephalographic (EEG) signals, thanks to their high

temporal resolution, can give rise to multilayer networks able to follow the dynamics

of brain activity. Despite this potential, the community organization has not yet been

thoroughly investigated in brain networks estimated from EEG. Furthermore, at the state

of the art, there is still no agreement about which algorithm is the most suitable to detect

communities in multilayer brain networks, and a way to test and compare them all under a

variety of conditions is lacking. In this work, we perform a comprehensive analysis of three

algorithms at the state of the art for multilayer community detection (namely, genLouvain,

DynMoga, and FacetNet) as compared with an approach based on the application of a

single-layer clustering algorithm to each slice of the multilayer network. We test their

ability to identify both steady and dynamic modular structures. We statistically evaluate

their performances by means of ad hoc benchmark graphs characterized by properties

covering a broad range of conditions in terms of graph density, number of clusters, noise

level, and number of layers. The results of this simulation study aim to provide guidelines

about the choice of the more appropriate algorithm according to the different properties

of the brain network under examination. Finally, as a proof of concept, we show an

application of the algorithms to real functional brain networks derived from EEG signals

collected at rest with closed and open eyes. The test on real data provided results in

agreement with the conclusions of the simulation study and confirmed the feasibility of

multilayer analysis of EEG-based brain networks in both steady and dynamic conditions.
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INTRODUCTION

The convergence of networks science to neuroscience has opened
the way to the currently well-established network neuroscience
framework (Bassett and Sporns, 2017), an emerging field that
aims to investigate brain organizational principles by means of
networks science tools. This shift was driven by two aspects. On
one side, the development of tools to investigate complex systems
has exploded, as more and more complex data from different
fields (i.e., social, transportation, and biological sciences) become
available (Newman, 2003; Boccaletti et al., 2006). On the other
side, the advancements in neuroimaging techniques led to
consequent improvements in the field of brain connectivity
(Jirsa and McIntosh, 2007), which allows modeling of brain
structure and function as a result of complex networks of
brain areas (nodes) anatomically or functionally interconnected
(Sporns, 2011).

An emergent property of networks representing real complex

systems is the community structure (Porter et al., 2009; Newman,
2012). A specific type of communities is the modules, groups
of nodes densely connected which can be related to specific
functions of the system and widely observed in brain networks
(Meunier et al., 2010; Sporns and Betzel, 2016; Betzel, 2021).
Previous studies pointed out how a modular structure represents
a mean to reveal non-trivial relationships between topological
and functional features of the complex networks (Guimerà and
Amaral, 2005). This property of the brain network is located
halfway between global and local scales, at a mesoscale level,
which is informative of the network’s organization (Betzel and
Bassett, 2017). In fact, while at local and global scales the focus
is on the fundamental units of the network (nodes) and on
the network as a whole, at this intermediate scale, we can
observe how the network’s elements organize themselves, e.g.,
into clusters, to form efficient systems. In this sense, communities
underpin the brain network’s organization: their composition
shapes the communication patterns of the system and promotes
well-balanced and efficient mechanisms of integration and
segregation between brain sub-systems (Betzel et al., 2013;
Sporns, 2013; Wig, 2017).

While most of the studies on community detection in
brain graphs deal with single-layer networks, especially in
electroencephalographic (EEG) applications (Chavez et al., 2010;
Ahmadlou and Adeli, 2011; Zippo et al., 2018), brain networks
are intrinsically multilayer (Hutchison et al., 2013; Muldoon and
Bassett, 2016; De Domenico, 2017). There is no single neuronal
connectivity pattern able to fully represent brain functioning:
rather, brain interactions vary across multiple domains. They
evolve in time or according to the subject’s conditions, the
tasks, or the frequency span (in M/EEG acquisitions). Thus, a
multilayer framework better accounts for the complexity and
diversity of cerebral interactions, resulting suitable to analyze
brain connectivity without either throwing away or combining
different information.

A multilayer network is a sequence of linked single-layer

networks, each one encoding specific attributes of the system.
It allows the integration of multiple channels of connectivity to
provide a more natural description of the brain system, as the

nodes (brain areas) can show different sets of interactions at each
layer. A particularly interesting case for EEG-based analysis is
represented by time-varying multilayer networks. Being able to
track the brain organization during a task or a cognitive state is of
interest because changes, as well as steady states, of the network’s
structure could be physiologically meaningful. For this reason, it
is worthwhile to investigate modular structure in brain networks,
especially those reconstructed from EEG signal, which benefit
from an excellent temporal resolution. Under this perspective,
multilayer analysis of EEG-derived networks can be successfully
used to gain insights in applications that require an accurate
temporal resolution, like epilepsy, vision, or cognition (Zahra
et al., 2017).

Recovering communities in a multilayer network is usually
done algorithmically because of the real networks’ usually big
dimension and complexity. A range of algorithms have been
proposed, spanning along three main approaches:

(i) The first one trivially consists of applying a single-
layer clustering algorithm to each slice of the multilayer
network. Previous comparative analysis (Lancichinetti and
Fortunato, 2009) has highlighted the good performances
of those based on modularity optimization (Girvan and
Newman, 2002; Newman and Girvan, 2004). In particular,
the one introduced in Leicht and Newman (2008), which,
from now on, we will call ModStat (stationary modularity),
showed good performances with directed EEG brain
networks (Puxeddu et al., 2017).

(ii) The second approach is based on the optimization of
a multilayer formulation of modularity (Mucha et al.,
2010). The implementation of this approach is provided
in (Jeub et al., 2019) and is known as genLouvain.
This algorithm represents an extension of the classical
modularity maximization (Blondel et al., 2008), to which
it adds a term that considers the coupling of the nodes
across layers. This term is proportional to a resolution
parameter, ω, which determines the stability of the network
partitioning across the slices.

(iii) The third approach consists of the optimization of a multi-
objective function (Chakrabarti et al., 2006), which aims
to maximize both the accuracy of the partitions at each
layer and the smoothness across all the layers. Two widely
used algorithms reflecting this last approach are DynMoga
(Folino and Pizzuti, 2014) and FacetNet (Lin et al., 2008,
2009). The former is a genetic algorithm that optimizes
modularity and mutual information of consecutive layers.
The latter discovers communities iteratively, taking into
account both the observed data and a probabilistic model
given by all the single community structures.

