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Abstract

We developed a COVID-19 transmission model used as part of RAND’s web-based COVID-19
decision support tool that compares the effects of nonpharmaceutical public health interventions
(NPIs) on health and economic outcomes. An interdisciplinary approach informed the selection
and use of multiple NPIs, combining quantitative modeling of the health/economic impacts of
interventions with qualitative assessments of other important considerations (e.g., cost, ease of
implementation, equity). This paper provides further details of our model, describes extensions,
presents sensitivity analyses, and analyzes strategies that periodically switch between a base NPI
level and a higher NPI level. We find that a periodic strategy, if implemented with perfect compli-
ance, could have produced similar health outcomes as static strategies but might have produced
better outcomes when considering other measures of social welfare. Our findings suggest that
there are opportunities to shape the tradeoffs between economic and health outcomes by care-
fully evaluating a more comprehensive range of reopening policies.

*All three authors contributed equally to the research work presented in this report. Correspondence may be addressed
to Raffaele Vardavas (rvardava@rand.org).
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1 Introduction

Coronavirus disease 2019 (COVID-19) is unprecedented in terms of scale and speed, affecting millions

worldwide. Until recently, vaccines and effective treatments for COVID-19 were unavailable. National

leaders have had to take extraordinary measures to mitigate the virus’s spread and prevent health

care systems from being overwhelmed. Policymakers have implemented a range of nonpharmaceuti-

cal public health interventions (NPIs). These interventions include partial closings (e.g., schools and

non-essential businesses, prohibiting large gatherings, quarantining the most vulnerable) and com-

plete lockdown (e.g., placing all residents under stay-at-home orders). The goal of NPIs is to delay

and reduce the peak number of cases per day, reduce pressure on health services, and allow time for

vaccines to be distributions [1]. If NPIs are relaxed too soon a new wave of infections may occcur.

However, NPIs have wide-ranging effects on the health, economy, and social well-being of popula-

tions, which has led to growing pandemic fatigue and a decline in adherence to NPIs since they were

first initiated [2, 3]. Decision-makers are faced with tough decisions, such as how to sequence, relax,

and possibly reinstate mitigation measures. Exacerbating these decisions are significant uncertain-

ties, including new variants and behavioral responses to extended interventions.

Mathematical and simulation models of COVID-19 transmission dynamics are invaluable tools to

help decision-makers forecast and compare intervention outcomes, predict the timing of peaks in

cases and deaths, medical supply needs, and if and when we should expect additional waves. They

enable projection and comparison of population-level outcomes over hypothetical scenarios. Model

outcomes include the incidence and prevalence of the infection over time and for different population

groups. The hypothetical scenarios can consist of the impact of varying pharmaceutical and nonphar-

maceutical public health interventions, distributing vaccines, and the emergence of new strains.

We developed a COVID-19 transmission Population-Based Model (PBM) used as part of a web-

based COVID-19 decision support tool that compares the effects of different nonpharmaceutical pub-

lic health interventions (NPIs) on health and economic outcomes. An interdisciplinary approach in-

formed the selection NPI portfolios, combining quantitative modeling of the health/economic im-

pacts with qualitative assessments of cost, ease of implementation and equity. An in-depth descrip-

tion of our approach was previously published as a RAND report describing how the PBM, the eco-

nomic model, and a systematic assessment of NPIs informed the web-tool [4].

We expanded our original model [4] to account additional uncertainties and consider an expanded

set of NPI strategies. In this paper, we consider periodic NPI strategies. Recent research has demon-

strated that high-frequency periodic NPIs [5] have the potential to mitigate COVID-19 resurgences

while providing more predictability and alleviating the damaging effects on economic activity and

social well-being. We use our updated model to explore if a periodic strategy could have provided

benefits compared to fixed strategies that would keep Rt close to one. We find that a periodic strategy

can dominated fixed strategies, improving both health and days spent under restrictions.

The paper is structured as follows. First, we provide an overview of our model structure. Then, we

briefly analyze a set of illustrative scenarios, including periodic and fixed strategies, identifying if the

periodic strategies used by other modelers modelers [5] produce similar results in our model. Finally,

we provide detailed information on our mathematical model and present sensitivity analyses.
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2 Model Overview

Theory-based epidemiological models use a theoretical understanding of biological and social pro-

cesses to represent a disease’s clinical and epidemiological course. The most typical model considers

the population in four different disease states: susceptible, exposed, infected, and Removed (SEIR).

Our PBM incorporates several extensions to the SEIR model of disease transmission. It is formulated

deterministically by coupled ODEs and integrated numerically by solvers for stiff problems [6–9]. We

extend the SEIR framework to better describe COVID-19 transmission by adding additional disease

states and considering population strata based on age and chronic conditions. The PBM models the

effects of different NPIs on health outcomes, from partial closings to complete lockdown. Unlike

many other COVID-19 models, we simulate the impact of NPIs on different mixing modes (such as

home, school, and work) separately, allowing us to model various interventions flexibly. Our PBM also

includes population strata and specify mixing pattern heterogeneities across the population strata

and for each mode. These heterogeneities included in our model allow us to set the NPI more specif-

ically, with mixing rates reduced deferentially by mixing mode. Our model is designed to help poli-

cymakers understand the effects of NPIs, weigh tradeoffs among them, make decisions about which

NPIs to implement, and estimate how long-term interventions should be enforced to control the virus.

Figure 1: COVID-19 PBM disease states

Figure 1 shows a simplified illustration

of the disease states included in the first ba-

sic version of our PBM. The model includes

a pre-symptomatic highly infectious state,

which leads to either an asymptomatic

state or a state with mild symptoms, a frac-

tion of which continue to severe disease.

Most of those who develop severe symp-

toms are hospitalized. Non-hospitalized

severely-symptomatic either recover or die.

The hospitalized state includes compartments for both the main hospital and the ICU, where indi-

viduals are admitted if they develop critical symptoms. Capacities can be set for the hospital and ICU

beyond which no additional patients can be added. At each of the infectious states, individuals can be

tested for COVID-19. Each compartment is composed of ten population strata, five age groups, and

two health states (those with and without at least one chronic condition). These strata allow the model

to simulate how the disease impacts different population groups, including differences in population

size, mixing mortality rate, and the proportion who are asymptomatic. Disease progression rates are

based on figures given in the literature and are sampled from distributions if uncertain. The force of

infection (the rate that susceptible individuals become exposed) is characterized by how many infec-

tious people are in each state, the transmissibility of each state, and levels of mixing. We estimate

transmissibilities for each state based on biological and social factors. For instance, viral loads are

highest early in the disease [10], so these states have higher biological transmissibility. We assume

that those who receive positive tests or exhibit symptoms have lower social transmissibility because

they take measures to limit the exposure of others. The total transmissibility of a state is the product
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of the biological and social transmissibilities, and the population-weighted sum of transmission is

proportional to the number of new infections.

NPI Level Description

Level 1: No Intervention No Intervention
Level 2: Close schools All schools are closed.
Level 3: Close schools, bars, and restau-
rants; and ban large events

In addition to school closures, all bars’ and
restaurants’ dine-in services are closed,
only allowing for take-out options. Also,
large gatherings are banned.

Level 4: Close schools, bars, and restau-
rants; ban large events; and close
nonessential businesses

In addition to school, bar, and restaurant
closures, all nonessential businesses are
closed.

Level 5: Close schools, bars, and restau-
rants; ban large events; close nonessen-
tial businesses; and shelter in place for the
most vulnerable

In addition to the closure of all nonessen-
tial businesses, a shelter in place recom-
mended for the vulnerable population, in-
cluding the elderly, children, and other at-
risk populations.

Level 6: Close schools, bars, and restau-
rants; ban large events; close nonessential
businesses; and shelter in place for every-
one but essential workers

In addition to the interventions above,
shelter in place order is issued for the ev-
eryone but essential workers.

Table 1: Nonpharmaceutical intervention levels.

In our model, NPIs are portfolios of restrictions mandated at the state level, as described in table 1.

The set of NPIs levels used by each state is characterized by a discrete set of intervention levels ranging

from 1 (no intervention) to 6 (close schools, bars, restaurants, and nonessential businesses; and issue

a shelter-in-place order for everyone but essential workers). Each intervention level is associated with

mixing matrices that describe how strata interact with each other in six different settings: household,

work, school, commercial, recreation, and other. Interventions are modeled as changing the level of

mixing which occurs in each of these settings. For instance, closing schools reduces school and work

mixing but increases home mixing. Given the specified model structure, the NPI time-series, and the

mixing matrices, we calibrate our model for each state using deaths time series. Appendix A provides

a detailed description of the mathematical formulation of our model.

3 Exploring Periodic NPI Strategies

In this section, we present an illustrative retrospective analysis of policies that can be tested with the

model, using the state of California as an example. These analyses and findings do not constitute pre-

dictions. Yet, they illustrate that alternative plausible NPI strategies could have produced improved

outcomes during 2020, in the absence of vaccines. The purpose of this analysis is two-fold. First,

it demonstrates how our model can be used to trace many-objective trade-off curves to support the
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analysis of reopening strategies. Second, this analysis demonstrates that a periodic switching of NPIs

might have placed society in a better position in these trade-off curves - that is, it could have repre-

sented a pareto-improvement.

This section explores two types of strategies that could have been followed to manage NPIs in

the year 2020. The first set of strategies are “fixed" NPI levels. This type of strategy holds the NPI

level constant over time. Although this strategy has not been followed in California explicitly, the NPI

mandates imposed in California are best approximated in our model by setting the NPI level to three.

This NPI level was stable between July of 2020 through the end of the year, and this represents our

baseline scenario and is the scenario used to calibrate our model.

Fixed NPIs are not, however, the only way to control the pandemic. Alternatively, one could use

periodic strategies to curb transmission [5]. A periodic NPI can represent a strategy wherein society

goes into more severe periods of NPIs then relaxes to lower levels of stringency. This strategy’s ratio-

nale is that those newly infected during the relaxed periods would take a few days before becoming

infectious themselves. The enforcement of stringent NPIs would then limit the time and possibilities

for the virus to spread further from these infectious individuals during the time before they either re-

cover or are hospitalized. This periodical switching would systematically reduce transmissions and

force the dynamics of the epidemics to be controlled by the strategy’s frequency.

