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Catecholamine upregulation is a core pathophysiological feature in critical illness.
Sustained catecholamine β-adrenergic induction produces adverse effects relevant
to critical illness management. β-blockers (βB) have proposed roles in various critically
ill disease states, including sepsis, trauma, burns, and cardiac arrest. Mounting
evidence suggests βB improve hemodynamic and metabolic parameters
culminating in decreased burn healing time, reduced mortality in traumatic brain
injury, and improved neurologic outcomes following cardiac arrest. In sepsis, βB
appear hemodynamically benign after acute resuscitation and may augment cardiac
function. The emergence of ultra-rapid βB provides new territory for βB, and early data
suggest significant improvements in mitigating atrial fibrillation in persistently
tachycardic septic patients. This review summarizes the evidence regarding the
pharmacotherapeutic role of βB on relevant pathophysiology and clinical outcomes
in various types of critical illness.
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INTRODUCTION

The catecholamine cascade is a defining element of critical illness (Preiser et al., 2014). The α- and
β-adrenergic receptors form the response mechanism for endogenous catecholamines and
exogenously administered catecholamine vasoactive agents (e.g., dobutamine, dopamine,
norepinephrine, and epinephrine) (Preiser et al., 2014). These receptors elicit responses in nearly
every major organ system and change their expression levels during the body’s stress response to
critical illness (Belletti et al., 2020). Prolonged exposure to high levels of catecholamines in these
altered states may evoke detrimental metabolic and hemodynamic effects. Higher levels of
catecholamines appear in a myriad of critical illness etiologies and have been associated with
higher mortality (Tripathi et al., 1981; Hamill et al., 1987; Benedict and Rose, 1992; Boldt et al., 1995;
Dunser and Hasibeder, 2009).

β-blockers (βB) may be administered to manipulate the adrenergic response during critical illness.
βB are mainstay medications for cardiovascular disease states, including post-myocardial infarction
management (O’Gara et al., 2013), atrial fibrillation (AF) (January et al., 2014), and heart failure
(HF); however, evaluation of the utility of βB extends beyond long-term cardiac management into
acute management of critically ill patients (Writing et al., 2021). The purpose of this review is to
critically evaluate available literature regarding βB therapy in critical illness and describe evidence-
based βB use in presentations of critical illness including sepsis, severe burns, traumatic brain injury,
and cardiac arrest.
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TABLE 1 | Dosing and timing of βB in critical illness.

Sepsis Population β-Blockade Initiation Outcome

Study

Schmittinger et al.
(2008) Retrospective

40 patients with septic shock
and cardiac depression

Metoprolol 25–47.5 mg PO
Increased gradually to achieve
target HR (65–95 bpm) (n � 40)

Initiated only after stabilization of
cardiovascular function (17.7 ±
15.5 h after shock onset or ICU
admission)

HR control was achieved in 97.5%
of patients (n � 39) within 12.2 ±
12.4 h HR, CVP, and
norepinephrine, vasopressin, and
milrinone dosages decreased (all
p < 0.001) CI remained unchanged
whereas SVI increased (p � 0.002)

Gutierrez et al. (2009)
Retrospective

83 septic patients Any βB exposure (n � 54) vs. no
exposure (n � 29) Dosing not
reported

Not reported βB not significantly associated with
mortality in the univariate (OR �
1.83; 95% CI � 0.59–5.69) nor
multivariate model (OR � 1.843;
95% CI � 0.56–6.10)

Berk et al. (1972)Case
series

26 patients with refractory
septic shock and SBP <70 mm
Hg and UOP <12 ml/h

Propranolol 5 mg given over 2–3 h
period followed by another 5 mg
during the next 6–12 h (n � 11)

Approximately 24–48 h from start of
shock. Considered refractory to all
conventional interventions (fluids,
antibiotics, steroids)

Increased BP, PaO2, urinary output,
and total peripheral resistance in
before and after propranolol use
case series Decreased CVP, CO,
and HR Survival resulted in the 8
who had a normal or increased CO
prior to βB. The3whodid not survive
had very low CO

Gore andWolfe (2006)
Prospective

6 moderately septic,
mechanically ventilated patients
with pneumonia

Esmolol infusion to target 20% HR
reduction (range: 6–22 mg/
min) (n � 6)

Infusion started immediately
following 5 h basal measurements

Significant decrease in CI (p <
0.05) proportional to decrease in
HR (p < 0.05) No significant
difference in SVR, SVI, BP,
extremity/hepatic blood flow, REE,
oxygen consumption

Balik et al. (2012)
Prospective

10 septic patients Esmolol bolus (0.2–0.5 mg/kg)
followed by continuous 24 h
infusion with titration to achieve
20% decrease of baseline HR
(n � 10)

After correction of preload (2 h after
sepsis)

HR decreased from mean 142 ±
11/min to 112 ± 9/min (p < 0.001)
Insignificant reduction of CI (4.94 ±
0.76 to 4.35 ± 0.72 L/min/m2). SV
insignificantly increased. No
significant changes of
norepinephrine infusion (0.13 ±
0.17 to 0.17 ± 0.19 μg/kg/min),
DO2, VO2, OER or arterial lactate

Morelli et al. (2016)
Pilot

45 septic shock patients, with
an HR ≥ 95 bpm and requiring
norepinephrine to maintain
MAP ≥65 mmHg

Titrated esmolol infusion to
maintain HR between 80 and
94 bpm (n � 45)

≥24 h after hemodynamic
optimization

Decreased HR Decrease in Ea
Decreased SV (all p < 0.05) CO, EF
unchanged NE requirements were
reduced (p < 0.05)

Shang et al. (2016)
Prospective

151 patients with severe sepsis Esmolol infusion initial dose
0.05 mg/kg/min adjusted to target
HR 70–100 bpm (n � 75) vs control
(n � 76)

Not reported HR reached target within 72 h for
both treatment groups ScvO2
increased in the esmolol group and
decreased in the control group (p <
0.01). Lactate reduction in control
group at 48 h (p < 0.05) Shorter
duration of mechanical ventilation
in the esmolol group (p < 0.05)

Du et al. (2016)
Prospective

63 patients with septic shock
within 48 h of diagnosis

Esmolol 20 mg loading dose
following by 25 mg/h infusion to
achieve HR reduction by 10–15%
from baseline (n � 63)

Hemodynamically stable with HR ≥
100 bpm <48 h after septic shock
started

BP was unaltered SV was
increased compared with before
esmolol therapy (43.6 ± 22.7 vs.
49.9 ± 23.7 ml; p � 0.047)
Decreased lactate levels (1.4 ± 0.8
vs. 1.1 ± 0.6 mmol/L; p � 0.015)

Morelli et al.
(2013) RCT

154 septic patients Esmolol 25 mg/h (titrated every
20 min to reach target HR 80–94
bpm) (n � 77) vs control (n � 77)

Initiated after randomization that
was performed after resuscitation
with fluid and vasopressors for 24 h

Decreased HR—28 bpm
[IQR −7−21; p < 0.001] Decreased
NE requirement −0.01 [IQR
−0.2–0.44; p � 0.003] Decreased
28-days mortality 49.4 vs. 80.5%
(p < 0.001)

(Continued on following page)
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TABLE 1 | (Continued) Dosing and timing of βB in critical illness.