To date, an agreement on which is the most advantageous
approach is missing. In the recent years, some efforts have been
made on investigating their behavior on multilayer networks.
A conventionally used approach, even in single-layer network
analysis, consists of testing the algorithms on a real network with
a known community structure (Lancichinetti and Fortunato,
2009). In Silva et al. (2016), for example, the authors compared
the behavior of algorithms based on evolutionary clustering on
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a high school network, the MIT Social Evolution dataset and
the Brazilian Congress network, in which the ground truth is
respectively represented by classes, dormitory sectors (Dong
et al., 2011), and political alignment of the congressmen based
on their party. However, this approach might lack generalization,
and the obtained results would be limited to that specific network
properties. Moreover, a brain network in which the community
structure is known a priori does not exist. Hence, the lack
of ground truth for brain communities, together with their
ubiquity, requires the implementation of benchmark networks
with a known community structure and realistic features to
test different community detection algorithms. In Silva et al.
(2016), the authors also tested the algorithms on a synthetic
network. Nevertheless, it is a simple network with few nodes and
three clusters that can hardly be encountered in neuroscience.
In Schmidt et al. (2018), the authors tested two multilayer
clustering approaches on an artificial network with more realistic
properties. However, the test made on a single network, as
previously said, might lack generalization of the results. Other
already existing tools (Lin et al., 2008; Kim and Han, 2009)
are a multilayer version of the Girvan and Newman model
(Girvan and Newman, 2002) and do not allow a deep analysis
of the algorithms, as they constrain most of the parameters
characterizing the network (e.g., number of nodes, number of
clusters, etc.). In Granell et al. (2015), the authors propose a tool
in which a potential user can set some parameters of interest,
such as the number of nodes, number of clusters, and ratio
between intra-cluster and inter-cluster density. However, such
tool does not address some aspects that are pivotal for EEG-based
networks, like the noise level.

The principal aim of this work is to identify the most suitable
approach to recover communities in EEG-based multilayer brain
networks. For this purpose, we aim to perform a comparative
analysis whose results will furnish practical guidelines about the
use of multilayer community detection algorithms in the context
of EEG-derived brain networks. Thus, we introduce a flexible
toolbox able to generate artificial networks with a modular
structure, with manifold features. This tool is a multilayer
extension of the single-layer generator introduced in Puxeddu
et al. (2017). The number of nodes, graph density, number
of clusters, noise level in the community structure (modeled
as a random permutation of a certain number of links), and
percentage of nodes moving from a module to another one
at a given layer can be set by the user. With respect to the
previously described tools, we can also generate networks with
different levels of noise to take into account the false positives and
false negatives resulting from any brain functional connectivity
estimation. In the case of EEG signals, the noise might depend
on different factors, such as physiological/instrumental artifacts
(Fisch, 1999; Riitta Hari and Aina Puce, 2017) and fluctuations
in the EEG activity, or it may arise as a result of the connectivity
estimation methods (Astolfi et al., 2007; He et al., 2019).

Using the proposed benchmark graphs, we performed a
comparative analysis of the different multilayer clustering
algorithms, testing them on graphs generated accounting for
a wide range of network features systematically varied in the
range typical of EEG-based brain networks. Furthermore, here

for the first time we considered two scenarios: one in which
the community structure is stationary across the layers and
one in which it changes dynamically. Both cases are of great
interest in real applications. In the first case, we aim to get
a single partition out of a multilayer network with persistent
organizational features. This is the case of layers associated to
time points of stationary phenomena or to different subjects of
the same category (e.g., healthy subjects or patients) for which
we are interested in using the multilayer approach to extract
enduring features. In the second case, we aim to track mesoscale
organization in multilayer networks underlying non-stationary
phenomena or different clinical cohorts. In both cases (stationary
and evolving community structure), we statistically evaluated the
algorithms’ performances under different conditions by means of
an analysis of variance (ANOVA).

Finally, as a proof of concept, we applied the four approaches
to a brain functional multilayer network estimated from EEG
signals acquired in a healthy subject during resting state at
closed eyes and open eyes. We report the differences between
the community structure subtending the two phases obtained
by using the investigated algorithms, with the aim to test their
accordance with the guidelines provided by the simulation
studies. This application to real data has the purpose of validating
the results of the simulation studies in a well-known and
studied condition in order to check the applicability of multilayer
community detection tools to EEG-based brain networks.

METHODS

Benchmark Network Generation
The toolbox that we developed generates pseudo-random
multilayer networks with a defined community structure and
consists of an algorithm implemented in Matlab environment
(release 2017b). A preliminary version of the toolbox was
reported in Puxeddu et al. (2019). This toolbox allows
a potential user to create networks with either stationary
or evolving community structure with features spanning a
variety of conditions experimentally observable in EEG-based
brain networks. In the following paragraphs, we describe the
implementation of the toolbox for each of the above-mentioned
two cases.

Networks With Stationary Community Structure
The network generated by the toolbox, in this case, presents a
stationary modular structure, in which the composition of the
clusters across the layers does not change. Here the variability
between layers is only due to the noise level, which might make
some links appear or disappear. Figure 1A shows an example
of two layers of a multilayer network generated in this fashion.
As mentioned before, the main advantage of this toolbox is its
flexibility. In fact, the users can set several features which will
characterize the network: number of nodes (N), graph density
(D), number of clusters (CN), the ratio between intra-cluster and
inter-cluster density (dr), the noise level (no), and the number
of layers (nL). Once the set of desired features is selected, the
algorithm proceeds by two main steps:
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FIGURE 1 | Examples of synthetic multilayer networks generated through the toolbox. (A) Two snapshots (t1 and t2 ) of a multilayer network with stationary community

structure. (B) Two snapshots (t1 and t2 ) of a multilayer network with evolving community structure. In the second t2, the nodes are re-ordered to represent clusters on

the main diagonal. (C) Sankey diagram of the network generated in (B).

(a) Creation of a single-layer network (binary and directed)
exploiting the algorithm described in Puxeddu et al. (2017)—
we will use this network as a basis for each layer.

(b) Addition of the percentage of noise (i.e., percentage of links
randomly shifted) set as input to each layer.

With these two steps, we obtain a multilayer network in which
each slice has the same imposed community structure obtained

in (a), and the inter-layer variability is only due to the presence

of noise applied to each network (b). Step (a), in turn, consists of
four stages:

(a.i) Setting of the size of the communities by randomly
choosing CN integers, with the only constraint that their sum
is equal to N.