In essence, a periodic strategy uses the natural timescales of disease progression and infectivity

to induce a synchronization phase that helps align the times when people are more likely to be in-

fected together, allowing for the social distancing NPIs to be more effective. An example of a similar

strategy includes schools adopting a hybrid learning model wherein students go to school every other

week. Similarly, restaurants could open for indoor dining periodically. In absence of vaccines, such

policies may be desirable as they would provide stability, regularity, and increased predictability for

businesses to plan against. The policies could, in principle, help suppress the transmission of the

virus and simultaneously reduce uncertainties in economic activity.

Figure 2 illustrates the dynamics of periodic and fixed NPI strategies. The fixed NPI strategies rep-

resented in the figure suggest that under the NPI level three, Rt closely followed one and increased

towards the end of December, driven by our model’s seasonal effect. Because Rt was close to one in

the model, a departure from the current NPI level would be expected to produce a significant depar-

ture from the Rt = 1. Therefore, a policy that reopens the state (F-1) would be expected to produce a

spike in prevalence and subsequently in the number of deaths, and a more stringent, constant policy

(F-5) would be expected to reduce the number of deaths.

As figure 2 shows, the periodic strategy P-5-14 switches between NPI levels 1 and 5 every two

weeks. This switching causes Rt to oscillate such that prevalence does not increase unchecked. As

a consequence, the number of deaths is controlled. The choice of two weeks is based on the typi-

cal timescale describing the disease progression for the majority of infected people. However, other

choices for the periodicity could be explored.

When judging alternative strategies, policymakers often have to weigh multiple criteria to make

decisions, so one needs to translate model outcomes to meaningful criteria. One criterion could be

the number of days of school closures, which has been an important concern during the COVID-19

pandemic. However, the number of days of school closures does not distinguish scenarios in which
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Figure 2: Model Dynamics with Fixed and Periodic NPIs. Fixed NPI strategies are coded with an
“F" followed by the intervention level included in the NPI. Periodic NPI strategies are coded with a
“P" followed by the maximum NPI level in the periodic strategy and the period in days. In that case,
P-3-14 means that the state will switch between the NPI level 3 and 1 every 14 days.

non-essential businesses are closed for long periods, so other proxies for welfare loss are needed. One

approach could be to use weights for each NPI level, such that those weights are proportional to the

marginal daily welfare loss induced by each NPI level. If one defines those weights such that one day

under lockdown is equivalent to one, and one day under no restrictions is set to zero, one can compute

a proxy to social welfare that can be used to judge alternative strategies. Our weighted lockdown days

metric corresponds to this criterion.

There are other plausible ways to compute NPI costs. NPIs arguably induce income loss. Our third

metric uses the income loss under each NPI level estimated by a general equilibrium model [11] to

account for the economic consequences of NPI restrictions. Although all these proxies are imperfect
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Figure 3: Tradeoff surface implied by alternative policies. The vertical axis presents the number
of Deaths / 100k at the end of the simulation run (Feb. 2021) in California, and the horizontal axis
contains several proxies that represent alternative criteria to evaluate the costs of NPIs. Across all
these criteria, we find that periodic NPIs tend to dominate fixed NPIs. The plot demonstrates that
strategies with fixed NPIs generally are dominated by periodic NPI strategies.

measures of social welfare loss induced by NPIs, our conclusions do not rely on their precision, but

on the assumption that NPI costs are increasing in the level of restriction. This structural assumption

allows us to illuminate trade-offs and reveal pareto-dominated strategies that rely on the structure of

the epidemiological model1.

Figure 3 demonstrates that using a small set of alternative measures can support those decisions

and reveal pareto-dominated strategies. Strategy F-3, our baseline strategy, is pareto-dominated by a

wide range of strategies that oscillate between the NPI level of 5 and 1, using many periods, which is

in line with prior research [5].

1One might estimate the costs of NPIs using a willingness to pay or similar approach. As long as those weights are
monotonically increasing (e.g. people are not deriving utility from NPI restrictions), our substantive findings would hold.
While estimating more precise welfare costs of NPIs and using those costs as weights might be valuable to compare bene-
fits from NPIs to costs, we doubt that these weights would be stable over time. Still, as long as these weights are monoton-
ically increasing functions of the NPI level at any point in time our substantive results would hold. Because these weights
are highly uncertain and potentially not constant, we refrain from trying to aggregate all outcomes under a single social
welfare metric in our analyses as a traditional Cost-Benefit analysis would do. Instead, we assess pareto-efficiency and
seek to find strategies that dominate other strategies across a set of outcomes.
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However, there are limitations to our analysis. First, we do not consider practicality: these peri-

odic strategies might be regarded as unfeasible, impractical, or undesirable by policymakers and the

public. This consideration is particularly important because the strength of the periodic NPIs relies

on the ability to abruptly reduced mixing, which can only be achieved with a high level of compli-

ance. Further, people are may to shift their mixing to the open periods reducing or even canceling the

mitigation effects on transmission intended by the periodic NPI policy. Nevertheless, we use them in

this paper as an example to illustrate that alternative NPIs strategies, if implemented with high levels

of compliance, might pareto-dominate fixed strategies and might shift the trade-off surface among

health and economic/social outcomes.

4 Conclusion

The scenarios presented in this paper serve the purpose to illustrate that alternative policies using

periodic NPIs to manage the COVID-19 pandemic might have produced the same health outcomes

while allowing essential activities, such as in-person education, to have happened in a controlled

manner. While we do not advocate for any particular strategy, this brief analysis demonstrated that

alternative NPI strategies have the potential to shift the trade-off curves among the relevant outcomes.

Including social welfare loss measures induced by NPIs in analyses seeking to inform COVID-19

reopening decisions is essential. Only including health outcomes in those analyses leaves the task of

weighing other concerns to the policymaker, who may or may not be able to do so consistently. Met-

rics of welfare loss induced by NPIs can be either derived directly from the model outcomes (e.g., days

of school closures), or use a weighted sum based on the NPIs stringency level, potentially using eco-

nomic models in our prior work[4]. Even if the analysis estimates are not precise or could become less

precise with time, they can still be useful. As figure 3 demonstrated, if one ignores all the horizontal

axes under the argument that those estimates might be imprecise, policymakers might not be prop-

erly informed that alternative policies dominate some policies. This statement and the pattern seen

in the trade-off curves do not rely on the precision of economic estimates but on the theory-based

epidemiological model structure.

The trade-off curves we present also should not be seen as static. Many other factors that have

been held constant in our analysis might also shift this curve. Widespread adoption of high-quality

masks, for example, would shift every point inwards, making society systematically better off. The

emergence of new, more transmissible variant strains can shift the curve outwards. A more stringent

strategy to eliminate community spread and prevent re-seeding (such as New Zealand’s strategy) can

remove the health-economic trade-offs curve completely if successfully implemented. Adaptation

measures to prevent transmission within schools would also shift this curve, strengthening periodic

strategies even more attractive to allow in-person education. Moreover, the introduction of vaccines

also shapes this trade-off curve over time. As vaccination roll-out advances, the marginal benefit of an

additional day under stringent NPIs will decrease. Accounting for the uncertainties mentioned before

and the vaccination dynamics will be essential to guide society to a new normal through a robust

reopening plan.
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A The Mathematical Formulation of the Model

A.1 Model disease states and progression

Individuals in our population are divided into fourteen key compartments listed in Table 2. We as-

sume that individuals in the P and I A compartments are fully asymptomatic and thus are unaware of

being infectious. In our model, individuals in ISm have mild symptoms, including a dry cough and

a fever, while those in ISs are assumed to have severe symptoms that include shortness of breath in

addition to a dry cough and a fever. The sum of the population in all of the states gives the total

Disease State X Description Infectious X I Diagnosed

S Noninfected and susceptible. No No

E Exposed and infected but not yet
infectious.

No No

P Presymptomatic infectious. Yes No

ISm Nondiagnosed Infected with mild
symptoms.

Yes No

ISs Nondiagnosed infected with severe
symptoms.

Yes No

YSm Diagnosed infected with mild
symptoms.

Yes Yes

YSs Diagnosed infected with severe
symptoms.

Yes Yes

H Hospitalized not in the intensive-care
unit.

Yes Yes

HICU Hospitalized in the intensive-care
unit.

Yes Yes

I A Nondiagnosed infected
asymptomatic.

Yes No

YA Diagnosed infected asymptomatic. Yes Yes

RS Recovered who were symptomatic. No Yes & No

RA Recovered who were asymptomatic. No Yes & No

D Those who have died. No Yes & No

Table 2: Disease states included in the model. The dependence on time t is implicitly assumed.

population N . In our model we assume that each state variable gives the proportion of the popu-

lation belonging to that state. Therefore, instead of tracking the dynamics of each compartment’s

population sizes, we track the population densities. We express this as
∑

X X (t ) = N = 1, where X ∈
{S,E , X I ,RA,RS ,D} labels the population compartments and X I ∈ {P, ISm , I A, ISs ,YSm ,YA,YSs , H , HICU }

labels the subset of compartments that are infectious.
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In the PBM, the susceptible that get infected enter state E at a rate known as the force of infection

λ described in the section A.5. As for all the transition rates in our PBM, λ is specified as a per-person

S E
λ

P
ν

ISm
γ S

IA

γ A

Figure 4: Initial disease progression stages

transition probability per unit time. Figure 4 il-

lustrates disease progression in the early stages of

COVID-19 infection. They progress to the presymp-

tomatic infectious state P at a rate ν. As an individual-

level interpretation of this transition, the mean dura-

tion, also known as the mean dwelling or sojourn time

that newly infected individuals stay in disease state E

is given by ν−1. Those in the presymptomatic infec-

tious state P either remain asymptomatic and transition to state I A at a rate γA, or develop mild

symptoms and transition to state ISm at a rate γS . At the individual level, the mean duration that

infected individuals stay in disease state P is given by [γS +γA]−1, and the probability of developing

mild symptoms is given by γS · [γS +γA]−1. We assume that testing the presymptomatic for COVID-19

results in a false negative outcome. Consequently, all those who are presymptomatic are unaware of

their infected and infectious state. The formulation of the first three ODEs describing our PBM are

Ṡ = −λS, (1)

Ė = λS −νE , (2)

Ṗ = νE − (γS +γA)P. (3)

The asymptomatic and unaware of having been infected, I A progress to the recovered state R at

rate ξA. The asymptomatic are assumed to stay infectious until they recover. Figure 5 illustrates the

disease progression of the asymptomatic. A proportion ζA(t ) · [ζA(t )+ξA]−1 of the asymptomatic are

diagnosed with having COVID-19. This proportion of individuals transition to state YA.