Sepsis Population β-Blockade Initiation Outcome

Study

Yang et al. (2014) RCT 41 septic patients Esmolol 0.05 mg/kg/min (adjusted
to achieve HR of <100 bpm in 2 h)
(n � 21) vs. control (n � 20)

Initiated after randomization that
was performed after 6-h
resuscitation with fluid and
vasopressors

Decreased HR 12 h (93 ± 4; p <
0.05); Decreased CI (3.3 ± 0.8; p <
0.05) No significant changes in
MAP, CVP, or SVI ScVO2 was not
decreased

Wang et al.
(2015) RCT

90 septic patients Esmolol + milrinone (n � 30) vs.
milrinone (n � 30) vs. control
(n � 30) Dosing not reported

Not reported 100% HR control (74–94 bpm)
within 96 h of initiation (p < 0.001
vs. milrinone) Increased 28-days
survival 60 vs. 33.3% (milrinone)
vs. 26.7% (control) Decreased NE
use 0.07 ± 0.04

Xinqiang et al.
(2015) RCT

48 septic patients Esmolol 0.05 mg/kg/min (adjusted
to achieve HR of <100 bpm within
24 h) (n � 24) vs. control (n � 24)

Initiated after randomization that
was performed after resuscitation
with fluid and vasopressors for 6 h

Decreased LOS (13.75 ± 8.68 vs.
21.7 ± 6.06; p < 0.001) Decreased
28-days mortality (25.0 vs. 62.5%;
p < 0.009) Decreased HR, arterial
lactate levels Increased SVRI, SVI,
ScVO2 (all p < 0.01)

Wang et al.
(2017) RCT

76 septic patients Esmolol 0.05 mg/kg/hr (titrated
every 5 min to reach the HR of
<95/min within 4 h) (n � 30) vs.
control (n � 30)

Initiated after randomization that
was performed after resuscitation
with fluid and vasopressors for 24 h

HR decreased significantly at each
time point No significant difference
in MAP CI significantly increased at
> 24 h SVI significantly increased
at > 4 h No difference in 28-days
mortality (30 vs. 36.7%; p � 0.583)

Liu et al. (2019) RCT 100 septic patients Esmolol 25 mg/h (titrated every
20 min to reach the HR between
80 and 100/min within 12 h) (n �
50) vs control (n � 50)

Initiated after randomization that
was performed after being
resuscitated with fluid and
vasopressors for 24 h

No difference in 28-days mortality
(62 vs 68%; p � 0.529) Lower HR
on day 1–7; but overall no
statistically significant difference in
HR (p > 0.05) No significant
difference in total does of NE,
lactate level, inflammatory
markers, APACHEⅡ, SOFA,
hospital LOS (all p > 0.05)

Kakihana et al.
(2020) RCT

151 septic patients with HR >
100 bpm and diagnosis of atrial
fibrillation, atrial flutter, or sinus
tachycardia

Landiolol 1 μg/kg/min (titrated
every 15–20 min, until the HR
decreased to less than 95 bpm)
(n � 76) vs. control (n � 75)

Landiolol was initiated within 2 h
after randomization that was
conducted after being resuscitated
with fluid and vasopressors (mean
time from ICU admission to
randomization: 15.8 h in landiolol vs.
13.5 h in control)

Larger proportion of patients had
HR 60–94 bpm 24 h after
randomization (55% [41 of 75] vs.
33% [25 of 75]), with a between-
group difference of 23.1% (95% CI
7.1–37.5; p � 0.0031) Decreased
incidence of new-onset arrhythmia
by 168 h (9 vs. 25%; p � 0.015) No
significant difference in 28-days
mortality (p � 0.22), hospital free
days (p � 0.91), ICU free days (p �
0.55), and ventilator free days
(p � 0.47)

Walkey et al. (2016)
Retrospective

39,693 septic patients with
atrial fibrillation

CCB (n � 14,202) vs. βB (IV
metoprolol, esmolol, atenolol,
labetalol, and propranolol; n �
11,290) vs. digoxin (n � 7,937) vs.
amiodarone (n � 6,264)

On average, received first atrial
fibrillation medication 1–2 days into
hospital stay

βB were associated with lower
hospital mortality when compared
with CCBs (n � 18,720; relative risk
[RR] � 0.92; 95% CI � 0.86–0.97),
digoxin (n � 13,994; RR � 0.79;
95% CI � 0.75–0.85), and
amiodarone (n � 5,378; RR � 0.64;
95% CI � 0.61–0.69) Results were
similar among subgroups with
new-onset or preexisting AF, heart
failure, vasopressor-dependent
shock, or hypertension

(Continued on following page)
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TABLE 1 | (Continued) Dosing and timing of βB in critical illness.

Sepsis Population β-Blockade Initiation Outcome

Study

Bosch et al. (2020)
Retrospective

666 septic patients with atrial
fibrillation with rapid ventricular
response

CCB (n � 225) vs. βB (IV metoprolol
or esmolol; n � 67) vs. amiodarone
(n � 337) vs. digoxin (n � 37)

Amiodarone and CCB added within
1–2 h of start of atrial fibrillation vs
4.9 h for digoxin vs. 10.2 h for βB

The adjusted hazard ratio for HR of
<110 beats/min by 1 h was 0.50
(95% CI � 0.34–0.74) for
amiodarone vs. βB, 0.37 (95%CI �
0.18–0.77) for digoxin vs. βB, and
0.75 (95% CI � 0.51–1.11) for
CCB vs. βB

Macchia et al. (2012)
Retrospective

9,465 septic patients Chronic outpatient βB (n � 1,061)
vs. no previous βB treatment (n �
8,404)

N/A Pre-morbid βB Lower mortality at 28 days (188/
1,061 [17.7%]) than those
previously untreated (1857/8,404
[22.1%]) (OR � 0.78; 95% CI �
0.66–0.93; p � 0.005)

Fuchs et al. (2017)
Prospective
(secondary analysis)

296 septic patients with chronic
βB treatment

Continuation of βB during acute
phase of sepsis (n � 167) vs.
discontinuation during sepsis
(n � 129)

Acute phase of sepsis defined as
2 days before to 3 days after
disease onset

Continuation of βB therapy was
significantly associated with
decreased hospital (p � 0.03), 28-
days (p � 0.04) and 90-days
mortality rates (40.7 vs. 52.7%; p �
0.046)

Singer et al. (2017)
Retrospective

6,839 septic patients Chronic outpatient βB (n � 2,838)
vs. no previous βB treatment (n �
4,001)

N/A Pre-morbid βB Decreased mortality during
hospitalization (24 vs 31%; p <
0.0001) Multivariable logistic
regression models 31% decrease
in in-hospital mortality (adjusted
OR � 0.69; CI � 0.62–0.77)
Decreased 30-days mortality (13
vs. 18%; p < 0.0001)

Guz et al. (2021)
Prospective

1,186 septic patients Chronic outpatient βB (n � 320) vs
no previous βB treatment (n � 866)

N/A Pre-morbid βB No significant difference in crude
30-days and 90-days mortality
rates (30 days, 15 vs 19% [p �
0.25]; 90 days, 22 vs 24% [p �
0.51]) Reduction in 30-days
mortality rates for patients with
absolute tachycardia (OR � 0.406;
95% CI � 0.177–0.932) 30-days
survival benefit in the subgroup of
patients with relative tachycardia in
both univariate and multivariate
analysis (OR � 0.496; 95% CI �
0.258–0.955; p � 0.04)

Burns

Study Population Beta-blockade Initiation Outcome

Baron et al. (1997)
Prospective

22 pediatric burn patients
(>40% of TBSA)

Propranolol 0.5–1 mg/kg PO or IV
Q 8 h for 10 days (n � 22)

During the catecholamine-induced
hypermetabolic phase

Propranolol use significantly
decreased daily average HR
(10–13%) and RPP (10–16%)
compared to 24-h mean pre-
treatment

Herndon et al.
(2001) RCT

25 pediatric burn patients
(>40% of TBSA)

Propranolol 0.33 mg/kg/4 h
through NGT (n � 13) vs. control
(n � 12) (dose later adjusted for HR
20% less than basal)

Propranolol was initiated
immediately following the second
staged grafting procedure
(approximately 8–12 days after initial
admission)

Propranolol decreased HR (p �
0.001) decreased REE (p � 0.001),
oxygen consumption (p � 0.002),
and prevented lean mass loss
(p � 0.01)

Jeschke et al.
(2007) RCT

245 pediatric burn patients
(>40% of TBSA)

Propranolol 0.5–1.5 mg/kg/6 h PO
(n � 102) vs. control (n � 143)

Started after 7 days No significant difference between
groups in terms of mortality (5 vs.
6%), incidence of infections (21 vs.
30%), or sepsis (7 vs. 10%)
Decreased REE (p < 0.05)

(Continued on following page)
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TABLE 1 | (Continued) Dosing and timing of βB in critical illness.