(a.ii) Wiring of the network by randomly filling an N
× N empty matrix observing the imposed specifics
(about density and ratio between intra-cluster and
inter-cluster density).

(a.iii) Checking the absence of isolated nodes inside the
clusters, and if present, the algorithm rewires the intra-
cluster connections.

(a.iv) Ensuring that the internal degree of each node is
higher than the external degree (with respect to its cluster)
by rewiring.

Networks With Evolving Community Structure
In this second case, we want our toolbox to simulate a
multilayer network with a community structure that changes
node composition across the layers. In this case, the algorithm
in the toolbox also starts generating a first layer (with the same
stages described above), but then it generates the following slice
so that a certain percentage of nodes (pn, set as input by the user)
changes its allegiances to modules. The algorithm acts only on
the connections related to the nodes that change membership,
maintaining the rest of the networks as it was originated at the
beginning. Similarly, it can also increase or decrease the number
of clusters, CN, moving some nodes into a new community
or moving all the nodes belonging to one community in the
remaining ones. In this way, the user can obtain controlled
variations of different entities of the community structure
according to the selected percentage of nodes that must change
cluster (pn) and to the possible creation or disappearance of

Frontiers in Systems Neuroscience | www.frontiersin.org 4 March 2021 | Volume 15 | Article 624183

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Puxeddu et al. Multilayer Community Detection in EEG

communities. Figure 1B reports an example of two layers of
a multilayer network with changing community structure, in
which pn has been set to 30% and the number of clusters increases
with the appearance of a new one (in purple in the figure). We
represent this dynamic community structure through the Sankey
diagram in Figure 1C.

Simulation Studies for the Algorithm
Comparison
Stationary Community Structure
We made a simulation study testing the algorithms on
benchmark networks with a stationary community structure
generated as described in “section Networks With Stationary
Community Structure.” We exploited the tool by systematically
varying the network features represented by the input
parameters. In particular, we explored a range of values for
the parameters according to those experimentally met in
EEG-based functional brain networks:

• N = 60
We selected this value to mimic the 61-channel configuration
typically used in most EEG studies.

• D= [0.10, 0.30]
We simulated sparse networks with two different density levels
in a range usually met with real data.

• CN= [2, 4, 6]
We simulated different parsing of the network to have coarser
as well as finer community structures.

• dr= 2
We generated networks in which the intra-cluster density
is twice with respect to the inter-cluster one. We do this
in order to start from a very convenient condition for
the algorithms that we will gradually deteriorate by adding
different noise percentages.

• no= [10, 25, 50%]
These noise percentages were chosen to reproduce networks
with different levels of module clearness.

• nL= [2, 10, 50, 100]
We consider networks with different numbers of layers to
see if this factor influences the algorithms’ performance.
Indeed we expect multilayer algorithms exploiting a higher
dimensionality to mitigate the noise effect.

Then, we run the four algorithms (genLouvain, ModStat,
DynMoga, and FacetNet). To evaluate the effect of the factors
algorithm, number of clusters, noise level, and number of layers,
we performed a repeated-measure ANOVA using three figures of
merit as dependent variables in order to capture different aspects
of the performance:

I. Accuracy: To evaluate the algorithms’ accuracy, we used the
normalized mutual information (NMI) (Danon et al., 2005).
This is an index borrowed from the field of information
theory and used to estimate the similarity between two
objects. It can range between 0 (completely different objects)
and 1 (identical objects). It has been already employed in
this context to calculate the similarity between two given
partitions that, in our case, are the ones obtained from the

clustering algorithms and the known community structure.
We computed the NMI between these two partitions in each
layer, and thenwe used the average of all these values as index
of accuracy. We will refer to this index as NMIacc.

II. Stability: In networks with stationary community structure,
it is also important to assess how much the clustering
algorithms provide for a stable partition across all the layers.
Thus, we computed the NMI between each layer and the
following one, and we computed the average of these values
to obtain an index of stability.We named this index NMIstab.

III. Global performance. We finally wanted an index
summarizing the global performances of the algorithms,
simultaneously considering accuracy and stability. We
computed this index as the Euclidean distance between
two points, A and B, in the xy plane where the x and y
axes represent, respectively, the values of accuracy and
stability. A is the point [x(acc), y(stab)] associated to the actual
values of accuracy and stability assumed by the algorithm,
and B is the point [1, 1] that represents the optimum
(both stability and accuracy reach their highest score,
which is 1). In this way, the Euclidean distance between
A and B, which we used as index of global performance,
represents the distance of the algorithms’ performance from
the optimal one. An example of this index is shown in
Figure 2B. We will refer to this index as GSind, and it varies
between 0 (optimal performances, A = B) and

√
2 (worst

performances, NMIacc =NMIstab = 0, A is the point [0, 0] in
the xy plane).

Since the algorithms genLouvain and FacetNet depend on
the inter-layer resolution parameters ω and λ, we made two
preliminary analyses exploring the behavior of the algorithms
under different values of these parameters in order to select
the best possible values of ω and λ for the stationary condition
to be used in the comparative analysis. For this purpose, we
performed two more ANOVA tests for repeated measures, one
for genLouvain and one for FacetNet, considering values of
ω and λ in the range [0.1, 10] and [0.1, 1], respectively. The
first study was aimed at evaluating the effect of the factors
ω (levels: 0.1, 0.2, 0.5, 1, 2, 5, 10), cluster number, noise
level, and number of layers on the performance of genLouvain.
Similarly, the second one was meant to evaluate the effect
of λ (levels: 0.1, 0.2, 0.5, 0.7, 0.8, 0.9, 1), cluster number,
noise level, and number of layers on the performance of
FacetNet. The results of these two analyses are detailed in the
Supplementary Material, sections 1 and 2, and have been used
in the main comparative analysis to run the two algorithms
with the appropriate choice of ω and λ according to the
network’s features.

Evolving Community Structure
To generate benchmark networks with dynamic community
structure, we exploited the toolbox in the version introduced
in “section Networks With Evolving Community Structure.”
We generated the networks by setting the input parameters
to the same values reported in “section Stationary Community
Structure,” but here we also included the parameter pn
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FIGURE 2 | Example of dynamic and global indices computation. (A) Dynamic index. Top figure: normalized mutual information computed between the output of the

algorithms genLouvain and FacetNet and the actual community structure of a generated network with 100 layers. Lower left figure: normalized mutual information

from the snapshot in which community structure changes and threshold samples (from which the algorithms go to regime) identified through the dynamic index.