RA
IA

ξ A

Y A

ζ A (t)
ξ* A

Figure 5:

As described in section A.3, the testing rate ζA(t ) is not constant

but implicitly depends on time, due to dynamic testing policies.

These individuals most likely get tested because they suspect or

are informed by health-care workers engaged in contact-tracing

to have recently been in contact with someone diagnosed with

COVID-19. Those who enter disease stage YA progress to the re-

covered state R at rate ξ∗A. The transition rate ξ∗A is faster than

ξA and accounts for the elapsed duration of mild symptoms prior to being diagnosed. These diag-

nosed asymptomatic are aware of having been infected and of being infectious. Therefore, they are

assumed to engage in increased social distancing behavior described in the section A.3 on the disease

transmission model. The ODEs describing the asymptomatic disease progression are

İ A = γAP − [ξA +ζA(t )]I A, (4)

ẎA = ζA(t )I A −ξ∗AYA. (5)

Figure 6 illustrates the disease progression of the symptomatic. The non-diagnosed mildly symp-

tomatic, ISm either progress to the recovered state R at a rate ξm or develop severe symptoms and
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progress to state ISs at a rate υ. Some are tested at a rate ζS(t ) and diagnosed with having COVID-

19. These transition to state YSm and become aware of their infection state. As before, ζS(t ) is not a

constant but is assumed to implicitly depends on time. Our model assumes that those mildly symp-

ISm ISs
υ

Y Sm

ζ S(t)
RS

ξm

Y Ss

(1-A H )ζ S(t)

H

hA H

ξ s

υ*

ξ* m

h*A H

ξ* s

H ICU

A ICU χ

ξ H

ξ ICU

(a)

ISs

D

μ S

YSs μ S

H

μ H+(1-AICU)χ

HICU

μ ICU

(b)

Figure 6: Model flow of disease progression of the infected symptomatic with transitions that lead to the re-
covered state R and the died state D shown respectively in panels a and b.

tomatic that get diagnosed will also progress to the recovered state R at a rate ξ∗m or develop severe

symptoms and transition to state YSs at rates υ∗. These rates are respectively faster than ξ and υ to

account for the elapsed duration of mild symptoms prior to being diagnosed. The ODEs describing

the non-hospitalized with mild symptoms are

İSm = γSP − [υ+ξm +ζS(t )]ISm , (6)

ẎSm = ζS(t )ISm − [υ∗+ξ∗m]YSm . (7)

Most of the non-diagnosed severely symptomatic ISs are hospitalized at a rate h AH . When they en-

ter the hospital they are diagnosed with COVID-19. The percentage of severe cases hospitalized re-

mains constant as long as the hospital has not reached its capacity in terms of available beds. The

dichotomous variable AH indicates whether the hospital is accessible to COVID-19 patients (AH = 1)

or whether it has reached its bed capacity and no longer accepts new COVID-19 patients (AH = 0). If

the hospital is at capacity, the severely symptomatic patients that would have otherwise been hospi-

talized are tested at a rate (1− AH )ζS(t ). Once the hospital is no longer at capacity, these diagnosed

patients are hospitalized at a rate h∗A which is faster than rate h as these diagnosed patients are likely

to have waited longer to be hospitalized than the non-diagnosed. A minority of the severely symp-

tomatic never access the hospital. Some of these patients recover but most die at home. We assume

that the transition rates to the recovered state R is ξs and to death D is µs . These rates also apply to

those diagnosed and severely symptomatic as the majority of those in state YSs are diagnosed while

having mild symptoms. The ODEs describing the non-hospitalized with severe symptoms are

İSs = υISm − [ξs +µs +h AH + (1− AH )ζS(t )]ISs , (8)

ẎSs = (1− AH )ζS(t )ISs +υ∗YSm − [ξ∗s +µs +h∗AH ]YSs . (9)
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Patients that are hospitalized may develop critical symptoms. Like for the hospital, the ICU can also

reach capacity, at which point it takes no more patients until it has free beds. Provided there are

available ICU beds, these hospitalized critical patients transition into the ICU at a rate χAICU . As with

hospital accessibility, we use the dichotomous variable AICU to indicate whether the ICU is accessible

(AICU = 1) to COVID-19 critical patients or whether it has reached capacity (AICU = 0). Hospitalized

patients that do not require the ICU either transition to the recovered state R at a rate ξH , or transition

to death D at a rate µH . The transition rate µH is assumed to be small because very few patients die

in the hospital without having accessed the ICU first, provided that the ICU is not at capacity. We

assume that patients who recover in the ICU move immediately to the recovered compartment rather

than back to the hospital. This ensures that individuals do not make multiple trips to the ICU. The

transition rate to the recovered state R is ξICU . Therefore, the time spent in the HICU compartment

represents both the ICU and the time spent recovering after intensive care in the hospital. The actual

transition rates from the hospitalized to the recovered state R and death D depend on whether the

ICU is accessible. When the ICU is closed, we assume that all those who required ICU access will die

until the ICU is reopened. Hence, the general transition rate from HICU to death D is µH +χ(1−AICU ).

The ODEs describing the hospitalized are

Ḣ = A[hISs +h∗YSs]− [µH +χ+ξH ]H , (10)

ḢICU = AICUχH − [µICU +ξICU ]HICU . (11)

When the hospital is at capacity (AH = 0), patients that develop critical symptoms are more likely to

die at home. This requires modifying the rate µs based on the hospital accessibility indicator variable

AH . The implementation of our PBM can take this into account where the death rate µs in state ISs

is increased to µs +hχ/(χ+ ξH ). A similar increase in the death rate applies in state YSs . However,

unlike for the ICU, the duration of having no accessibility to the hospital is likely to be short because

hospitals can adapt spaces and create new bed accommodations in a way that is not possible for the

ICU. Hence, the ODEs we present and describe here do not consider this increased mortality rate.

Therefore, the ODEs describing the recovered and those that die are

ṘA = ξA I A +ξ∗AYA, (12)

ṘS = ξm ISm +ξ∗mYSm +ξs ISs +ξ∗s YSs +ξH H +ξICU HICU , (13)

Ḋ = µS(ISs +YSs)+ [µH + (1− AICU )χ]H +µICU HICU . (14)

We assume that the expected time for the diagnosed and asymptomatic YA to transition to the

recovered state R is shorter than the expected time for the same transition to the recovered state of

the undiagnosed asymptomatic I A. Similarly, the expected time for YSm to transition to either state

YSs or the recovered state R is shorter than the expected time for those in ISm to transition to either

state ISs or the R is. We model this by setting ξ∗A = κξξA, ξ∗m = κξξm and υ∗ = κξυ where the value of κξ
is sampled in a range of values greater than one. As for interpretation, when (κξ−1)/κξ is multiplied by

the expected duration before the next clinical disease progression, it gives the expected time duration

when an infected person is likely to be diagnosed with COVID-19.
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It is important to note that we have used a single compartment to represent each disease state.

Since our model tracks populations’ flow between compartments rather than individuals, implicitly,

the sojourn or dwelling time distribution for each compartment is exponential. Hence, it is a Markov

process with the following individual-level interpretation. The sojourn times and the transition rate

for the next disease progression do not depend on the history or path taken in how an individual

reached a specific disease state, nor does it depend on the elapsed time they have spent in each dis-

ease state. This property can have profound consequences in the disease progression dynamics, ul-

timately affecting transmission. The boxcar method can alleviate the strong assumption of exponen-

tial dwelling time distributions substituting the exponential distribution with an Erlang distribution,

which is more pathologically realistic [12]. This method requires breaking each disease state into a

series of concatenated compartments of the same disease state and shorter internals. By making the

shorter intervals equal in duration we obtain an Erlang dwelling time distribution. Conversely, the

shorter internals could have different duration to approximate other types of dwelling time distribu-

tions. For example, a Weibull distribution can be approximated by a series of concatenated compart-

ments with decreasing sojourn times [13]. A model that uses the box-car method retains its Markov

property and has more realism in terms of progression rates. However, using this method the model

becomes computationally expensive and has diminishing benefits for disease models like our PBM,

which has many disease compartments, each with relatively short dwelling times.

A.2 Loss of immunity

The description of our model so far follows the general framework of an SEIR model. However, re-

search indicates that immunity to COVID-19 is not permanent nor enduring and can last less than a

year. To simulate this, we adopt an SEIRS model, whereby those who recover can become susceptible

again. Since the rate of loss of immunity is slow with a time scale of months or years compared to the

disease progression rates with time scales of days, having those who have recovered transition directly

to the susceptible state is too rudimentary. This is because, as mentioned in the previous section, pro-

gression rates from one compartment to the next assume an exponential dwelling time distribution,

and this assumption for the dwelling time of being recovered and immune is highly inaccurate. Hence

we adopt a simple first-order boxcar correction whereby we include an intermediate or buffer recov-

ered compartment RB , which recovered people transition into before losing immunity and returning

the susceptible population pool S. Hence, equation 1, 12 and 13 are modified, and we have an ODE

describing the dynamics of the RB compartment

Ṡ = 2ρN RB −λS, (15)

ṘA = ξA I A +ξ∗AYA −2ρN RA, (16)

ṘS = ξm ISm +ξ∗mYSm +ξs ISs +ξ∗s YSs +ξH H +ξICU HICU −2ρN RS , (17)

ṘB = 2ρN (RA +RS −RB ), (18)

where ρN is the rate of loss of naturally acquired immunity. Extending the first order boxcar method

to higher orders can accomplish more realistic distributions of natural immunity duration. It would
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require increasing the number of intermediate buffers RB and correspondingly decrease the transition

multiplicative factor from 2 to n +1 where here n represents the number of intermediate buffers.

In our model, those who lose immunity return to the susceptible state and are treated as any other

susceptible. This means that our model does not consider a better prognosis due to residual immu-

nity from the previous infection for people infected a second time. Hence, this effect leads to more

pessimistic long-term and multiple-year model dynamics.