Sepsis Population β-Blockade Initiation Outcome

Study

Herndon et al.
(2012) RCT

179 pediatric burn patients
(>30% of TBSA)

Propranolol dose required to
reduce HR 15% (mean dose
4 mg/kg/day PO) (n � 90) vs
control (n � 89)

Propranolol started 3 ± 2 days after
admission

Propranolol reduces HR (p � 0.01),
cardiac work, central body mass
and trunk fat, and improves lean
body mass and bone mineral
density (p � 0.02) Decreased
likelihood of total body mass loss
at 6 months (OR � 0.5; 95% CI �
0.25–0.75) No difference in
mortality (p � 0.72)

Williams et al.
(2011) RCT

406 pediatric burn patients
(>30% of TBSA)

Propranolol 1 mg/kg/day PO
(divided Q 6 h; adjusted for HR
15–20% less than basal) (n � 171)
vs. control (n � 235)

From 24 to 72 h until end of
admission (once patients were fluid
stabilized)

Propranolol at dose of 1 mg/kg/
day reduces HR 15% with respect
to basal The dose must increase to
4 mg/kg/day the first 10 days in
order to maintain the effect
(p < 0.05)

Arbabi et al. (2004)
Retrospective

129 adult burn patients (mean
TBSA 14 ± 12%); 21 pre-
hospital βB vs 22 hospital βB vs.
86 control

Metoprolol, atenolol, esmolol,
labetalol, or propranolol (at
therapeutic doses)

All pre-hospital βB patients
remained on treatment once
admitted Hospital βB patients were
initiated on βB a mean 8.8 days
postinjury

In multivariate analyses, pre-
hospital βB use was associated
with significant decrease in fatal
outcome and healing time (5 vs
13% control; p < 0.05)

Mohammadi et al.
(2009) RCT

79 adult burn patients (20–50%
of TBSA)

Propranolol 1 mg/kg/d and max
dose of 1.98 mg/kg/d given in six
divided doses (adjusted to achieve
20% HR reduction from baseline)
(n � 37) vs. control (n � 42)

Started on 4th day of admission
after hemodynamic stabilization

Decreased healing time (16.13 ±
7.40 days vs. 21.52 ± 7.94 days;
p � 0.004) Less time required
before skin grafting procedure
(28.23 ± 8.43 days vs. 33.46 ±
9.17 days; p � 0.007) Decreased
size of burn wound that needed
grafting (p � 0.006) Shorter
hospital LOS (30.95 ± 8.44 days
vs. 24.41 ± 8.11 days; p � 0.05)

Ali et al. (2015) RCT 69 adult burn patients (>30% of
TBSA)

Propranolol at a dose that reduces
HR by 20% (average dose 3.3 ±
3.0 mg/kg/day) (n � 35) vs. control
(n � 34)

Administered within 48 h of burn
and given throughout hospital stay

Lower daily average HR over
30 days (p < 0.05) Decreased
blood loss during grafting
procedures (5–7% improvement in
perioperative hematocrit; p �
0.002) Decreased time between
grafting procedures (10 ± 5 days
vs. 17 ± 12 days; p � 0.02)

Cheema et al.
(2020) RCT

70 adult burn patients (20–40%
of TBSA)

Propranolol at dose of
0.5–3 mg/kg/day (adjusted to
achieve a 20% max HR reduction)
(n � 35) vs. control (n � 35)

Started on 3rd postburn day after
hemodynamic stabilization

Less muscle wasting (mean mid-
arm circumference 27.57 ±
1.62 cm vs. 24.46 ± 1.77 cm; p <
0.0001) Faster wound healing
(13.20 ± 1.90 days vs 20.34 ±
2.32 days; p < 0.001) Less time
required before skin grafting
procedure (23.87 ± 2.36 vs.
33.64 ± 3.15 days; p < 0.001)
Shorter hospital LOS (26.69 ±
3.58 days vs 37.71 ± 3.68 days;
p < 0.001)

Traumatic Brain
Injury (TBI)

Study Population Beta-blockade Initiation Outcome

Cruickshank et al.
(1987) RCT

114 patients with acute head
injury

Atenolol 10 mg IV Q 6 h for 3 days
followed by atenolol 100 mg PO
once daily for 4 days (n � 56) vs
control (n � 58)

Immediately after hemodynamic
stabilization (mean 20.2 h after
trauma)

Significantly inhibited the rise in
arterial CKMB (p < 0.01) Abolished
focal myocardial necrotic lesions
Reduced likelihood of SVT and ST-
segment and T-wave changes

(Continued on following page)
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TABLE 1 | (Continued) Dosing and timing of βB in critical illness.

Sepsis Population β-Blockade Initiation Outcome

Study

Arbabi et al. (2007)
Retrospective

4,117 trauma patients with and
without head injury

βB therapy (n � 303) vs. control (n �
3,814)

Administration of scheduled βB
during the hospital stay

Significantly decreased risk of
mortality in all patients (OR � 0.3;
p < 0.001) and patients with severe
head injury (OR � 0.2; p < 0.001)
No significant difference in late
deaths after 48 h of hospitalization
(OR � 0.7; p � 0.2)

Cotton et al. (2007)
Retrospective

420 patients with a head
Abbreviated Injury Scale ≥3

Metoprolol, propranolol, labetalol,
atenolol, esmolol, or sotalol use
(n � 174) vs. control (n � 246)

Administration of βB for at least 2
consecutive days during
hospitalization

Significantly decreased mortality
rate (p � 0.036)

Inaba et al. (2008)
Retrospective

1,156 patients with blunt head
injuries requiring ICU admission

βB therapy (n � 203) vs control
(n � 953)

Administration of βB during
hospitalization in the ICU

Significantly decreased overall
mortality rate (adjusted OR � 0.54;
95% CI � 0.33–0.91; p � 0.01)
Significantly decreased mortality
rate in patients ≥55 years old with
severe head injuries (28 vs. 60%;
OR � 0.3; 96% CI � 0.1–0.6;
p � 0.001)

Schroeppel et al.
(2010) Retrospective

2,601 patients with blunt TBIs Atenolol, carvedilol, esmolol,
labetalol, metoprolol, nadolol,
propranolol, or sotalol use (n � 506)
vs. control (n � 2,095)

Administration of more than one
dose of a βB during hospitalization

Decreased mortality rate (OR �
0.347; CI � 0.246–0.490;
p < 0.0001)

Schroeppel et al.
(2014) Retrospective

1,755 patients with TBIs Atenolol, carvedilol, esmolol,
labetalol, metoprolol, propranolol,
or sotalol (n � 427) vs. control (n �
1,328) Propranolol (n � 78) vs.
other βB (n � 349)