Lower right figure: sign of the first derivative smoothed and threshold samples. (B) The global index is indicated with the dark blue continuous line. A is the point

corresponding to the actual values of NMIacc and NMIstab/Dynind, while B is the point corresponding to the maximum values reachable by the indices.

(percentage of nodes changing allegiance to modules) with the
following values, chosen to simulate progressive variations of the
community composition: 10, 30, 50, 70, and 100%.

The resulting networks present a variation only between the
first and the second half of the layers, while within the two
halves the community structure is stationary, to simulate the
transition between two different tasks or two classes of subjects
(e.g., healthy subjects vs. patients). We run the four algorithms
again, and we performed an ANOVA for repeated measures
using, as dependent variables, three different indices to capture
different aspects of the performances:

I. Accuracy: To evaluate the algorithms’ accuracy, we used
the normalized mutual information (NMIacc) defined as in
“section Stationary Community Structure.”

II. Dynamics: In networks with evolving community structure,
it is also important to assess the rapidity with which
the algorithms recognize the variation of the modules’
composition. Thus, we defined and implemented an index
that points out how much it takes for the algorithms,
in terms of number of layers, to exactly detect the new
structure. The index mathematically identifies the layer
(lthr) from which the NMIacc (Figure 2A, upper panel)—
which decreases in proximity of nL/2, where the community
structure changes—becomes stable and enters a sort of
plateau after the transition (Figure 2A, lower left panel). The
idea is that the incremental ratio (IR) of the NMIacc curve
from nL/2 to nL will be positive until the algorithm goes to
regime and null from that point on. Thus, we computed the
IR, we smoothed it to avoid spurious peaks due to the noise,

and we considered the sign to capture when it becomes zero
(Figure 2A, lower right panel). We find the threshold layer
through the formula:

lthr ∈
[

nL

2
+ 1, nL

]

: =
argmax

lthr







∑lthr
l= nL

2 +1
sign(IRsmoothed)

∑nL
l=lthr+1 sign(IRsmoothed)






(1)

It scans all the layers from nL/2 +1 to nL, and for each
l it computes the ratio between the sum of this function
sign(IRsmoothed) before and after l. Then, it takes as threshold
the lthr to which the maximum of this ratio corresponds.
Ideally, at lthr, the numerator is positive (i.e., before lthr, the
trend of NMIacc is ascendant), and the denominator is equal
to 0 (i.e., after lthr, the trend of NMIacc is stable), so that
the argument is infinite—the maximum possible. Once lthr
is obtained, we normalized it for nL/2 to obtain an index
that varies in the range [0, 1], independently of the values
of nL considered. We will refer to this index as to Dynind.
The lower it is, the fastest are the algorithms in recovering
the structure modification.

III. Global performance: In analogy to the previous analysis,
we computed an index that summarizes the global
performances of the algorithms, considering at the same
time accuracy and dynamics. It is computed as explained in
“section Stationary Community Structure,” but here, instead
of NMIstab, we consider the complement to unity of Dynind.
We will refer to this index as GDind.
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TABLE 1 | Results of the ANOVA test executed for the comparative analysis on networks with stationary community structure and graph density equal to 0.3.

NMIacc NMIstab GSind

dof(b) dof(w) F p dof(b) dof(w) F p dof(b) dof(w) F p

Alg 3 891 5393.2 <10−4 2 594 13096 <10−4 3 891 10549 <10−4

No 2 594 9110.4 <10−4 2 594 7458.2 <10−4 2 594 9392.2 <10−4

nL 3 891 1481 <10−4 3 891 129.87 <10−4 3 891 1427.1 <10−4

CN 2 297 473.31 <10−4 2 297 163.81 <10−4 2 297 420.19 <10−4

Alg*no 6 1782 844.84 <10−4 4 1188 2544.1 <10−4 6 1782 1752.3 <10−4

Alg*nL 9 2673 476.30 <10−4 6 1782 54.923 <10−4 9 2673 392.78 <10−4

Alg*CN 6 891 75.997 <10−4 4 594 580.84 <10−4 6 891 28.266 <10−4

Alg*no*nL 18 5346 163.8 <10−4 12 3564 5.6138 <10−4 18 5346 143.14 <10−4

Alg*no*CN 12 1782 115.89 <10−4 8 1188 174.06 <10−4 12 1782 170.10 <10−4

Alg*nL*CN 18 2673 56.64 <10−4 12 1782 14.881 <10−4 18 2673 51.239 <10−4

Alg*no*nL*CN 36 5346 36.189 <10−4 24 3564 3.1725 <10−4 36 5346 29.976 <10−4

For each considered index (dependent variables of the test) we report the degrees of freedom (dof), F, and p-values relative to single factors and the interactions among them.

In the case of evolving communities also, we performed a
preliminary analysis to determine the optimal setting of the
parameters ω and λ for the algorithms genLouvain and FacetNet
to be used in the comparative analysis. The results of this test can
be found in the Supplementary Material, sections 1 and 2. It is
worth to note that the values of ω and λ selected for the evolving
community structure are different from those resulting from the
study on stationary community structure.

Multilayer Community Detection on Rest
CE/OE EEG Brain Networks
For the purpose of validating the results of the simulation studies,
we tested the algorithms in real EEG brain networks with features
analogous to those investigated in the simulations, relative to a
simple and controlled condition.