A.3 Testing

Our model assumes a daily per-person rate ζ(t ) of being tested for COVID-19 on the population. Peo-

ple in different disease states have different demands for getting tested. For example, we assume that

people that are aware of having had COVID-19 and have recovered do not seek a test. We assume that

people tested in the exposed and presymptomatic infectious state are not diagnosed with COVID-

19 as their test results in a false negative outcome. The specific rates ζS(t ) and ζA(t ) respectively

represent the daily per-person detection and diagnosis rates for the symptomatic and asymptomatic

populations. Those with mild and severe symptoms are more likely to get tested than those who are

asymptomatic. Hence ζS(t ) > ζA(t ). The rate ζS(t ) only applies to those not yet hospitalized who

have either mild or severe symptoms. We assume that those who are hospitalized get tested if they

did not previously test positive. The rate at which the asymptomatic population seeks a test can be

considered the same for the susceptible population. However, due to testing-and-tracing efforts, it is

instead likely to be marginally larger, and hence ζA(t ) > ζ(t ). Under the assumption of unconstrained

testing rates, these parameters are treated as constant and depend on the base-case demand for test-

ing. This means that anyone who seeks a test is tested. Therefore, we assume testing capacity can

accommodate the growth of the epidemic, including the exponential phase.

Our PBM can model both the initial and later stages of the pandemic. The assumption of uncon-

strained testing rates is best suited to model the later stages of the epidemic. The results presented in

this paper consider unconstrained testing rates. However, for completeness, we proceed to describe

the capability of our PBM in modeling the early phase of the pandemic where the number of avail-

able testing kits was limited. The implementation of our PBM can consider settings with constraints

in the daily number of available testing kits. This number is assumed to start low and grow linearly

to a predefined maximum daily testing rate capacity. Thus, under these settings, the actual rates de-

scribing the testing and diagnosis rates from each disease state are reduced based on the capacity

constraint. We assume that people who have been hospitalized take priority and are tested first. The

remaining number of testing kits is then used to test those with severe symptoms. After that, the

remaining number of testing kits is used to test those with mild symptoms, followed by the asymp-

tomatic. This approach requires specifying a constant proportion of testing kits used to successfully

identify COVID-19–positive compared with those that are COVID-19–negative.
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A.4 Additional Outputs

Our PBM extracts and combines incidence rates that flow into different compartments to track output

cumulative quantities by population strata that do not affect the dynamics. These outputs include

1. True cumulative case counts:

ĊT =λS. (19)

2. Reported cumulative case counts:

ĊR = ζS[ISm + (1− AH )ISs]+h AH ISs +ζA I A. (20)

3. Cumulative number of people tested:

Ṫ = ĊR +ζ(S +E +P ). (21)

4. Reported recovered:

ṘR = ξ∗AYA +ξ∗mYSm +ξ∗s YSs +ξH H ++ξICU HICU . (22)

We assume that all diagnosed COVID-19 cases that do not result in death are reported as recov-

ered cases.

5. Reported deaths:

ḊR = Ḋ −µS ISs . (23)

We assume that all diagnosed COVID-19 cases that result in death are reported. All suspect

deaths due to COVID-19 of those with severe symptoms that did not get diagnosed and did not

progress to the hospital are assumed to be unreported.

6. Reported Case Fatality Rate (CFR):

CFRR (t ) = DR (t )/CR (t ). (24)

7. The Infection Fatality Rate:

IFR(t ) = D(t )/[D +RS +RA +RB ]. (25)

A.5 Modeling SARS-CoV-2 transmission

Following the approach taken in standard compartmental models of infectious diseases, the force

of infection λ describes SARS-CoV-2 transmission. The force of infection is characterized by how

infectious people in each disease state infect others. In our formulation, the force of infection is the

product of two parameters. The first parameter is the contact mixing rate, representing the number

of daily contacts people make with others. The second parameter is biological transmissibility, which

defines the probability of transmission between an infectious and a susceptible person when they

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 21, 2021. ; https://doi.org/10.1101/2021.02.28.21252642doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.28.21252642
http://creativecommons.org/licenses/by-nc-nd/4.0/


come in contact. Each disease state would have a different content mixing rate and transmissibility.

We express the force of infection as

λ(t ) =∑
X I

cX IβX I X I (t ) = ce f f βe f f

∑
X I

mX I X I (t ), (26)

where the coefficient cX I represents the social mixing contact rate and βX I represents the transmissi-

bility of infectious people in disease state X I .

The expression for the force of infection simplifies by assuming an effective contact rate ce f f and

an effective βe f f transmissibility. The product of these two ce f f βe f f is assumed to characterize the

rate of infections caused by an undiagnosed asymptomatic infected person in either state P or I A.

Rates of infections in the other disease states are characterized using mX I coefficients that give the

multiplicative effect on infectivity with respect to the primary infectious state or an asymptomatic

state. For example, mSs gives the overall average multiplicative infectivity of a symptomatic severe

individual relative to an asymptomatic individual. This multiplicative factor combines the effect

of decreased social mixing with increased biological transmissibility. We choose the asymptomatic

untested individual as our reference because they are unaware of their positive status and thus do

not change their social mixing behavior acting as though they are not infected. Hence mP = mI A = 1.

We estimate the values of the multiplicative factor of the other disease stages by considering how the

transmissibility and the social mixing contact rate change relative to the presymptomatic case.

Changes in viral load are used to estimate the transmissibility of each of the disease states. Studies

have shown that viral loads peak in the primary infectious stage and decrease monotonically after

the onset of symptoms. Hence, we assume the inequalities βP ∼ βI A > βI Sm ∼ βI Ss ∼ βH = βICU . In

terms of mixing rates we assume that cP = cI A > cI Sm > cY A ∼ cI Ss > cY Sm > cY Ss . See section B.2.3 for

more details on relative infectivity. Those who are in the presymptomatic or asymptomatic state are

unaware of their positive status and thus act as though they are not infected. However, those who have

symptoms will reduce their contacts as their conditions become more severe or receive a positive test

result. Likewise, tested asymptomatic people also will begin to practice increased social distancing to

protect their social contacts.

Under ideal conditions, the physical contact rate that leads to disease transmission between health

care workers and COVID-19 patients cH and cICU would be close to zero. However, given the shortage

of personal protective equipment during the early stages of the epidemic, contact safety precautions

in health care settings may not have always been perfectly adhered to. We consider a range of as-

sumptions for cH and cICU .

The value of the effective infectivity ce f f βe f f and its range is estimated from the basic reproduc-

tive number R0. This number is defined at the individual-level and represents the average number of

secondary infections caused by an infectious person during the disease invasion phase. This phase

represents the early stage of the epidemic when susceptible individuals surround each infectious per-

son. At the population-level, R0 represents a threshold parameter. Whether its value is larger or

smaller than one, this threshold parameter indicates whether an outbreak will invade the population

and become an epidemic or whether it is likely to extinguish before becoming a full-blown epidemic.

The distinction between the individual-level definition and the basic reproductive number’s thresh-
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old property does not always align and can be very consequential, leading to incorrect conclusions.

A large body of literature provides a detailed discussion on the basic reproductive number, its uses,

limitations, and misconceptions [14–18].

In simple mathematical models of infectious diseases, such as Susceptible-Infected-Removed (SIR)

or SEIR models, R0 can be expressed as the product of three terms R0 = cβτI where τI represents the

duration of the infectious phase. This expression assumes that the contact rate c and the transmissi-

bility β takes the same value for all the infectious compartments. This is the case for the SIR and SEIR

models but it is not the case for our COVID-19 PBM. Our COVID-19 model considers more-infectious

compartments with different contact mixing and transmissibility values and compartments that branch

off from each other. We express R0 in terms of ce f f βe f f as

R0 = ce f f βe f f τe f f , (27)

where τe f f represents a typical time-scale that considers the diversity of both disease transmission

and progression across the different disease states. It can be interpreted as the effective infectious

period for an equivalent SEIR model with a single infectious compartment, with contact rate ce f f and

the transmissibility βe f f . Consequently, in our model τe f f is not equal to the duration of the infec-

tious period τI because the former accounts for the changes in transmissibilities in each infectious

compartment, namely the m multiplicative factors. The expression for τe f f is given at disease in-

vasion and hence considers the case where testing rates ζA(t ) and ζS(t ) are zero. The next section,

appendix A.6, describes the next-generation method and gives the mathematical expression for τe f f

at disease invasion in terms of the transmission and progression parameters. Hence, by knowing the

input transmission and progression parameter values, we can compute the duration τe f f . By knowing

the value of this duration and an estimated input value of R0 we can compute the value of ce f f βe f f .

To extract an estimate for the value of R0, we use the number of reported cases during the epi-

demic’s early stages. In the disease invasion phase, the growth in cases is exponential. Hence, the

log of the case counts and the log of the death counts increase linearly with time. An estimate for the

growth rate r is obtained by linear regression of the log of these counts with time. Mathematically, R0

is related to r by the following expression

R0 = 1+ r (τE +τI ), (28)

where τE + τI represents the typical duration for which a person is infected and is the sum of the

duration of the noninfectious incubation phase τE and the duration of the infectious phase τI [17].

The value of τI depends on the disease progression times and, more specifically, on the dwelling or

sojourn times of compartments representing infectious states.

As disease dynamics progress beyond the disease-invasion phase and natural immunity develops,

we use a time-dependent parameter known as the effective reproduction number Rt . Tracking the

effective reproductive number dynamics is informative because it exhibits the same threshold prop-

erties as the basic reproductive number. Hence, if its value is above 1, the disease is spreading and

is not under control. At the individual-level Rt , it represents the average number of new infections

caused by a single infected individual at time t in the partially susceptible population. Generally, it
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is found by multiplying R0 by the proportion of the population that is susceptible. For our model

this means substituting equation 30 for τe f f into equation 27 for R0 and multiplying by S(t ). How-

ever, equation 30 provides an approximate value for τe f f which is only exact at disease invasion. This

is because R0 is defined at disease invasion, and this allows us to remove unnecessary details from

the calculation, which do not matter at disease invasion. For example, we assume that no-one is be-

ing tested at disease invasion and that the hospital is at capacity. Hence, complexities in behavioral

changes due to testing and changes in the dynamics due to hospital capacity constraints can be ne-

glected. However, when computing Rt these details become important and dynamically change the

typical time-scale τe f f of the disease. We can obtain an equation for τe f f that replaces equation 30

which is more generally valid, and our model can rely on it. However, it is a very lengthy algebraic

expression. We discuss this further in appendix A.6.