Administration of more than one
dose of a βB during hospitalization

No difference in mortality rate
between βB and control with the
adjusted analysis (adjusted OR �
0.850; 95% CI � 0.536–1.348)
Decreased mortality rate with
propranolol compared to other βB
(3 vs 15%; p � 0.002)

Zangbar et al.
(2016) Retrospective

356 patients with blunt TBIs
requiring ICU admission

Metoprolol (n � 178) vs. no βB (n
� 178)

Administration of at least one dose
of a metoprolol during
hospitalization in the ICU

Significantly decreased mortality
rate (78 vs 68%; p � 0.04) No
difference in the mean heart rate
(p � 0.99)

Mohseni et al.
(2015) Retrospective

874 patients with an isolated
severe TBI and an intracranial
injury with Abbreviated Injury
Scale ≥3

Labetalol, metoprolol, or other βB
(n � 287) vs. control (n � 587)

Administration of a βB during
hospitalization with median time to
first admission of 1 day and 75% of
patients receiving the first dose by
day 3

Significantly decreased mortality
rate (11 vs 17%; p � 0.007)
Significantly increased mortality
rate in patients not on pre-
hospitalization βB (adjusted OR �
3.0; 95% CI � 1.2–7.1; p � 0.015)

Ko et al. (2016)
Retrospective

440 patients with a moderate to
severe TBI (head Abbreviated
Injury Scale 3–5) requiring ICU
admission

Propranolol 1 mg IV Q 6 H within
24 h of admission while in the ICU,
then 40 mg PO BID after patient
transferred to the floor (n � 109) vs.
control (n � 331)

Administration of propranolol within
24 h of admission

Significantly decreased mortality
rate after predictors of mortality
were adjusted (adjusted OR �
0.25; p � 0.012)

Murry et al. (2016)
Retrospective

38 patients with moderate to
severe TBI requiring ICU
admission

Early low dose propranolol 1 mg IV
Q 6 H (n � 28) vs. standard of care,
which could include βB (labetalol,
metoprolol) at any point during
hospitalization (n � 10)

Administration of propranolol within
12 h of ICU admission and for a
minimum of 48 h

Decreased rates of bradycardia
events (1.6 vs. 5.8; p � 0.05)
Decreased rates of hypotensive
events (0.8 vs. 0.5; p � 0.6)
Decreased ICU LOS (15.4 vs.
30.4 days; p � 0.02) and hospital
LOS (10 vs. 19.1 days; p � 0.05)
Similar mortality rates (10 vs.
10.7%; p � 0.9)

(Continued on following page)
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TABLE 1 | (Continued) Dosing and timing of βB in critical illness.

Sepsis Population β-Blockade Initiation Outcome

Study

Ley et al. (2018)
Prospective

2,252 patients with TBI
requiring ICU admission

Atenolol, esmolol, propranolol,
metoprolol, labetalol, or another βB
(n � 1,120) vs. control (n � 1,132)

Administration of βB during
hospitalization

Decreased 30-days mortality rate
(13.8 vs 17.7%; p � 0.013)
Decreased 30-days mortality rates
with propranolol vs. other βB (9.3
vs. 15.9%; p � 0.003) Increased
hospital LOS (21 ± 25 days vs 10 ±
37 days; p < 0.01) Increased
hospital LOS with propranolol vs.
other βB (21 ± 25 days vs. 13 ±
14 days; p < 0.01)

Cardiac Arrest

Study Population Beta-blockade Initiation Outcome

Lee et al. (2016)
Retrospective

41 patients with RVF in out-of-
hospital cardiac arrest

Esmolol (loading dose: 500 μg/kg,
infu- sion: 0–100 μg/kg/min)
(n � 16) vs control (n � 25)

Given after obtaining verbal informed
consent from patient’s proxies,
written consent afterwards

Significantly more sustained
ROSC (56 vs 16%; p � 0.007)
Increased survival and good
neurological outcomes at 30 days,
2 months, and 6 months (18.8 vs.
8%; p � 0.36)

Driver et al. (2014)
Retrospective

25 patients with RVF in out-of-
hospital cardiac arrest

Esmolol (loading dose: 500 μg/kg,
infu- sion: 0–100 μg/kg/min) (n � 6)
vs control (n � 19)

Approximately 46 min into cardiac
arrest (range 34–59 min)

Higher rates of temporary (67 vs.
42%) and sustained ROSC (67 vs.
32%) Increased survival to ICU
admission (66 vs. 32%) and
discharge (50 vs. 16%) Increased
discharge with favorable
neurologic outcome (50 vs. 11%)
No stats are significant given small
sample size

Nademanee et al.
(2000) Prospective

49 patients with frequent VF/VT
episodes with recent MI

Propranolol IV 0.15-mg/kg dose
over 10 min and then as a 3–5-mg
dose Q 6 h (n � 14) vs Esmolol IV
300–500-mg/kg loading dose for
1 min followed by maintenance
dose of 25–50 mg/kg/min (n � 7)
vs LSGB (n � 6) vs. antiarrhythmic
(n � 22)

Received sympathetic blockade
treatment within 1 h after all of the
antiarrhythmic medications initiated
during the code were discontinued

Decreased mortality significantly at
1-week (22 vs. 82%; p < 0.0001)
and 1 year (67 vs. 5%; p < 0.0001)
compared to antiarrhythmic
medication

Chatzidou et al.
(2018) Prospective

60 ICD patients with recurrent
VF/VT within a 24-h period

Propranolol 40 mg PO Q 6 h
(cumulative dose 160 mg/24 h) (n
� 30) vs Metoprolol 50 mg PO Q
6 h (cumulative dose 200 mg/24 h)
(n � 30)

Not documented Propranolol patients had
decreased incidence of VT/VF (p �
0.001) and decreased ICD
discharges (p � 0.004) More
propranolol patients were free of
arrhythmic events within 24 h (90
vs 53.3%; p � 0.03) Arrhythmic
events were more likely to be
terminated with propranolol
(hazard ratio � 0.225; 95% CI �
0.112–0.453; p < 0.001) Time to
arrhythmia termination and
hospital LOS were significantly
shorter with propranolol compared
to metoprolol (p < 0.05 for both)

Skrifvars et al.
(2003) Retrospective

98 patients receiving post-
resuscitation care within 72 h of
out-of-hospital VF arrest (79 βB
vs 19 control)

Metoprolol (at least 50 mg PO BID
or 5 mg IV BID) or bisoprolol (at
least 2.5 mg two times a day orally)
n breakdown not reported

Initiated within 72 h post-
resuscitation

Increased survival in multiple
regression model (44 vs 79%; p �
0.005)

(Continued on following page)
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METHODS

A literature search was performed to identify studies including
critically ill patients who received βB therapy. The PubMed
database was searched for studies published between January 1970
and March 2021 using combinations of the search terms beta-
blockers, cardiac arrest, critical illness, esmolol, intensive care unit,
sepsis, septic shock, severe burns, and traumatic brain injury. Studies
reporting on patientsmanaged in the intensive care unit (ICU) setting
treated with βB were included. No limits on study designs were made
and included prospective, retrospective, observational, or
interventional designs. References within original research articles,
review articles, editorials, abstracts, meta-analyses, and systematic
reviews were screened for inclusion. A summary of the included
works outlining sample size, disease state, βB agent used, dosing,
timing of initiation, and outcomes can be found in Table 1.
Furthermore, a summary of frequently questions regarding βB in
critical illness are summarized in Table 2.