EEG data have been recorded and amplified by a commercial
EEG system (BrainAmp, Brainproducts GmbH, Germany) using
61 electrodes (according to the extended 10–20 International
System), with reference attached to the forehead and sampling
frequency of 250Hz, in a healthy subject (female, 33 years old)
during rest with closed eyes (CE) and open eyes (OE). The
subject gave informed consent prior to her participation, and
the experiment was approved by the local ethics committee
before the data acquisition started. Data were acquired at
the Neuroelectrical Imaging and BCI Laboratory at IRCCS
Fondazione Santa Lucia in Rome. The session was composed of
26 trials of 200 s each. In the first 100 s, the subject was asked
to keep her eyes closed (task 1—CE), while in the last 100 s
she was asked to keep her eyes open (task 2—OE). We pre-
processed the data through band-pass filtering (1–45Hz) and
segmentation in 2-s epochs. The data were visually inspected
to exclude the presence of artifacts. For each segment, we
estimated brain functional connectivity through partial directed
coherence (Baccalá and Sameshima, 2001; Astolfi et al., 2006),
a spectral estimator based on Granger causality which provides
an estimation of the network for each frequency point. We then
mediated the estimations in four EEG frequency bands, defined

according to individual alpha frequency (IAF) (Klimesch, 1999)
(IAF = 10Hz), focusing in the alpha range (IAF-2, IAF+2),
as of interest for resting state (Karbowski, 1990; Niedermeyer,
1997; Compston, 2010). We assessed the significance of the
connections through the asymptotic statistics (Takahashi et al.,
2007; Toppi et al., 2016).

For each of the two tasks, we obtained 50 {200 s/[2 s (epoch)
∗ 2 (tasks)]} binary networks of dimension 61 × 61. Then,
we selected nL/2 layers from task 1 (CE) and nL/2 from
task 2 (OE) and concatenated them so as to obtain four
multilayer networks under different conditions of nL, like in the
simulations. The obtained networks were sized 61ch∗61ch∗(2,
10, 50, 100) nL. Finally, we run all the algorithms 100 times
on the four multilayer networks to take into account their
stochastic nature, which implies that theymight provide (slightly)
different partitions even if applied to the same network. In
the simulation studies, this issue was addressed as we perform
an ANOVA test for repeated measures, which implies that for
each combination of the parameters we compute the community
detection several times.

RESULTS

Simulation Studies for Algorithm
Comparison
Algorithm Comparison in Networks With Stationary

Community Structure
In Table 1, we reported the results of the ANOVA comparative
analysis made by exploiting simulated multilayer networks with
stationary community structure and graph density equal to 0.3.
Analogous results have been obtained, setting the graph density
to the lower level, D = 0.1, and this can be found in the
Supplementary Material, section 4.

The related plot of means are reported in Figure 3, where the
performances of the algorithms in terms of accuracy (NMIacc),
stability (NMIstab), and both (GSind) are shown as the number
of clusters (CN), the level of noise (n), and the number of
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layers (nL) changed. For the sake of clarity, in each panel of
Figure 3, we report the performances of the algorithms with
respect to one factor, irrespective of the other two. In the
Supplementary Material, section 3, the same results are reported
extensively, and we can observe algorithm performances for each
combination of the three ANOVA factors.

As for the accuracy (Figure 3, first row), all the algorithms
have performance that is inversely proportional to the level
of noise and directly proportional to the number of clusters
simulated in the network. However, in noisy networks (no
= 50%), genLouvain and FacetNet show an improvement of
accuracy as the number of layers increases, above all if CN
>2. In particular, genLouvain reaches almost the same level
of accuracy in noisy and non-noisy networks, if nL ≥ 10 (see
Supplementary Figure 9). On the contrary, as expected, the
accuracy of ModStat is not affected by the number of layers, as
it considers each slice of the network independently. Compared
with the other algorithms, genLouvain displays a high level of
accuracy in most combinations of noise, cluster number, and
number of layers. The only exceptions are the case of low cluster
number and low noise [CN= 2, no= 10%, nL= (2, 10, 50, 100)]
in whichModStat has higher NMIacc values for every value of nL.

Regarding the analysis of stability (Figure 3, second row),
namely, the algorithms’ capability to recover a stable partition
across the layers of the network, the algorithm with the highest
performance is genLouvain for each combination of the ANOVA
factors. In fact, it always reaches the optimal value of NMIstab
despite the level of noise, number of clusters, and number of
layers. For this reason, in this case, we excluded it from the
ANOVA, as its NMIstab distribution is not normal. On the
contrary, the other algorithms are more sensitive to the ANOVA
factors, especially to the level of noise and the number of clusters.
The algorithmModStat shows high values of NMIstab (close to 1)
in networks with low noise (no = 10%), while its performances
decrease with higher noise levels. Overall, FacetNet displays high
performances, with NMIstab >0.8 for each combination of the
factors, while for DynMoga, the results show NMIstab < 0.6 in
every condition.

The evaluation of the global performances summarizes what
is observed so far (Figure 3, third row).

In general, the results of ANOVA together with Tukey’s
post-hoc tests show all the algorithms having significantly
higher performances in networks with low level of noise and
high number of clusters. Overall, the figures show genLouvain
outperforming the other algorithms.

Algorithm Comparison in Networks With Evolving

Community Structure
In Table 2, we report the results of the comparative analysis
made to test the algorithms onmultilayer networks with evolving
community structure, with density equal to 0.3 and cluster
numbers unchanged. We observed analogous results in networks
with lower density, D = 0.1, and increasing/decreasing cluster
numbers, and we report them in the Supplementary Material,
sections 4 and 5.

In Figure 4, we represent the performances of the algorithms
in terms of accuracy (NMIacc), dynamics (Dynind), and both

(GDind) as a function of the number of clusters (CN), the level
of noise (no), the number of layers (nL), and the percentage of
nodes changing modules (p) change. As in the previous study,
to have more clear and informative representation of the results,
in each panel of Figure 4, we report the performances of the
algorithms with respect to one factor, irrespective of the other
three. In the Supplementary Material, section 3, we reported the
extensive results.

Regarding the accuracy, we show in the first row of Figure 4
the behavior of the algorithms with different levels of noise and
number of layers. With a low level of noise, all the algorithms
show a high accuracy in terms of NMIacc, regardless of the
number of layers, while as the noise increases, there is a loss of
accuracy. However, if nL ≥ 10, both genLouvain and FacetNet
have a significant improvement of accuracy. All the algorithms
are more accurate when applied on networks with CN ≥ 2,
above all if nL ≥ 10. The percentage of nodes that change
allegiance to modules does not substantially affect the accuracy
of the algorithms. However, FacetNet and DynMoga show a
little increase of performances when pn increases (see also
Supplementary Figure 11), meaning that they can easily detect
big changes. Overall, genLouvain has the highest NMIacc values
for each combination of the factors under analysis. The only
exception is when CN = 2 and nL = 2, in which ModStat shows
higher NMIacc values.