The estimation of the value of the growth rate r and hence of R0 using a linear regression approach

has limitations. During the disease invasion exponential growth phase, case reports are not very re-

liable because of backlogs and limited testing capacity. By the time testing rates and capacity have

stabilized, many jurisdictions were already in a stage where they had implemented social distancing.

A better choice is to use the death count data. However, when the linear regression approach is used

to find the R0 for the different U.S. states we have found that some states produced an unacceptably

bad fit to the data. For these states, we assumed that the value of R0 is between two and four based on

the population density of the state. For these cases, the value of R0 is assumed to range from two for

the state with the lowest population density to four for the state with the highest population density.
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A.6 The expression for τe f f

To find the expression for τe f f , we apply the next-generation method [19, 20] to the model described

by the set of coupled ODEs given in Eqs 1-14. We first rearrange the order of our ODEs and focus only

on the equations describing infection states. We then construct the matrices M and V respectively, de-

scribing the disease transmission and progression terms. The equations, together with the matrices,

are shown on the next page. A representation of the Jacobian matrix J∗ of our system of ODEs taken

at disease-free equilibrium point (i.e., S = 1) is given by

J∗ = M · [−V]−1. (29)

The expression for R0 is found by finding the largest eigenvalue of J∗. At the disease-free equilib-

rium point, and soon after, at disease-invasion, the hospital and ICU is not at capacity and there is no

testing for COVID-19. Hence the expression for R0 is found by setting AH = AICU = 1 and ζS = ζA = 0).

Using this simplification we find that

τe f f =
a

[
γAbc +ξA

(
bc +mSmγSc +υmSsγS

)]+ξA AH hυmhγS

ξA
(
γA +γS

)
abc

, (30)

where the coefficients a,b and c are given by

a = (
µH +ξH

)
,

b = (ξm +υ),

c = (
AH h +µH +ξS

)
,

and

R0 = ce f f βe f f τe f f .

We can also find an expression for the effective reproductive number Rt . Generally Rt = R0S. However,

we cannot use equation 30 for τe f f and to get Rt because it is only valid at disease invasion where we

assumed no testing and full accessibility to the hospital and ICU. We can derive a complete expression

for τe f f that considers testing rates and hospital accessibility using the next-generation method. Such

expression is algebraically long and complicated, and we choose not to include it here. A Mathematica

notebook providing the full expression is available upon request.
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İ A
=

γ
A

P
−[
ξ

A
+ζ

A
(t

)]
I A

,

Ẏ
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We note that although τe f f expresses a time scale, it includes the multiplicative coefficients m.

Thus, τe f f gives the time scale of the whole infectious state’s Q% when all multiplicative coefficients

m are set equal to one. Using a more direct approach instead of the next-generation matrix approach,

we verified that the expression for Q-.. does indeed give Q% when all multiplicative coefficients D are

set equal to one. Because

ce f f βe f f =
R0

τe f f
. (31)

A.7 The Population Stratified Model

The population in our model can be partitioned into subpopulations. We consider multiple popu-

lation groups or strata within each compartment. Each stratum specifies the population-based on

common characteristics, such as demographic, social, economic, and pathological states. The spe-

cific strata we consider are described in section B.1. The structure of the population stratified model

is expressed as an array of ODEs, where the disease progression dynamics for each stratum are ex-

pressed by equations 1-14. The reformulation to a strata-dependent PBM extends the model from the

more conventional version of a single-strata compartment model that assumes homogeneous mixing

and implicit interactions within the population.

The modeled population is described by the proportion of people in each stratum. These pro-

portions are given by the one-dimensional array v where the element vi represents the proportion

of the population belonging to strata i . Since we are tracking population densities, the sum of all the

elements of the v is equal to one. We will refer to v and other strata-specific one-dimensional arrays

as vectors in the disease state space X . Therefore, each disease state is also expressed as a vector.

For example, the vectorP (t ) represents the presymptomatic state, and the element Pi represents the

proportion of the presymptomatic population belonging to strata i .

Some parameter values and settings that enter the model differ across the strata. The heterogene-

ity introduced by the strata-dependent parameters plays a crucial role in the disease progression and

transmission dynamics and is used to better characterize the epidemiology of COVID-19. Differences

across strata include parameter values describing pathological transition rates, including the propor-

tion of the infectious in each stratum that stay asymptomatic (i.e., γA and γS), the proportion of the

symptomatic that develop severe symptoms and need hospitalization (i.e., υ), and the fatality rates

(i.e., the µ parameter values). The flexibility of our model allows users to easily specify other parame-

ters that depend on the strata. For example, protective behaviors such as willingness to get tested can

be specified by stratum.

The strata-dependent parameters are also expressed as vectors and are used to specify the strata-

specific transition rates between disease states. For example, the vector giving the strata-specific

transition rates from state P to state IA is expressed as γA ¯P , where ¯ denotes the element-wise

multiplication. Equivalently, this can be expressed by matrix multiplication as diag(γA) ·P where the

operator diag represents vector diagonalization. By following this notation, the PBM’s ODEs can be

expressed in vector notation, remaining mathematically concise.

Heterogeneity in disease transmission is introduced by the strata-dependent mixing contact rates
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describing the variations in how people belonging to the different population strata mix with each

other. This heterogeneity is described by a mixing matrix M . The matrix element Mi j denotes the

proportion of contacts of individuals in population strata (or row) i with those in population strata

(or column) j . The sum across each row in the mixing matrix is a sum of proportions, and hence

equals one (i.e.,
∑

j Mi j = 1). In addition to the mixing matrix, we have a normalized contact vector

κ. The vector element κi denotes the proportion of all daily contacts (or duration of contacts) in the

population made by individuals in stratum i , and hence, the sum of the vector elements is one (i.e.,∑
i κi = 1). The matrix multiplication of the diagonalized vectorκwithM gives the contact matrixK,

expressed by

K = diag(κ) ·M =κ¯M . (32)

The contact matrixK is a symmetric matrix where the sum across the rows is equal to the vector κ.

For off-diagonal elements i and j , the sum Ki j +K j i gives the proportion of all daily contacts between

strata i and j . For diagonal elements, the same proportion is given by Ki i . Under the disease-free

status-quo conditions everyone is susceptible. Hence v = S, and the overall daily effective contact

rate is propositional toST ·K ·S. During the disease transmission dynamics, we are instead interested

in the contacts between the susceptible population S and each of the infectious states XI . Hence

the daily effective contact rate between susceptible and infectious people is proportional to ST ·K ·∑
X I XI . We denote the coefficient of proportionality by kλ. Taken together with transmissibility βe f f

and the transmissibility multiplier mX I , we can express the force of infection vector for our strata

dependent PBM as

λ(t ) = kλce f f βe f fK ·∑
X I

mX IXI (t ). (33)

Equation 33 replaces equation 26 for our strata-specific PBM and the transition rate from S to E given

in equation 1 is re-expressed as

Ṡ(t ) =−λ(t )¯S(t ). (34)

The coefficient of proportionality kλ is related to the base-line total daily contact rates. We estimate

kλ at disease-invasion by calibration to the observed data and assume that it stays constant during the

dynamics. Instead, changes in mixing rates due to social-distancing NPI and behavioral responses are

accounted for by changes in the contact matrixK.

A.8 Mixing Modes

People mix in different settings, or mixing modes. Modes have different levels of social interaction and

different strata compositions. For instance, in schools mixing is primarily between children, whereas

in commercial settings mixing occurs between all ages. Our PBM considers six different modes of

social mixing: household, school, work, commerce, leisure, and other. Based on the data described

in Section B.1 we can create matrices describing the average daily contacts between each stratum in

each mixing mode. We decompose these matrices into a set of row normalized mixing matricesMm ,

column normalized contact vectors κm , and scalar mode weight wm for each mixing mode labeled

by the index m. The total contact matrix, K is a weighted sum of the mode-specific contact matrices
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Km , and given by

K =∑
m

wm[κm ¯Mm] =∑
m

wmKm , (35)

The weights, wm give the proportion of contacts (or duration of contacts) of how people mix over

the different mixing modes. Under the disease-free status-quo conditions these weights sum to one,

hence
∑

m wm = 1.

A.9 Modeling Nonpharmaceutical interventions (NPIs)

When the initial outbreak becomes an epidemic, governments may choose to impose nonpharma-

ceutical interventions (NPIs) which limit how people can mix. The goal of NPIs is to delay and reduce

the peak number of cases and hospitalizations per day by shifting individuals to locations where there

are few unique contacts. Hence, we model the effects of NPIs by decreasing the weights associated

with various mixing modes. For example, an NPI policy that closed schools, restaurants, and bars is

modeled by reducing the weights associated with the school, commerce, and leisure mixing modes.

Mixing matrices measure the number of unique contacts, not time spent in a mixing mode, therefore

weights are not conserved. NPI interventions, such as confining people to their households, reduce

the total number of unique contacts such that the mixing mode weights sum to less than one. To

model the impact of reduced mixing from NPI level n on mode m, we define a diagonal matrix Φ{n}
m .

The diagonal elements of Φ{n}
m specify the reduction in mixing for each stratum in mode m relative

to the disease-free state. For interventions that apply to all strata (i.e. where each stratum changes

their mixing by the same proportion), such as the closure of schools, all diagonal elements of Φ{n}
m

have the same value. In cases where interventions apply to some strata and not others: such as when

only front-line essential workers are expected to attend their workplaces, the diagonal elements of

Φ{n}
m take on different values, each specifying the strata-mode specific impact of the NPI. Hence the

expression forK{n} that accounts for the impact of NPIs is:

K{n} =∑
m

wm

{
(Φ{n}

m )
1
2Km(Φ{n}

m )
1
2

}
. (36)

In the disease-free state, specified by NPI-level one (i.e., n = 1) theΦ{1}
m matrix is equal to the identity

matrix where all diagonal elements are equal to one.