Beta-Adrenergic Physiology and Rationale
in Critical Illness
To appreciate the potential benefits of βB as a pharmacologicallyy
supported intervention inhas several rationales for use during
critical illness, conceptualization of β-adrenergic physiology

during critical illness is necessary. Alterations in both as the
dysregulated signaling molecules and receptorsadrenergic
cascade provides intervenable pathways. Complexity further
increases as the detrimental adrenergic susceptibilities differ
among organ systems, withThese β-adrenergic effects in are
pronounced in cardiac and pulmonary tissues most relevant to
critically ill patientsduring a critically ill state (Dunser and
Hasibeder, 2009). Figure 1 provides a visual representation
ofillustrates the physiologic response to β receptor agonism
and antagonism, emphasizing the negative effects of β receptor
stimulation in critical illness.

Catecholamine Up-Regulation
The principle sSympathetic nervous system (SNS) signaling
hormones include the catecholamines norepinephrine, (agonist
of α1, α2, β1, and minorly β2), epinephrine (agonist of α1, α2, β1,
and β2), and dopamine, which increase during any state of stress
(dose-dependent agonist of α1, α2, β1, and minorly β2) (Table 3).
(Dunser and Hasibeder, 2009) The stress of Ccritical illness
results in massive SNS signaling (Dunser and Hasibeder,
2009). Cardiac arrest and septic shock display profound
increases in circulating epinephrine (up to 300 times baseline)
and norepinephrine (14 times baseline) (Wortsman et al., 1984;
Jones and Romano, 1989). High These higher circulating
catecholamine levels are associated with increased mortality.

TABLE 1 | (Continued) Dosing and timing of βB in critical illness.

Sepsis Population β-Blockade Initiation Outcome

Study

KEY

APACHE II � acute
physiology and
chronic health
evaluation

βB � beta-blockers BID � twice daily BP � blood pressure

CCB � calcium
channel blocker

CI � cardiac index, confidence
interval

CKMB � myocardial isoenzyme of
creatine kinase

CO � cardiac output

CVP � central
venous pressure

DO2/VO2 � systemic oxygen
delivery/consumption

Ea � static arterial elastance EF � ejection fraction

HR � heart rate ICD � implantable cardioverter
defibrillator

ICU � Intensive Care Unit IV � intravenous

LOS � length of stay LSGB � left stellate ganglionic
blockade

MAP � mean arterial pressure MI � myocardial infarction

N/A � not applicable NGT � nasogastric tube NE � norepinephrine OER � oxygen extraction ratio
OR � odds ratio PaO2 � arterial oxygen

pressure
PO � oral REE � resting energy expenditure

ROSC � return of
spontaneous
circulation

RPP � rate pressure product R/VF � refractory ventricular
fibrillation

SBP � systolic blood pressure

ScVO2 � central
venous oxygen
saturation

SOFA � sequential organ failure
assessment

SV � stroke volume SVI � stroke volume index

SVR � systemic
vascular resistance

SVRI � systemic vascular
resistance index

SVT � supraventricular tachycardia TBSA � total body surface area

VT � ventricular
tachycardia
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and may potentially be used as an additional factor in predicting
mortality These higher circulating catecholamines can predict
mortality in the critically ill (Benedict and Rose, 1992; Boldt et al.,
1995), but wWhether catecholamine upregulation represents
treatable pathophysiology or a necessary compensation
inevitably linked to disease severity and poorer outcomes
remains debatedshould be targeted remains unclear, as it
provides the physiologic adaptation to shock and critically ill
states.

Cardiac β Effects
β-adrenergic pathways extensively regulate cardiac function and
function and, specifically, hemodynamics due to extensive cardiac
expression. β1 comprises 80% of cardiac β-receptors and
mediates inotropy, chronotropy, lusitropy (i.e. relaxation rate),
and dromotropy (i.e. conduction speed). However, at high
concentrations of catecholamines, the lusitropic effect is
overwhelmed by tachycardia and increased contractility
(Dunser and Hasibeder, 2009; Wachter and Gilbert, 2012). β2
produces similar cardiac effects to β1 (Belletti et al., 2020), but
sustained β2 activation leads to a counteracting of β1 effects
(Lucia et al., 2018). Moreover, the cardiac-mediated epinephrine
response appears independent of functional β2 and is mediated
primarily by β1relies on β1 activation (Chruscinski et al., 1999).
This Experimental evidence touts β1 activation appearspathways
as proapoptotic to cardiac myocytes, while β2 may confer
protection (Patterson et al., 2004). Although, interestingly,
recent preclinical data in mice demonstrated prevention of
cardiac mitochondrial dysfunction via ablation of β2 signaling
after burns (El Ayadi et al., 2019). β1 predominates cardiac
expression over β2 (4 to 1), but states such as HF can tip the
balance nearly even through β1 downregulation by sustained
adrenergic stimulation (Bristow et al., 1986). Increased β2
expression may provide benefits through increase contractility

and angiogenesis, Research diverges in identifying
cardioprotective vs. deleterious roles from the higher
proportion of β2 expression as some reports indicate
improvements in contractility, angiogenesis, and cardiac
remodeling (Rengo et al., 2012). but In contrast, others
implicatemay promote β2 as arrhythmiasmogenic (Nguyen
et al., 2015). However, commonly used transgenic mice strains
overexpressing β2-receptors may represent non-physiologic
environments given that HF does not upregulate β2-receptors.
This augmented receptor physiology may increase the rate of
arrhythmogenicity attributed to β2-receptors in these animal
studies (Bristow et al., 1986). Unlike β1 and β2, β3 induces
negative inotropy and blunts the catecholamine response
(Moniotte et al., 2001), and expression is upregulated in
critical illness (Moniotte et al., 2007). IThe increased β3
expression may prime the heart for consequences like septic
myocardial depression (Yang et al., 2018). Interestingly,
Myagmar et al. recently described the absence of β2 and β3 in
cardiac myocytes, while β1 was present in all myocytes. β2 and β3
are primarily in other cell types (e.g., endothelial cells)
underscoring the reliance on β1 in cardiac muscle, which raise
further concerns regarding the appropriateness of artificial β2
overexpression in cardiac myocytes (Myagmar et al., 2017).

Clinical evidence supporting harmful β-mediated harmful
effects has been reported. β1 drives Ttachycardia in critical
illness (primarily β1 driven) may increase the, increasing the
risk of cardiac events in those with pre-existing heart disease
(Sander et al., 2005). Additionally, left ventricular (LV) apical
ballooning syndrome (i.e., Takotsubo syndrome) has a links to
endogenous adrenergic stimulation (Wittstein et al., 2005) and
specifically β-agonism (Hajsadeghi et al., 2018). In sepsis, despite
elevated catecholamines, overall β-receptor downregulation
contributes to septic myocardial dysfunction (Suzuki et al.,
2017). Cumulatively, these cardiac effects support the rationale

TABLE 2 | Practical questions regarding βB use in critical illness.