As for the evaluation of the algorithm’s dynamic (Figure 4,
second row), we only considered the performances of
genLouvain, DynMoga, and FacetNet. Considering also
ModStat would not be meaningful, as it addresses each layer
independently. Moreover, we considered only values of nL
≥ 2. GenLouvain displays the lowest Dynind values for each
combination of the factors under analysis, no, nL, CN, and
p, meaning that it is the fastest in identifying changes of the
community structure. Overall, the rapidity of the algorithms
is directly proportional to the number of layers and the
number of clusters while being inversely proportional to the
noise level.

Finally, the global index (Figure 4, third row) confirms
what was shown with the previous indices. It suggests that
the factors that have the greatest influence on the algorithms’
performances are the level of noise and the number of layers:
an increase of their value provokes, respectively, a breakdown
and a boost of the performances. The number of clusters
is also proportional to the algorithms’ performances, while
the percentage of nodes that change a community does not
substantially affect their behavior. The most sensitive to the
network’s features is genLouvain, which, in the comparative
analysis, is the outperforming one, while DynMoga is globally the
less sensitive.

The results of ANOVA together with Tukey’s post-hoc
tests show all the algorithms having significantly higher
performances in networks with a low level of noise and a
high number of clusters. In reverse, the factor percentage
of nodes moved (pn) does not dramatically affect the global
performances of the algorithms under analysis, meaning that
the algorithms can detect small as well as big changes in
community structure.
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FIGURE 3 | Plot of means and standard deviations of the three indices used to execute the comparative analysis on networks with stationary community structure.

Each row of the figure corresponds to one index (NMIacc, NMIstab, GSind ). For each index we report three panels where we show the algorithms’ performances with

respect to the Clusters Number (first column), Noise level (second column), and number of network’s layer (third column). Algorithms are identified through a color

code (blue-genLouvain, green-ModStat, red-DynMoga, orange-FacetNet). In each panel we can see how the performance of the algorithms varies according the

values the ANOVA factors and which algorithm reaches highest performances, in terms of accuracy (NMIacc), stability (NMIstab) or both (GSind ). The optimal

performances are indicated though a red dotted line.
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TABLE 2 | Results of the ANOVA test executed for the comparative analysis on networks with evolving community structure and graph density equal to 0.3.

NMIacc Dynind GDind

dof(b) dof(w) F p dof(b) dof(w) F p dof(b) dof(w) F p

Alg 3 2241 122200 <10−4 2 1494 2932.5 <10−4 2 1494 36095 <10−4

No 2 1494 255900 <10−4 2 1494 255.81 <10−4 2 1494 23219 <10−4

nL 3 2241 36813 <10−4 2 1494 2577.4 <10−4 2 1494 6071.1 <10−4

p 4 2988 37.25 <10−4 4 2988 7.81 <10−4 4 2988 16.17 <10−4

CN 2 747 14392 <10−4 2 747 477.02 <10−4 2 747 11828 <10−4

Alg*no 6 4482 18575 <10−4 4 2988 162.4 <10−4 4 2988 347.9 <10−4

Alg*nL 9 6723 12252 <10−4 4 2988 101.44 <10−4 4 2988 946.99 <10−4

Alg*p 12 8964 289.11 <10−4 8 5976 4.32 <10−4 8 5976 6.81 <10−4

Alg*CN 6 2241 425.4 <10−4 4 1494 341.71 <10−4 4 1494 475.52 <10−4

Alg*no*nL 18 13446 4514.8 <10−4 8 5976 7.11 <10−4 8 5976 91.28 <10−4

Alg*no*p 24 17928 46.64 <10−4 16 11952 2.31 0.002 16 11952 5.43 <10−4

Alg*no*CN 12 4482 3301.2 <10−4 8 2988 14.24 <10−4 8 2988 224.63 <10−4

Alg*nL*p 36 26892 33.27 <10−4 16 11952 3.25 <10−4 16 11952 1.19 0.262

Alg*nL*CN 18 6723 856.5 <10−4 8 2988 17.01 <10−4 8 2988 5.56 <10−4

Alg*p*CN 24 8964 308.26 <10−4 16 5976 6.56 <10−4 16 5976 13.88 <10−4

Alg*no*nL*CN*p 144 53784 44.58 <10−4 64 23904 1.41 0.017 64 23904 1.99 <10−4

For each considered index (dependent variables of the test) we report the degrees of freedom (dof), F, and p-values relative to single factors and the interactions among them. Statistically

non significant values have been reported with italic characters.

Multilayer Community Detection on Rest
CE/OE EEG Brain Networks
In this section, we present the results of the application of the
four algorithms under analysis to EEG networks subtending CE
and OE resting state in alpha band. In Figure 5, we report the
trend of the normalized mutual information computed between
the output of the algorithms across consecutive layers for all
the estimated networks with nL = (2, 10, 50, 100). The black
dashed line divides the CE state from the OE. Ideally, one would
expect high and stable values of NMI in the two halves and a
collapse of the index near to the dashed line. That would mean
that the algorithm is able to extract two steady partitions in the
two conditions which are different from each other and to detect
the transition. In the case of nL = 2 instead, a value of NMI
inferior to 1 is desirable, hopefully low. In line with the simulation
study, genLouvain, with the resolution parameter set through
the guidelines given by the preliminary analysis, is the algorithm
that better approximates this behavior. Both genLouvain and
FacetNet show higher stability and maximum discriminability
between the two conditions when the number of layers increases.
As also proven in the previous section, between the two, FacetNet
results to be slower in detecting the change between the two tasks,
and within each task, it is less stable and thus less accurate in
detecting the community structure during CE or OE. DynMoga
shows a mild increment of performance with a higher number of
layers, even if they are lower compared to the other algorithms.
Conversely, ModStat behaves independently from the number of
layers, as it works on a single-layer level.

We finally show in Figure 6A how these multilayer networks
are parsed in clusters by genLouvain, which is the most
advisable algorithm after our simulations. The figure reports, as
representative, one of the 100 repetitions computed which, as

indicated by the narrow confidence interval in Figure 5, are very
much similar among them. The partitions are consistent across
all the levels of nL, and in Figures 6B,C, we show the partitioning
of the network for each condition, CE andOE in the case in which
nL = 50. During the CE phase, there is a cluster that involves
the occipital electrodes and two clusters composed by electrodes
from the left and the right hemisphere, respectively. During
the OE phase, the first cluster is dismembered between the left
and the right hemispheres, and one can observe the modules
becoming more hemisphere specific. Such results are observed
both in the EEG network made of nL = 2 and in the ones with
nL > 2, with different ω-values properly chosen according to the
preliminary analysis (Supplementary Material, section 1).