The matrix Φ{n}
m is square-rooted and then multiplied on either side of the contact matrixKm so

that the contact matrix is symmetric. The matrixΦ{n}
m represents multiplicative factors that reduce the

strength of the interactions along the network edges. It is obtained by the individual-level reductions

specified on the network vertices. Two vertices bound each edge, and hence the overall edge-level

reduction of the interactions is given by multiplying the two vertex-level reductions. These reductions

are represented by the term (Φ{n}
m )

1
2 in mixing on either side of the strength of the edge, and given by

the matrixKm .

We allow the effectiveness of NPIs to vary by state. The effectiveness of the NPIs, θ, is defined

through a calibration process. We narrow the ranges used as priors in the calibration process by ex-

ploring a wide range of parameter combinations using a Latin Hypercube Sample and by observing
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that values outside those ranges consistently produced biased death results. The calibrated contact

matrixK{n}
c is:

K{n}
c = K{1}

θ
(
K{1}

K{n} −1
)
+1

(37)

When θ = 1, K{n}
c =K{n}. For other values, θ approximately geometrically scales the distance

between K{n} and zero mixing, while leaving K{1}
c =K{1} for any θ. For instance, a value of θ = 2

yields aK{n}
c approximately half the size ofK{n} for n 6= 1. This functional form allows us to account

for the physical and cultural differences between states which may yield different NPI effectiveness

and compliance levels.

After the initial wave of lockdowns in March and April 2020, many states slackened restrictions.

However many behaviors to reduce transmission, including mask-wearing, aversion to crowded spaces,

and other adaptation measures remained after the lockdowns were lifted. To account for this we com-

pute the final contact matrixK{n}
f as a weighted average of the contact matrix under the highest NPI

K{h}
c and the current NPIK{n}

c :

K{n}
f = bhK

{h}
c + (1−bh)K{n}

c . (38)

The relative weight bh of the highest NPI matrix is calibrated through the same process as the

NPI effectiveness parameter. Finally, to prevent NPIs from changing instantaneously in the model

and causing discontinuities inappropriate for an ODE, we make the NPI level nc a continuous stock

variable with rate ṅc = (n∗−n)/l , where n∗ is a target NPI level and l determines how fast the NPI

level can be changed. Therefore, the mixing matrix we use is a weighted average between the ceiling

NPI level mixing matrix K{dnce}
f and the floor NPI level K{bncc}

f weighted by the distance between nc

and its ceiling.

A.10 Modeling NPI-induced changes in household mixing

The NPI-specific contact matricesK{n} specify average mixing levels across everyone in the popula-

tion. For some modes this is a reasonable approximation - the sample of individuals in a grocery store

is approximately random and is likely different for each visit. However, this is not a good approx-

imation of households, in which the same set of individuals mixes every day. Consider a stringent

intervention that confined everyone to their home: the mixing weights for each other mode would

drop to zero, but the mixing weights for the household would remain at one (because the number of

unique household contacts remains constant). This formulation would model the situation in which

all individuals are confined to a single (gigantic) household. To approximate the reality that people

are confined to different households, we assume that the number of infections transmitted within the

household is proportional to the amount of mixing outside the household. That is:

Φ{n}
household =

∑
m 6=household

wm(Φ{n}
m ) (39)
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A.11 Seasonality

The PBM considers seasonality in the transmissibility and social mixing. This is modeled by multi-

plying ce f f βe f f by a time-varying term denoted by ϑ(t ) that has an average value equal to one over a

year. We use a simple sinusoidal function to describe ϑ(t ) given by

ϑ(t ) = 2+2s[1− sin2(πt/365)]

2+ s
, (40)

where s is a tunable constant. For s = 0 we get no seasonal effects and the multiplicative parameter

ϑ = 1. As s →∞, the multiplicative parameter ϑ(t ) will tend to vary between 0 in early July and 2 in

early January with an average value of 1. The sinusoidal function assumes that the seasonal decrease

in transmissibility after January mirrors its seasonal increase after July. In reality, changes in transmis-

sibility over the year are not perfectly symmetric as given by a sinusoidal function. Future versions of

our model will relax this assumption.

In addition to the smooth change in seasonal transmissibility described by equation 40, our model

allows users to specify key date such as national holidays and sports events when people are likely to

relax social distancing measures, gather with family and friends, or in large groups, and generally be

less compliant to the NPIs.

A.12 Numerical Integration

The coupled ODEs defining our PBM are integrated numerically to track the dynamics of the popula-

tion in each compartment as they change over time. Since the model includes many compartments

and a wide range of values defining the rates across the compartments, the numerical integration of

the ODEs is a stiff problem [8], whereby the numerical solution has its step size limited more severely

by the stability of the numerical technique than by the accuracy of the technique. We implemented in

R using the deSolve package [9]. DeSolve solves initial value problems for stiff ODEs using FORTRAN

solvers of the Livermore family. There are various types of solvers that can be used [6, 7]. We tested

the lsoda, vode, and the fourth-order Runge-Kutta method and found that the lsoda method was the

most reliable for our purpose.

B Informing the model

B.1 Mixing Matrices and Population Strata

We model mixing in the population using mixing matrices. A mixing matrix describes the amount

of contact that occurs between each of the population strata. We consider six different mixing loca-

tions: household, work, school, commercial, recreational, and other. We use two sources for mixing

matrices within the baseline scenario. The first source is a mixing matrix based on the locations of

a synthetic population in the city of Portland, Oregon provided by the Network Dynamics and Sim-

ulation Science Laboratory (NDSSL) at Virginia Polytechnic Institute and State University [21]. The
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second data source is based on self-reported survey data. Over the course of one day in eight Eu-

ropean countries, 7,290 participants reported 97,074 unique contacts [22]. These results were then

extrapolated to create mixing matrices for 152 countries, including the United States [23]. We use the

US matrix as our second data source.

These sources represent two different methodologies for quantifying social mixing matrices, and

both have limitations. The NDSSL data define a contact as two simulated individuals inhabiting the

same sublocation at the same time. This method likely over-weights locations where there are many

individuals in low mixing environments, such as workplaces. Further, the data are synthetic and rep-

resent Portland on a weekday, so might not be representative of the entire United States. The Prem et

al. contacts are self-tracked, so they may over-weight contacts in close environments that are more

easily remembered, such as the home. Although they are ostensibly representative of the United

States, the original data were from European countries. Additionally, the Prem et al. matrices did

not differentiate between commercial, recreational, and other mixing. To mitigate these concerns we

averaged the mixing matrices from both sources.

States typically apply NPI and vaccination policies to specific groups. To ensure that we could rep-

resent state policies, we transformed these averaged matrices to represent the nine non-aggregated

strata shown in table 3. Creating different matrices for each state would be time-consuming and un-

necessary for the analyses we aim to perform with the model. Instead, we created a single set of

matrices using the US populations, though the size of each stratum is allowed to vary by state. The

averaged matrices contain strata by age group and chronic condition. We aggregated these strata

into three age groups (age ≤ 17, 18 ≤ age ≤ 64, age ≥ 65). To create ‘employed’ and ‘not employed’

strata we split mixing in the ’working age 18 ≤ age ≤ 64 strata. In every mixing mode except work,

we split working-age mixing in proportion to the population who were employed or not employed.

This is equivalent to assuming that average levels of mixing in the household, school, commercial,

recreational, and other settings are the same for employed and unemployed individuals. Work mode

mixing was assigned entirely to the employed strata. Based on BLS data [24] approximately 10% of

workers are younger than 20 or older than 65, these workers and their work mixing was aggregated

into their respective age groups.

We further split the employed strata into Front-line essential workers (FLEW) and other workers.

All mixing was split in proportion to population, equivalent to assuming that FLEW and other workers

have similar mixing patterns. We assumed that FLEW would only mix with other FLEW at work and,

similarly, that non-FLEW workers would only mix with other non-FLEW workers. This was based on

the Cybersecurity & Infrastructure Security Agency (CISA) guidance which indicates that most essen-

tial industries are composed entirely of essential workers [25]. We assumed that those workers with

chronic high-risk conditions have mixing behaviors identical to their colleagues without high-risk

conditions.

Some of these assumptions may not be robust. For instance, essential workers may have differ-

ent distributions of mixing compared to other workers in settings outside work. They may mix with

other essential workers more in social settings because personal relationships are linked to work re-

lationships and many social networks exhibit homophily [26]. Frontline essential workers may also

have different levels of mixing at work. Many essential jobs, such as grocery store workers or first-
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Non-aggregated Strata US Unique
Population
(millions)

Aggregated Strata

Young 73.4 Young

FLEW without high-risk conditions 36.0 FLEW

Employed, but not FLEW, without
high-risk conditions

60.0 Working age

Not employed without high-risk
conditions

33.2 Working age

Old without high-risk conditions 11.8 Old

FLEW with high-risk conditions 14.1 FLEW

Employed, but not FLEW, with
high-risk conditions

37.6 Working age with
high-risk conditions

Not employed with high-risk
conditions

20.8 Working age with
high-risk conditions

Old with high-risk conditions 37.6 Old

Table 3: Model strata and corresponding populations

responders involve high-levels of contact. However white-collar jobs are not defined by low mixing,

offices and group meetings are high-contact environments, but by the ease at which mixing can be re-

duced during a pandemic. In an analysis of O*NET data [27], RAND colleagues found that white-collar

jobs tended to have higher scores on questions that indicated higher work mixing than blue-collar or

service jobs. These mixing matrices represent baseline mixing, differences in adaptability are mod-

eled through strata-specific effects of NPIs.

Detailed strata enable us to quickly adapt if states change their vaccination policies. However,

model calibration and run-times are significantly longer with more strata, especially if the strata are

small (due to absolute solver tolerances). To ensure that no stratum was less than 5% of the popula-

tion, we aggregated the nine strata into five, as shown in Table 3. We aggregated strata that had the

same vaccination priority, for instance, FLEW are always vaccinated early irrespective of whether they

have a chronic condition. Where strata were aggregated, their mixing and disease severity are the

population-weighted average.

B.2 Model parameters

Parameters indicate how people move between states in the model. These include disease progression

rates, the proportion of individuals who enter more severe disease states, and the relative infectivity

of each stage.

Parameter estimates were selected from a review of the literature and with the input of RAND ex-

perts. To carry out sensitivity analyses of the parameters and to calibrate the model, we constructed a
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large set of independent case runs, each with a different and unique combination of model parameter

values. Parameter values for the case runs are sampled using a Latin-Hypercube approach [28, 29].