1. Are βB safe in critical illness? Yes, βB appear to be safe in the setting of critical illness. Adequate volume resuscitation should be a target prior to βB initiation to ensure
appropriate preload
2. What are the hemodynamic effects of βB in critical illness?
a. HR: reduce heart rate
b. SV: decreased inotropy is expected; however, in a patient with adequate preload, increased diastolic times may improve filling and improve SV
c. CO: decreased inotropy and chronotropy are expected effects; however, due to potential increases in SV/cardiac efficiency, βB effect on CO can be neutral to improved
d. MAP: Blood pressure is the product of CO and systemic vascular resistance (SVR). βB have no notable effects on SVR, but potential improvements in CO can be

observed, especially in the setting of mitigating arrhythmias (e.g., atrial fibrillation). As such, cardioselective βB use may be associated with neutral to positive effects on MAP.
3. How does βB use effect vasoactive agents like norepinephrine?
When used at the appropriate time (i.e. if persistent tachycardia remains despite fluid resuscitation and control of pain and agitation), βB can be norepinephrine-sparing allowing
for decreases in norepinephrine dosages without a higher need for inotropic support. βB allow decreased HR which facilitates increased ventricular filling times during diastole,
subsequently increasing SV, SVR, and left ventricularLV stroke work to maintain MAP and lower catecholamine requirements
4. Should pulmonary conditions like COPD or asthma preclude βB use in critically ill patients? In the setting of a compelling indication (e.g., atrial fibrillation), no, βB
should not be withheld due to this co-morbidity. Further, continuation of home βB use even in the setting of pulmonary conditions appears safe and associated with improved
outcomes. In particular, cardioselective βB (e.g., esmolol) appear to be the lowest risk
5. How should βB be dosed in different types of critical illness?
a. Sepsis:Data are mixed; however, esmolol 0.5 mg/kg/min or 25 mg/h IV continuous infusions are the twomost frequent published approaches. In most studies, infusions

were titrated to achieve a 20% HR reduction
b. Burns: Dosing ranges of propranolol 0.5–3 mg/kg/day IV or PO divided three to four times per day were most prevalent in the existing literature
c. TBI: A wide variety of agents and doses have been studied with most robust data reporting use of atenolol, esmolol, propranolol, metoprolol, or labetalol, but failing to

mention dosing strategies
d. Cardiac Arrest: IV esmolol loading doses were reported as 300–500 μg/kg as well as 300–500 mg/kg. Propranolol, metoprolol, and bisoprolol were also utilized
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of study behindfor β1-selective βB (e.g., esmolol) in critical illness,
as β2 and β3 are is potentially protective.

Cardiac β-Blockade Effects
Antagonism The antagonism of cardiac β-receptors produces
negative inotropic and chronotropic effects asslows conduction
velocity through sino-atrial and atrioventricular nodes and

produces negative inotropic and chronotropic effects decreases.
These effectsThis mechanism may decrease cardiac output and
blood pressure, demonstrated by. Experimental studies have
shown impairment ined right ventricular function and
worsened perfusion with βB when useduse at the onset of
septic shock (Coppola et al., 2015). Typically, these effects
limit their use in critical illness application; h. However,

FIGURE 1 | Physiologic response to β-adrenergic receptor agonism and antagonism in critical illness. The catecholamine response characterized by epinephrine,
norepinephrine, and dopamine release result in stimulation of β1 (majorly) and β2 (minorly). In contrast, β3 agonism blunts the catecholamine response. The physiologic
response to β1, β2, and β3 agonism culminates in numerous negative effects within critical illness that can ultimately lead to negative clinical outcomes including
increased mortality. This introduces the beneficial physiologic response of βB antagonism as a way to mediate the detrimental effects of the hyperadrenergic state
prominent in various types of critical illness. Illustration created with BioRender.com.
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experimental assessments are often limited by short observation
times (several hours) compared to more extended follow-up in
clinical studies that would evaluate judicious use of βB after acute
hemodynamic stabilization. Preclinical studies have suggested
positive effects as beta-blockade with agents selective for β1
agents may reduced tumor necrosis factor alpha (TNF-α) and
interleukin 6 (IL-6) in the serum and myocardiumsystemic and
cardiac inflammation (Suzuki et al., 2005; Hagiwara et al., 2009).
HoweverIn contrast, antagonism of β2 increases TNF-α and IL-
6inflammation and may exacerbate the physiologic changes seen
inof sepsis (Lang et al., 2008), further supporting β1 selective
benefits.

The hemodynamic benefits of βB may improve cardiac
function in critical illness through may occur through
increased left ventricula LVr filling times by reducing heart
rateas heart rate (HR) lowers and there is enhanced
ventricular-arterial (V-A) coupling (Mathieu et al., 2016).
Patients with septic shock experience a V-A decoupling
associated with poor LV function (Guarracino et al., 2014).
Morelli et al. demonstrated β1 selective esmolol reduced
arterial elastance, and increased stroke volume, reduced with
esmolol (a β1 selective βB) heart rate in septic shock reduction,
suggesting improved V-A coupling (Morelli et al., 2016). Further,
esmolol increased stroke volume (SV) in septic shock despite
decreases in cardiac output (CO). Figure 2 describes the
hemodynamic effects of sepsis and concomitant βB. βBThese
effects are attributable to the reductions in heart rateHR
reductions, enhancing end-diastolic filling of the left
ventricleLV and thus increasingto increase preload. No
differences in oxygenation and tissue perfusion were noted
despite decreased CO (Du et al., 2016). Experimentally,
esmolol protects myocardial function in sepsis, likely through
mitigating apoptotic pathways in the myocardium that are
associated with elevated β1 stimulation (Herndon et al., 2001;
Wang et al., 2017). Indeed, esmolol added to cardioplegic
solutions for cardiac surgery reduced post-surgery troponins
suggesting cardiac tissue preservation (Bignami et al., 2017). In
acute decompensated HF, continuation of chronic βB appears to
prevent death (Prins et al., 2015; Jones et al., 2020). While it may
seem logical to stop negative inotropes in patients hospitalized
with a failing heart, discontinuation of βB did not significantly
affect hemodynamics in these patients (Butler et al., 2006). A
meta-analysis of βB effects in septic shock trials supports neutral
hemodynamic effects after initial resuscitation despite
vasopressor support requirements after initial resuscitation
(Lee et al., 2019). Taken together, these The extrapolation of

preclinicalpreclinical and clinical data support beneficial, or at
least safe, cardiac and hemodynamic effects cardiac βB during
critical illness data. to clinical settings support beneficial effects,
although clinical studies lack details discerning if these suggested
mechanisms are the drivers of clinical benefit.

Pulmonary β Effects
The pulmonary vasculature has modest concentrations of
β-receptors. Within the lungs, β2 -receptors are the most
consequential in the lungs as they outnumber β1 three to one
in most pulmonary tissues and are the exclusive β-receptor
present on pulmonary vascular smooth muscle (Carstairs
et al., 1985). β2-receptors in the epithelium contribute to
alveolar fluid clearance, while those in smooth muscle
promote bronchodilation (Mutlu and Factor, 2008). β1-
receptors present onof the alveolar wall and submucosal
glands (Carstairs et al., 1985) and contributes to alveolar fluid
clearance (Sakuma et al., 2001), although not to the extent of β2
(Mutlu et al., 2004).

Adrenergic overstimulation has several pulmonary effects
germane to critical illness concerns, including pulmonary
edema and elevated pulmonary pressures with right heart
dysfunction, most notably through α-receptor-mediated
vasoconstriction (Dunser and Hasibeder, 2009). α-receptor-
mediated vasoconstriction increases the displaced blood
volume into the pulmonary circulation, increasing congestion
and capillary wall stress. Pressure increase and fluid retention
readily shift fluid into the pulmonary interstitium and the alveoli,
especially when inflammation disrupts the capillary barrier.
Although less influential than α stimulation, β1 stimulation
can augment right ventricular output, further increasing
pulmonary blood volume and pulmonary capillary pressures
(Rassler, 2012). However, β2-agonism is often associated with
improvements in mechanisms thatmay mitigate prevent edema
throughsuch as alveolar fluid clearance (Maron et al., 2009). β2-
agonism may produce other protective pulmonary effects such as

FIGURE 2 | Hemodynamic effects of sepsis and β-Blockade. In panel A,
the stroke volume (SV) and cardiac output (CO), stroke volume (SV), and heart
rate (HR) of a normal, healthy individual are presented. In panel B, due to the
negative inotropy associated with βB, which causes reduced HR, the
overall CO is reduced despite normal SV. In panel C, sepsis results in
tachycardia, due to excessive sympathetic activation. This increase in HR
does not allow for adequate ventricular filling causing a decrease in CO
secondary to a decrease in SV. In panel D, given that venous return
(i.e., preload) is adequate, then βB-induced HR reduction allows for more left
ventricular filling time, subsequently decreasing afterload and increasing SV
enough to overcome decreased HR and improved CO.