DISCUSSION

This work aims to provide guidelines for the use of multilayer
algorithms of community detection on EEG-based brain
multilayer networks. For this purpose, we tested and compared
them on an artificial dataset that spans a wide range of
network features.

We obtained our dataset by defining and implementing a
tool able to generate pseudo-random multilayer networks with
community structure. Among all the definitions of communities,
we are considering the assortative one, namely, communities
made of groups of nodes densely connected with each other
and poorly connected with the other nodes of the network.
In fact, previous findings have shown that this is a very
plausible way with which nodes organize themselves in brain
networks (Bertolero et al., 2015; Sporns and Betzel, 2016).
With respect to the tools previously available in the literature

Frontiers in Systems Neuroscience | www.frontiersin.org 10 March 2021 | Volume 15 | Article 624183

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Puxeddu et al. Multilayer Community Detection in EEG

FIGURE 4 | Plot of means and standard deviations of the three indices used to execute the comparative analysis on networks with evolving community structure.

Each row of the figure corresponds to one index (NMIacc, Dynind, and GDind). For each index, we report four panels where we show the algorithms’ performances with

respect to the cluster number (first column), noise level (second column), number of network’s layer (third column), and percentage of nodes changing module (fourth

column). Algorithms are identified through a color code (blue—genLouvain, green—ModStat, red—DynMoga, orange—FacetNet). In each panel, we can see how the

performance of the algorithms varies according to the values of the ANOVA factors and which algorithm reaches highest performances in terms of accuracy (NMIacc),

stability (Dynind), or both (GDind). The optimal performances are indicated though a red dotted line.

(Lin et al., 2008; Kim and Han, 2009; Granell et al., 2015),
we conceived this generator so that it can take as input as
many settable parameters as possible; thus, we could be able to
systematically test the algorithm under a variety of conditions
and to evaluate the dependence of the performances on different
factors. Specifically, a potential user can set as input the
number of nodes, graph density, number of communities, ratio
between intra-cluster and inter-cluster density, level of noise
of the network, percentage of nodes shifting community across
layers, and if the number of clusters diminishes, increases, or

remains unchanged across layers. Thus, the main advantage
of this generator is its flexibility in creating networks with
different properties.

To test the algorithms, we simulated multilayer networks
with features that are observable in brain functional networks
estimated from EEG signals. We then considered two scenarios,
one in which the community structure is stationary, the other
is when it shows an evolution across the layers. While previous
studies essentially focused on the second case, both cases are of
interest in the neuroscience field.
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FIGURE 5 | Normalized mutual information (NMI) computed between the output of the algorithms, identified with a color code, at consecutive layers of the multilayer

network. As we run the algorithms 100 times, we report the means of the NMI at each snapshot, bounded by the confidence interval, represented with a lighter color.

Each graph corresponds to one of the four networks extracted with different numbers of layers.

In the first scenario, we aim to extract homogeneous
community partitions among a certain number of noisy layers,
and this could be useful when layers model either snapshots
of a task in which the brain connectivity pattern is supposed
to be stationary (with the only variations due to the noise) or
groups of subjects with the same features. In this case, we seek for
algorithms able to keep as stable as possible despite the presence
of noise, one that, in an EEG-based network, could arise because
of the variability of the signals, of the low SNR, or of the error
intrinsic in any connectivity estimation procedure.

In the second scenario, we want our algorithm to track
small and large variations in an evolving community structure.
Examples of this scenario include when we want to discover the
evolution of the modular organization underpinning cognitive
functions causing time-varying connectivity patterns or relative
to heterogeneous groups of people (e.g., healthy subjects
and clinical cohorts). Here the capability of the methods

to track the network’s dynamics is the main feature we
seek for.

The results of our extensive simulation studies show that
all the algorithms are sensitive to the network features that
we simulated. As expected, their performances decrease as
the level of noise simulated increases because the community
structure gets less and less clear. Moreover, their ability to exactly
recover the imposed community structure diminishes when such
structure is made of few clusters. This could happen because
all the algorithms were introduced in a context other than
neuroscience, where networks present thousands of nodes and
many more clusters. In the case of time-varying communities,
our analysis suggests that the proportion with which the
clusters reconfigure does not affect consistently the algorithms’
performances, except in a few cases in which, intuitively, the
more it changes, the easiest the algorithms detect the variation.
The genLouvain and, partially, the FacetNet algorithms were
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FIGURE 6 | Example of partitions obtained by running genLouvain on the EEG brain networks. (A) The four images stand for the four networks with different numbers

of layers. Each image has on the y-axis the nodes (channels) and on the x-axis the layers, and the cluster’s membership is represented through colors. (B,C) Reported

projections of the detected communities on a 3D model of scalp for the two conditions, closed eyes and open eyes, respectively. In each panel, the 3D model is seen

from above, with the nose pointing to the upper side of the page, and laterally. The dots are the 61 electrodes grouped into clusters and displayed with different colors.

shown to be able to compensate for the presence of noise
as the number of layers increases, returning more and more
stable and accurate partitions in both scenarios explored here.
Overall, genLouvain, which is based on multilayer modularity
optimization, outperforms the others in most conditions. It
has the best performances in most conditions. A single-layer
modularity approach is also appropriate in case of few layers
and low percentage of noise. FacetNet shows intermediate
performances, as it seems to be able to mitigate the effect of a high
level of noise when it has a high number of layers to work with.

Our work is not the first one attempting to address the
issue of multilayer clustering algorithms’ performances. In Silva
et al. (2016) and Schmidt et al. (2018), the authors propose
analysis with the same purpose. However, in the former, the
focus is only on algorithms based on evolutionary clustering,
which have been tested in a simple synthetic network and

in three real networks not related to neuroscience. In the
latter, the authors tested two approaches based on consensus
clustering on a synthetic network. Such testing still has no
statistical validity, as the two approaches have only been tested
in one network, even if more realistic and closer to those
experimentally estimated from EEG signals. Moreover, their
main purpose was to exploit multilayer clustering approaches
to threshold fully connected networks. For this reason, they
introduced two new community detection algorithms, rather
than considering the well-established multilayer optimization
of modularity, which has already been proven to provide
interesting insights in brain functioning and organization, as
in Bassett et al. (2011). Another testing of the clustering
algorithms has been done in Bazzi et al. (2020) on benchmark
networks similar to those proposed here. However, the main
focus of that work was on introducing a generative model for
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multilayer networks; therefore, the algorithms’ performances
were evaluated by only varying the coupling across layers. Here
we performed a more comprehensive analysis: starting from
preliminary analysis made to properly use the algorithms in
different conditions determined by the network’s properties, we
compared the algorithms’ behavior by systematically varying
a set of the network’s features, like cluster number, level
of noise, coupling across layers, number of layers and
network’s density.