We use either a uniform or a beta-PERT (Program Evaluation and Review Technique) distribution to

sample the model parameter value, as specified within a sensitivity analysis range [30]. In the latter

case, the reference value is used to specify the mode of the beta distribution used for our parame-

ter value sampling. The model formulas shown are based on the parameters in Figures 4, 5, and 6.

Summaries of parameter estimates, sources, and sensitivity are shown in Tables 4, 5, 6 and 7

B.2.1 Duration parameters

Duration parameter estimates are shown in Table 4 and specify how fast individuals advance through

the disease phases. Estimates are for the mean duration of the phase length, rather than for any indi-

vidual’s phase lengths. The incubation phase, or pre-symptomatic phase, is the time from exposure

to the virus to the appearance of the first symptoms. We assume that immediately after exposure

individuals are not infectious, but that they become infectious before exhibiting symptoms. Some

research suggests that the pre-symptomatic phase is the most infectious period [31], we explore this

more in Section B.2.3. We assume that the infectious periods are the same length for those with mild

disease or who are asymptomatic [31]. As shown in Figure 6 all individuals who develop severe disease

must first pass through the mild disease phase. The mean duration of mild disease is similar to the

mean delay between symptom onset and hospitalization [32–37], so we assume that individuals are

admitted almost immediately to the hospital after entering the severe compartment of the model.

We describe hospital and ICU stays through two parameters. The first includes the expected time

spent in the hospital at hospitalization, which includes some expectation of ICU admission. The sec-

ond parameter is the expected time spent in the ICU at ICU admission as a fraction of the first param-

eter. For COVID-19 a significant proportion do not enter the ICU and ICU stays are long [37, 38], so

the second parameter is a large fraction of the first. The parameters are constructed in this manner so

that the length of ICU and hospital stays are not independently sampled.

B.2.2 Prognosis parameters

Prognosis parameter estimates are shown in Table 5 and specify what fraction of individuals enter

different phases, such as whether individuals with mild disease recover or develop severe disease.

We define severe disease as requiring hospitalization and critical disease as requiring ICU admission.

The proportion of asymptomatic individuals used in this model is substantially lower than early es-

timates. Recent systematic reviews have found that many early studies overestimated the fraction of

symptomatic individuals because they applied restrictive criteria for symptoms or did not observe

participants for long enough to determine if they were asymptomatic or presymptomatic [42–44].

The proportion of symptomatic infections which result in hospitalization has not been reliably es-

timated in the literature. Available estimates find high rates (19%) but are likely biased due to selection

effects which undersample mild cases [45]. Merely looking at the ratio of cumulative hospitalizations

to cumulative positive tests in US (among states who report both metrics) as of February 2020 [46]

shows a symptomatic hospitalization rate of around 6% (accounting for the proportion symptomatic
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Parameter Mode Sample
Range

Sample
Dist

Formula Sources

Duration in days of
incubation phase

5 4 - 6 PERT 1
ν + 1

γA+γS
[32, 33,
35, 39]

Proportion of incubation
phase which is
non-infectious

60% 50 - 70% PERT γA+γS

γA+γS+ν [32, 40]

Infectious duration in days
of asymptomatic and mild
disease

5 4 - 7 PERT 1
ξA

[32–36]

Expected days spent in
hospital (including ICU) at
hospitalization

8 6 - 10 PERT 1
ξH+µH+AICUχ

×(
1+ χ

ξICU+µICU

) [35, 37]

Expected days spent in the
ICU at ICU admission as a
proportion of expected days
spent in the hospital at
hospitalization

90% 80 - 100% PERT ξH+µH+AICUχ
ξICU+µICU+χ [35, 37]

Months before loss of
natural immunity

20 10 - 40% PERT ρ [41]

Table 4: Disease duration parameter estimates

shown in Table 4). The real figure is likely significantly lower than this number because we observe a

higher fraction of hospitalizations due to COVID-19 than we do COVID-19 infections.

There is evidence that the fatality rate of those hospitalized has radically decreased since the be-

ginning of the pandemic due to a combination of improved protocols and new treatment regimens.

Part of this effect is explained by a change in the age composition of the hospitalized, but accounting

for this some researchers estimate a 2 to 3-fold decrease in fatality rate among those admitted to the

hospital [47]. This finding suggests that treatment efficacy is an important time-varying confounder

in our model. Therefore, we allow a treatment efficacy stock variable T that is initiated at zero is mod-

eled as dT /d t = (T ∗−T )/tp where T is the treatment efficacy, T ∗ is the final treatment efficacy, and tp

controls how fast treatment improves. To model this, we assume that a high proportion of those ad-

mitted to the ICU die. This formulation allows treatment efficacy to become a time-varying variable,

as it has been observed empirically [47].

B.2.3 Relative Infectivity parameters

The relative infectivity, the daily expected infections of susceptible, varies by disease state. We con-

ceptualize infectivity as having two components: contact mixing, how likely people are to mix with

others, and biological transmissibility, the probability of transmission between an infectious and a

susceptible person given a contact. The infectivity is the product of these components. We define
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Parameter Mode Sample
Range

Sample
Dist

Formula Sources

Proportion of infections which are
asymptomatic

25% 15 - 50% PERT γA

γA+γS
[35, 42–44]

Proportion of symptomatic infections
which are severe (require
hospitalization)

5% 3 - 7% Uniform υ
υ+ξm+µS

See Section
B.2.2

Proportion of severe cases which are
critical (require ICU admission)

32% 26 - 38% PERT χ
χ+ξH+µH

[35, 38]

Initial proportion of critical cases
which result in death

75% 70 - 80% PERT µICU

ξICU+µICU
[38, 47, 48]

Reduction in ICU death proportion as
treatment improves

50% 40 - 60% PERT N/A [47]

Time period over which treatment
improves (months)

6 4.8 - 7.2 PERT N/A [47]

Table 5: Disease prognosis parameter estimates

infectivities relative to the asymptomatic state.

To calculate biological transmissibility we rely on viral load data and estimates of the number of

infections in the presymptomatic period. We use viral load data from individuals who tested positive

[31], assuming that the average test occurs 3 days after initial exposure [35]. Based on relationships

between biological transmissibility observed in other infectious diseases, we assume that the func-

tional form for the relative biological transmissibility, β1,2 between the viral load in two states, V L1

and V L2 is:

β1,2 = δLog10

(
V L2
V L1

)
. (41)

Where δ is a calibration parameter. Several studies have estimated that the fraction of infections

caused during the presymptomatic period is approximately 45% [10, 49]. We choose δ = 1.92 such

that 45% of infections are caused in the presymptomatic phase once contact mixing is accounted for.

We also assume that those who are asymptomatic have biological transmissibility only 75% of those

who have mild symptoms based on estimates by the CDC [36]

Contact mixing changes by disease phase because individuals may be incapacitated COVID-19 or

may voluntarily reduce their mixing to avoid infecting others. We assume that those who are presymp-

tomatic or asymptomatic do not modify their mixing relative to those who have not yet been exposed

to the virus. Those with mild symptoms reduce mixing by 40%, those who are tested positive by 80%,

those who are severe (but not yet hospitalized) by 90%, and those who are hospitalized by 95%. The

reduction for those who are hospitalized is larger than for those who are waiting for hospitalization

because hospital staff is expected to have better protective equipment than home carers. The infec-

tivities relative to the asymptomatic phase are shown in Table 6.
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Infectivity of phase relative to
asymptomatic phase

Mode Sample
Range

Sample Dist Sources

Pre-symptomatic infectious 2.07 1.65 - 2.48 PERT [10, 31, 35, 50]

Mild symptomatic 0.83 0.66 - 1.00 PERT [10, 31, 35, 50]

Severe symptomatic 0.14 0.11 - 0.17 PERT [10, 31, 35, 50]

Hospitalized 0.07 0.06 - 0.08 PERT [10, 31, 35, 50]

Tested mild symptomatic 0.28 0.22 - 0.33 PERT [10, 31, 35, 50]

Tested severe symptomatic 0.14 0.11 - 0.17 PERT [10, 31, 35, 50]

Tested asymptomatic 0.20 0.16 - 0.24 PERT [10, 31, 35, 50]

Table 6: Relative infectivity parameter estimates

B.2.4 Other parameters

We randomly sample several other parameters from distributions. These are shown in Table 7 and

pertain to testing rates, seasonality, and the effectiveness of NPIs within that state. See Sections A.3,

A.9, and A.11 for more details.

Testing and Detection Rates. In our most recent model runs, we do not assume constraints on

the availability tests. Hence we assume constant rates for ζ, ζS , and ζA. During December 2020 and

January 2021, the total daily rate of tests in the US ranged between 1.5 and 2 million tests a day, and

the positive rate was 10%. We assume the infectious duration of the mild disease is between 4 and

7 days, and between 33% and 66% of the mildly symptomatic infected individuals seek to get tested

during this time. Using these numbers, we estimate that the per-person detection rate of the mildly

symptomatic ζS ranges between 0.06 to 0.13 per day. Using the 10% positive rate and the infectious

duration of asymptomatic disease ranging between 4 and 7 days, we estimate that the per-person de-

tection rate of the asymptomatic ζA ranges between 0.01 and 0.012 per day.

Seasonality. The range of values used for our seasonality parameter s was based on estimates

used for influenza [51]. However, depending on the climate zone, the range of s varied from 0.3 to 10.

A more recent study that looked at seasonality patterns for two human coronaviruses (CoVHKU1 and

CoVOC43) found a much lower and tighter range [52]. Based on this study, we assume that s varies

between 0.15 and 0.3.

Increased progression rate for tested individuals. We estimate that, on average, those who tested

with mild symptoms will have experienced symptoms for a few days before being diagnosed. Hence

they are more likely to progress to the next disease state than those that do not seek a test. We estimate

that the time they have already spent with mild-symptoms is between 25% and 75% of the expected

duration of experiencing mild symptoms. Inverting these proportions, we estimate that the range for

κξ is between 1.33 and 4 with a most likely value of 2. Similar reasoning and estimation apply to the

asymptomatic and how long they are infectious before seeking to be tested if they suspect to have had
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contact with a confirmed case.