TABLE 3 | Adrenergic receptor selectivity of endogenous catecholamines.

Catecholamine α1 α2 β1 β2 DA1 DA2

Epinephrine +++ +++ +++ +++ − −

Norepinephrine +++ +++ ++ + − −

Dopamine 0–3 μg/kg/min − + − − +++ ++
2–10 μg/kg/min + + ++ + ++ ++
>10 μg/kg/min ++ ++ ++ + ++ ++

DA � dopaminergic receptor.
Adapted from Table 2 in Dunser et al. (Dunser and Hasibeder, 2009)
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reductions in systemic and pulmonary inflammatory cytokines
(Maris et al., 2005; Bosmann et al., 2012) and prevent capillary
permeability (de Prost et al., 2008). Clinical trials failed to
translate pre-clinical evidence into positive outcomes as β2-
agonism increased acute respiratory distress syndrome
mortalitylinical trials in critical illness have failed to show
positive outcomes as β2-agonism increased mortality from
acute respiratory distress syndrome (Gao Smith et al., 2012).
The lack of benefit may occur secondary to dysfunctional β2-
receptors during prolonged inflammatory states (Giembycz and
Newton, 2006; Belletti et al., 2020). Notably, β2-mediated
vasodilation may detrimentally affect blood shunting in
cardiopulmonary resuscitation leading to the distribution of
blood from well to unventilated alveoli (Thrush et al., 1997).
The mode of critical illness likely influences the degree of
pulmonary pathophysiology with β-receptor stimulation, with
insufficient evidence to malignCurrently, insufficient evidence
exists to support a role for β2 stimulation as helpful or harmful in
critical illness and possible harm in long-term pulmonary
dysfunction like acute respiratory distress syndrome.

Pulmonary β-Blockade Effects
βB provides a potential strategy to improve pulmonary adrenergic
response. Prescribing of βB typically warrants caution in
pulmonary pathologies, most notably chronic obstructive
pulmonary disease (COPD) and asthma, as βB can reverse the
benefits of β2-mediated bronchodilation, although
cardioselectivity β1 blocking agents eliminates some concern
(MacNee, 2019). Nevertheless, Aa recent large clinical trial
determined metoprolol use in COPD patients without cardiac
indications for a βB resulted in increased exacerbations
(Dransfield et al., 2019). However, in critically ill patients with
acute respiratory failure and COPD, β1-selective βB did not affect
ICU length of stay (Kargin et al., 2014). Additionally, continuing
cardioselective βB for patients with underlying cardiac
indications hospitalized for COPD exacerbations appears safe
(Stefan et al., 2012). In asthma, several clinical and database
studies have suggested that βB use does not worsen airway
hyperresponsiveness or asthma exacerbations (Short et al.,
2013; Morales et al., 2017). A network meta-analysis of 24
clinical trials concluded that non-selective βB (specifically oral
timolol and propranolol infusions) were associated with a higher
incidence of asthma attacks than β1-selective βB.
MoreoverAdditionally, antecedent cardioselective βB therapy
has been associated with lower mortality in ICU patients with
acute respiratory failure, and βB withdrawal may worsen
mortality (Noveanu et al., 2010). In a retrospective assessment
of βB commencement after about 7 days of ICU admission, no
alterations in pulmonary function occurred (Van Herpen et al.,
2019). Given the current evidence, compelling cardiac indications
(e.g., atrial fibrillation, ischemic heart disease) should drive βB use
in critically ill patients, and COPD and asthma should not restrict
βB use. given the current evidence.

Some preclinical evidence suggests possible protective
mechanisms of βB germane to critical illness. Maccari et al.
reported various selective and non-selective βB prevented
catecholamine-induced β2 downregulation in-vitro (Maccari

et al., 2020). Other pre-clinical studies demonstrate βB lung-
protective effects in sepsis-induced acute lung injury. The ultra-
rapid βB, landiolol, suppressed lung injury and reduced lung
injury associated protein, high-mobility group box 1 (HMGB-
1), in a rat lipopolysaccharide sepsis model (Hagiwara et al.,
2009). The mechanism of pulmonary benefit of βB in these
settings remains a conjecture, although when applied in clinical
settings, the effects do not appear detrimental to pulmonary
physiology.

Disease-specific Evidence for β-Blockade
Sepsis
Dysregulated inflammatory response and catecholamine
upregulation affect nearly every organ system in sepsis. Two
specific derangements include hemodynamic compromise and
metabolic alterations, which may open a role for βB (Plank et al.,
1998; O’Dwyer et al., 2006; Furian et al., 2012). Sepsis leads to
elevated serum pro-inflammatory cytokines (e.g.,TNF-α, IL-1β,
and IL-6). Cytokine up-regulation has multiple deleterious
effects, possibly mitigated by βB (Cain et al., 1999; Hsueh and
Law, 2003). Indeed, βB have been proposed to reduce sepsis-
induced cardiac dysfunction, improve the sepsis-induced
hypermetabolic state, and play a role in immunomodulation
by preventing lymphocyte apoptosis prevalent within
inflammatory mechanisms of sepsis (Suzuki et al., 2017).
Additionally, sepsis precipitates tachycardia, which reduces
filling time and increases the risk of arrhythmias, potentially
exacerbating the poor hemodynamics of impaired systemic
vascular resistance (SVR) (Jacobi, 2002; Suzuki et al., 2017).
Heart rate reduction via β1 blockade in the setting of adequate
preload can decrease myocardial oxygen consumption, increase
diastolic filling time, and increase coronary perfusion time, all
potentially reducing the risk of myocardial ischemia and
improvement in end-organ perfusion. β1 blockade may result
in hemodynamically significant hypotension in patients without
adequate preload and should therefore be used cautiously or
avoided. The 2016 Surviving Sepsis Guidelines do not make
recommendations regarding βB continuation or initiation in
septic patients (Rhodes et al., 2017).

The hemodynamic improving effects of acute βB use in sepsis
remain controversial; however, case series and small retrospective
and prospective studies have established a plausible safety profile.
As early as 1972, a case series in refractory septic shock patients
documented the hemodynamic effects of propranolol (Berk et al.,
1972). The cases conceptualized hyperdynamic vs. hypodynamic
shock, given the observation that three patients dying after
propranolol use had severely reduced CO compared to those
who survived. Analysis of hemodynamic parameters continued in
retrospective reviews of septic patients; however, unlike Berk
et al., a study conducted by Schmittinger et al (Schmittinger et al.,
2008) found no change in cardiac index (CI) following milrinone
infusion with enteral metoprolol initiated after hemodynamic
stabilization. HR control (65–95 bpm) was achieved in 39 out of
40 patients in addition to a significant increase in stroke volume
index (SVI) (p � 0.002), and central venous pressure (CVP) along
with dosages of norepinephrine, vasopressin, and milrinone all
decreased (p < 0.001). Other small retrospective studies of βB in
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sepsis have not shown increases in mortality through acute βB use
(Gutierrez et al., 2009).