After having tested the algorithms on artificial networks,
we applied them to a time-varying network obtained from a
real EEG dataset under controlled conditions, from which we
estimated multilayer networks, including a transition from one
condition to the other. The experimental design has precise
features designed to obtain accurate multilayer brain networks
reflecting those simulated in the methodological analysis. Data
was acquired from an adult healthy subject during a simple task,
the resting state, composed by two distinct phases: OE and CE.
The choice of taking a healthy subject rather than a patient
spared us from making hard hypotheses on the underlying brain
network. The same applies for the choice of the resting state,
instead of more complicated cognitive or motor tasks, which
would have required further hypotheses. At the same time, the
two distinct consecutive phases (OE–CE) of the resting state
guarantee a change in brain activity and, consequently, in brain
connectivity and brain network, which is what we analyzed in
the simulation study. Moreover, we established the number of
EEG channels, the length of the trials, as well as their numerosity
prior to the acquisition in order to obtain networks with the exact
number of nodes and layers used in the simulation study. The
data so collected have specific peculiarities that make it suitable
for the validation of the algorithms’ analysis. By applying the
four algorithms on the obtained EEG multilayer networks, we
could evaluate if, and how fast, such algorithms were able to
recognize the two distinct phases. The results are consistent with
what were found in simulations. GenLouvain outperforms the
other algorithms by detecting stable communities within each
condition and differences in the partitioning between the two
conditions in the neighborhood of the transition. The topological
representation of the community organization underlying the
two conditions, shown in Figure 6, indicates that the closed eyes
condition gives rise to a cluster of occipital electrodes which,
during the open eyes condition, splits into two clusters, one for
each hemisphere, and generally all the clusters become more
hemisphere specific. This result is physiologically plausible. In
fact, during the resting state at closed eyes, there is an increase of
alpha rhythm associated with circuits originated in the occipital
region, which disappear if the subjects open their eyes.

The purpose of the application to an EEG dataset was three-
fold. First, it confirms the results obtained with the simulation
studies. Moreover, as an indirect consequence, it validates the
goodness of our model and of the generator with which we
tested the algorithms, paving the way to its use in other studies.
Finally, it supports the applicability of multilayer community
detection to EEG-based brain networks. In fact, while several
studies already showed the potentiality of employing graph
theory instruments in EEG-derived networks to investigate brain

functioning (Micheloyannis et al., 2006; Fallani et al., 2010;
Toppi et al., 2012; Petti et al., 2016; Pichiorri et al., 2018),
community detection and multilayer tools have been scarcely
used in the electrophysiological context so far, despite promising
results like those reported in a recent work (Kabbara et al.,
2021) where authors investigated the modular structure of
multilayer resting state networks with single-layer tools. Most
of the studies on brain communities (e.g., Bassett et al., 2011;
Betzel et al., 2014, 2017; Wig, 2017; Puxeddu et al., 2020)
are conducted on brain networks obtained from functional
magnetic resonance images (fMRI). fMRI data have the privilege
of having a good spatial resolution. However, fMRI networks
make a coarse assumption of stationarity. In fact, the BOLD
signal peaks seconds after the neuronal activity, violating most
of the brain information processing timescale, which ranges
100ms (Park and Friston, 2013). EEG signals instead have a
great temporal resolution, which is suited to the study of time-
varying phenomena through a multilayer topological analysis.
One could also think of invasive methods to obtain signals
that are both spatially and temporally accurate. However, the
invasiveness provides a strong limitation to the applicability of
such an approach. Moreover, it currently allows to acquire data
from a limited portion of the brain, failing to provide large-
scale networks suited for an analysis of the communities which
sustain the structure of most human brain functions. For these
reasons, EEG-based brain networks represent a fair compromise
between spatial and temporal resolution, and the study of their
community structure can provide important insights into the
brain dynamical organization.

After having studied the best practices and verified
community detection applicability to multilayer EEG networks
in a controlled case, future efforts will be put on studying how
community structure evolves during tasks that elicit a dynamic
configuration of the brain network. For this purpose, richer open
EEG datasets could be investigated (i.e., van der Meer et al.,
2016; Wong et al., 2018; Artoni et al., 2019), focused on resting
state as well as more complex tasks, like working memory or
auditory attention. This might provide physiological insights
into brain functional organizational principles underlying
cognitive functions.

Future investigations might also include the use of the toolbox
that we provided to extend our analysis to other cases. For
example, similar analysis could be performed in generating
networks with a higher number of nodes and a higher number
of clusters. Ultimately, this work could be useful in a cross-
disciplinary way, regardless of our specific attention to EEG-
based brain networks. The guidelines that we provide can be
applied to every network with the simulated features, where
community structure is supposed to be assortative.

CONCLUSIONS

In conclusion, this work operated an extensive and systematic
comparative analysis among multilayer community detection
algorithms. We selected three different clustering approaches
and four algorithms based on single-layer modularity, multilayer
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modularity, and evolutionary clustering. We tested them on
artificial networks with modules generated through a toolbox
defined for this purpose, which allows us to set most of the
parameters characterizing the graphs that we systematically
varied in a range typical of EEG-based brain networks to provide
a comprehensive analysis of the algorithms. Specifically, we
tested the algorithms’ ability to recover stable and dynamic
partitions out of multilayer networks with stationary and
evolving community structure, respectively. Our results suggest
that the performance of the algorithms depends on the network
features, such as number of clusters, number of layers, and level
of noise in the network. From the simulations, the community
detection algorithm based on the optimization of the multilayer
formulation of modularity turned out to be the most suitable
within the explored conditions. The application of the algorithms
to real networks estimated from EEG signals confirms these
results and proves the applicability of such algorithms to
electrophysiological data.
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