Parameter Mode Sample
Range

Sample
Dist

Formula Sources

Per person daily detection rate for
those not yet exposed

0.002 0.001 - 0.004 PERT ζ See Section A.3

Per person daily detection rate for
those who are asymptomatic

0.01 0.005 - 0.04 PERT ζA See Section A.3

Per person daily detection rate for
those who are symptomatic

0.2 0.1 - 0.8 PERT ζS See Section A.3

Impact of seasonality 0.2 0.15 - 0.3 PERT s See Section
A.11

Increased progression rate for tested
individuals

2 1.33 - 4 PERT κξ See Section A.1

Effectiveness of NPIs 2 0.5 - 3.5 PERT θ See Section A.9

Table 7: Other parameter estimates
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C Sensitivity Analysis

This section presents a sensitivity analysis of the model runs generated by an experimental design

that considered 2,000 independent cases, each with a unique combination of input parameter values

generated by a Latin Hypercube Sampling (LHS) approach. Each case run considers the COVID-19

dynamics for California from March 1st, 2020, to December 31st, 2020. This is the period of interest

before the distribution of the vaccines. Because our period of interest has a duration of less than

a year, we fix some model parameter values to their mode value. We do not consider them in the

sensitivity analysis. Most notably, we fix the loss of immunity rate ρ.

We focus on the three model outputs produced. These are the cumulative deaths and the cumu-

lative cases diagnosed by the end of 2020, and the hospitalized cases on that date. We use two ap-

proaches. The first is to compute the partial rank correlation coefficient (PRCC) [29] and the second

is based on Classification And Regression Tree (CART) analysis.

The partial correlation between model output and a model input measures the degree of associ-

ation between the two while controlling for the variability and the effects of the other model inputs.

The partial correlation coefficient removes issues between confounding inputs. Therefore, it is gener-

ally a better measure than simple correlation and can reveal an association between an input and an

output that is the inverse of that suggested by a simple correlation.

Figure 7 shows the PRCC values associated with the input parameters. Parameters that have been

omitted from the plot have negligible values.

Our second method uses the importance scores of a CART algorithm. CART is a supervised ma-

chine learning algorithm that is commonly applied to analyze large data sets [53, 54]. For each model

output of interest, CART creates a binary decision tree. This process recursively splits the space of

input parameter values into regions that produce comparable output. As a first step, the algorithm

uses regressions to find which input parameter and its range in values best explain the model output

variance across all the model case runs. Using a cost function, it finds the input parameter’s thresh-

old value that best splits the output data into two distinct groups. Using the CART terminology, this

creates the root-node and two first-generation leaf-nodes. If the input parameter for splitting is nu-

merical and continuous, then the algorithm uses a regression-based method. If the input parameter

is categorical, then a different approach is used to use a Gini index function instead of a cost func-

tion. This index indicates how “pure" a leaf-node is in terms of what different categorical values of the

input it includes. During this process, all input parameters and all possible split point values are eval-

uated. For a given input parameter and split point, the algorithm first splits the data into two separate

training samples and runs a regression model for each sub-sample. For each of the two sub-samples,

it then uses the sum of the squared difference between the training sub-sample data and the regres-

sion’s prediction to generate the cost function. The algorithm then chooses the input parameter and

the split point that minimizes the cost function. Thus, the cost function is minimized when the input

space is split into two regions that produce distinct outputs.

The algorithm repeats this process for each of the two first-generation groups or leaf-nodes. Thus,

using the subset of model case runs belonging to each group, we repeat the process and find which

input parameters can best split the output data into additional second-generation leaf-nodes. This
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Parameter Denoted

Proportion of incubation phase which is
non-infectious

Proportion Non- infectious
Incubation

Proportion of symptomatic infections which are
severe (require hospitalization)

Proportion Severe

Proportion of severe cases which are critical
(require ICU admission)

Proportion Critical

Proportion of infections which are asymptomatic Proportion Asymptomatic

Initial proportion of critical cases which result in
death

Proportion die in the ICU

Duration of incubation phase Incubation Days

Expected time spent in hospital (including ICU) at
hospitalization

Hospitalized Days

Infectious duration of asymptomatic and mild
disease

Symptomatic Mild Days

Per person daily detection rate for those who are
asymptomatic

zetaA

Per person daily detection rate for those who are
symptomatic

zetaS

Infectivity of phase of the mild symptomatic
relative to asymptomatic phase

m.Sm

Infectivity of phase of the severe symptomatic
relative to asymptomatic phase

m.Ss

Table 8: Shortened parameter labels of the most significant parameters found by the sensitivity anal-
yses.

process continues until a stopping criterion is satisfied. The most common stopping procedure is to

specify a minimum number of model case runs that need to be assigned to each leaf node. When

the method splits the model cases runs belonging to a given node into two leaf-nodes, and either

leaf-node has fewer cases than some minimum threshold number, then the split is not accepted, and

the node is taken as a final leaf-node. Alternatively, stopping criteria can be specified based on when

the variance of the output across all model cases contained a given leaf-node goes below a specific

threshold value.

The CART plots shown in figures 8 - 10 show the decision tree for each of the three model outputs

and help provide a visual intuition of the importance of each input parameter in splitting the data.

An overall importance score can be associated with each node calculated over the CART proce-

dures. The importance score is related to how often each input parameter is used to split the output

data most optimally over the decision tree’s nodes. It also considers how well the less optimal pa-

rameters split the data at each node without the more optimal parameters. Optimally at each node is
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Proportion Non−
 infectious Incubation

zetaA

m.Sm

Hospitalized Days

Incubation Days

Proportion Critical

Symptomatic Mild
 Days

zetaS

Proportion Severe

Proportion die in the
 ICU

Proportion Asymptomatic

−0.4 −0.2 0.0 0.2 0.4
Partial Rank Corelation Coefficent

output Cumulative Deaths Cumulative Diagnosed Currently Hospitalized

Figure 7: Partial rank correlation coefficient values associate with each input parameter for our three
model outputs,

found by finding the improvement scores associated with each node and measuring the increase in

the split’s quality in the data. The parameter with the highest quality best breaks the data into two dis-

tinct output sets. The importance score takes into account which generation the node belongs to for

the split. Parameters that split the data at the root node or the first-generation node have more weight.

Parameters used in later generation data splits carry less weight towards calculating their importance

score even if they produce high-quality data splits.

Figure 11 shows a plot of the CART importance scores associated with each input parameter.
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Proportion Severe < 0.06

Proportion die in the
 ICU < 0.77

Proportion Asymptomatic >= 0.32 Proportion Critical < 0.35

Proportion die in the
 ICU < 0.73

Proportion Critical < 0.32

yes noProportion Severe < 0.06

Proportion die in the
 ICU < 0.77

Proportion Asymptomatic >= 0.32 Proportion Critical < 0.35

Proportion die in the
 ICU < 0.73

Proportion Critical < 0.32

0.0013
100%

0.0011
49%

0.0011
32%

928e−6
8%

0.0011
25%

0.0013
17%

0.0012
15%

0.0015
2%

0.0014
51%

0.0012
17%

0.0015
34%

0.0013
17%

0.0016
17%

yes no

Figure 8: Cumulative Deaths CART decision tree.

Proportion Asymptomatic >= 0.27

Symptomatic Mild
 Days < 5.2

Proportion Asymptomatic >= 0.37

Symptomatic Mild
 Days < 5.4

zetaS < 0.083 zetaS < 0.12

yes noProportion Asymptomatic >= 0.27

Symptomatic Mild
 Days < 5.2

Proportion Asymptomatic >= 0.37

Symptomatic Mild
 Days < 5.4

zetaS < 0.083 zetaS < 0.12

0.13
100%

0.12
48%

0.11
26%

0.1
5%

0.12
21%

0.13
22%

0.14
52%

0.14
33%

0.11
5%

0.14
29%

0.15
18%

0.15
17%

0.19
1%

yes no

Figure 9: Cumulative Diagnosed CART decision tree.
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Proportion die in the
 ICU < 0.76

Proportion Severe < 0.064

Proportion Critical < 0.35

yes no
Proportion die in the

 ICU < 0.76

Proportion Severe < 0.064

Proportion Critical < 0.35

308e−6
100%

274e−6
62%

364e−6
38%

316e−6
26%

469e−6
12%

431e−6
11%

890e−6
1%

yes no

Figure 10: Hospitalized CART decision tree.

zetaS

Hospitalized Days

m.Sm

d.to.death.not.hosp

Symptomatic Mild
 Days

Proportion Asymptomatic

Proportion Critical

Proportion die in the
 ICU

Proportion Severe

0.0 0.1 0.2 0.3 0.4
importance score

output Cumulative Deaths Cumulative Diagnosed Currently Hospitalized

Figure 11: CART Importance scores for each model outputs and associated with each input parame-
ter.
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D Limitations

Population-level models are best suited to comparing potential interventions, rather than to fore-

cast outcomes. They make strong assumptions about functional forms, individual behavior, and how

parameters (such as treatment efficacy) change over time. These assumptions allow them to be in-

formed with relatively little data but limit the extent to which they can reliably reproduce or predict

the outbreak [55]. In this section, we detail several other model limitations.

Unobservable True Cases Ideally, we would observe the true case count. However because cases

can only be verified through testing, the true case count is not observed, instead, we use proxies:

confirmed cases and deaths. Both these proxies have flaws. Observed cases are confounded by testing

rates, increases in test availability have caused surges in confirmed cases leading to the overestimation

of R0. Deaths are also an imperfect proxy due to the delay between infection and death. Deaths may

also be confounded by testing in states where regulations require a positive test to report deaths.

State Mixing The model assumes that no mixing occurs across state lines. This assumption is of

little importance while the virus remains widespread in almost every county in the United States.

However, as the virus becomes more controlled in some areas of the country, travel bans may become

an important tool to stop reseeding events.

Behavioral Feedback To make accurate predictions about the future or counterfactuals about the

past, one needs to understand how populations will react to different circumstances. Compliance is

crucial to the effectiveness of NPIs but is likely a function of perceived risk. As cases decrease, even

if mandated NPIs remain stringent, compliance may decrease to the point where we are unable to

contain the spread of the virus. Conversely, people may limit their mixing voluntarily if they perceive

significant personal risks. Our PBM does not contain an endogenous model of mixing behavior and

so has limited ability to model the second-order effects in counterfactual scenarios.
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