Subsequent small prospective observational studies continued
to analyze hemodynamic parameters following βB, specifically
esmolol, in sepsis. Some studies demonstrated significantly
decreased CO proportional to the decreases in HR (Gore and
Wolfe, 2006) while others showed unchanged CO (Morelli et al.,
2016) or insignificant reductions in CO (Balik et al., 2012). A
more consistent trend was seen with regard to SV with evidence
of significant (Du et al., 2016; Morelli et al., 2016) or negligible
increases documented (Balik et al., 2012). In a subgroup analysis,
Du et al. demonstrated that in patients with increased SV, esmolol
therapy had a lower risk for decreased CO (Du et al., 2016).
Similarly to Schmittinger et al. (Schmittinger et al., 2008), Morelli
et al.(Morelli et al., 2016) observed reduced norepinephrine
requirements after esmolol, although not all studies uniformly
observed this difference (Balik et al., 2012). Measures of tissue
perfusion, including lactate levels, were conflicting amongst
studies, with some showing significant decreases in the
esmolol group (Du et al., 2016) while others had more
substantial reductions in the control group (Shang et al.,
2016). The prospective studies did not analyze the risk or
incidence of mortality associated with esmolol therapy, but
Shang et al.(Shang et al., 2016) concluded a significantly shorter
mechanical ventilation duration with esmolol compared to control
(p < 0.05). Concerning the timing for the initiation of esmolol,
these prospective studies were relatively consistent by attempting
to correct preload through fluid resuscitation before administration
of an esmolol loading dose. Nevertheless, timing, thresholds, and
parameters for hemodynamic stabilization varied. These
retrospective and prospective data are collectively limited by
small sample sizes and lack relevant clinical outcomes,
establishing impetus for larger randomized trials.

The seminal Morelli et al. (Morelli et al., 2013) phase 2 study of
esmolol in septic shock patients requiring high-dose vasopressors
revived discussion of βB in sepsis. Esmolol achieved the target HR
(80–94 bpm) in all patients (−28 bpm; IQR � −37 to −21)
compared to standard of care (−6 bpm; 95% CI � −14 to 0)
and resulted in a mean reduction of 18 bpm (p < 0.001). The
esmolol group exhibited improvements in SV and left
ventricularLV stroke work index and decreases in
norepinephrine and fluid requirements. Esmolol also improved
pH, base excess, and arterial lactate. Several other randomized
controlled trials (RCTs) evaluated βB in sepsis (Orbegozo Cortes
et al., 2014; Yang et al., 2014; Wang et al., 2015; Xinqiang et al.,
2015; Wang et al., 2017; Liu et al., 2019; Kakihana et al., 2020).
Cumulatively, these trials have recently been assessed in
systematic reviews and meta-analyses.

Chacko et al. evaluated 9 studies in a systematic review and
found benefit from most studies with regards to heart rate
control, decreased mortality, and acid-base parameters
although strength of evidence is limited due to heterogeneity
and inclusion of only one RCT (Chacko and Gopal, 2015).
Sanfilippo et al. (Sanfilippo et al., 2015) was the next
systematic review published that included two RCTs with the
additional evidence from Yang et al. (Yang et al., 2014) At this
time, the sizeable differences in sample size and trial design did

not allow for a meta-analysis, but this systematic review further
affirmed that βB use in septic and septic shock patients conferred
decreased HR without significant adverse effects (Sanfilippo et al.,
2015). The previous systematic reviews include a range of trial
designs, but a meta-analysis conducted in 2018 evaluated the use
of esmolol on septic shock and sepsis from five RCTs (Liu et al.,
2018). The three trials that reported survival rate showed that
esmolol use when compared to control was associated with a
significantly increased rate of survival (RR � 2.06; 95% CI �
1.52–2.79; p � 0.006). With regard to hemodynamics, esmolol use
showed no influence on MAP, CVP, or central venous oxygen
saturation (ScVO2) but did reduce HR and cardiac biomarker
troponin I. In 2019, Lee et al. (Lee et al., 2019) published a
systematic review of 14 studies which included 5 RCTs, although
only three of these RCTs were the same as those included in the
Liu et al. meta-analysis. Six of the studies assessed βB use and
mortality, which despite possible publication bias, demonstrated
average odds ratio of 0.4072 (95% CI � 0.2602–0.6373) in favor of
βB use.

Since the publication of these systematic reviews and meta-
analyses there has been an increased focus on the treatment of
tachyarrhythmias in sepsis. Initial evidence garnering support for
βB use in septic patients with atrial fibrillation resulted from a
2016 propensity-matched cohort study. This analysis concluded
that βB were associated with lower hospital mortality when
compared to calcium channel blockers (CCBs), digoxin, and
amiodarone (Walkey et al., 2016). With regard to rate control,
Bosch et al. found that in comparison to CCBs, amiodarone, and
digoxin, βB improved HR control to <110 bpm at 1 hour for the
treatment of sepsis-associated atrial fibrillation, although this
effect did not persist to show meaningful difference at 6 h
(Bosch et al., 2020). While these studies included a variety of
βB agents, newer evidence has shifted to solely focus on the use of
ultra-short-acting βB, esmolol and landiolol. Of note, landiolol is
not available for use in the United States. Kakihana et al.
(Kakihana et al., 2020) analyzed the safety and efficacy of
landiolol in a multicenter, open-label RCT in Japan that
showed significant improvements in HR control and decreased
incidence of new-onset arrhythmias. This trial specifically
focused on a patient population with HR ≥ 100 bpm
maintained for at least 10 min without a change in
catecholamine dose and with a diagnosis of atrial fibrillation,
atrial flutter, or sinus tachycardia. The most common adverse
effect was hypotension, which quickly resolved in all instances
given the ultra-short-acting nature of the drug. Hasegawa et al.
performed a systematic review and meta-analysis of seven RCTs
associated with esmolol and landiolol use in patients with
persistent tachycardia (defined as HR > 95 bpm) despite initial
resuscitation.(Hasegawa et al., 2021). Six of the RCTs included
reported 28-days mortality. The use of ultra-short-acting βB in
this patient population of 572 patients was found to be associated
with significantly lower 28-days mortality (RR � 0.68; 95% CI �
0.54–0.85; p < 0.001) with an absolute risk reduction of 18.2%
conferring a number needed to treat of 6 to prevent one
patient death.

The use of beta-blockade in septic patients remains
controversial especially with regard to timing of initiation.

Frontiers in Pharmacology | www.frontiersin.org October 2021 | Volume 12 | Article 73584113

Bruning et al. Beta-Blockers in Critical Illness

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Tachycardia in the early stages of un-resuscitated sepsis is a major
compensatory mechanism to ensure cardiac output, oxygen
delivery, and perfusion. The use of beta-blockade, specifically
with esmolol and landiolol, has been shown to reduce heart rate in
the septic patients without deleterious effects on end-organ
perfusion and may be associated with improved survival rates.
Despite some dosing and timing variation within the RCTs that
have been conducted, there is a general consensus that βB should
not be initiated until at least 6 h, and in some trials 24 h, after the
initial fluid resuscitation and vasopressor use. With this in mind,
βB therapy may be initiated while patients are still requiring
vasopressors. In fact, many studies described potential for
decreased norepinephrine requirements with βB, instigating
hypotheses of βB as vasopressor-sparing with potential to
avoid deleterious effects of prolonged, high catecholamine
requirements. Therefore, use of esmolol should be based on
patient specific factors and likely should be considered only
after initial resuscitation and once hemodynamic stabilization
with vasopressors is achieved. Without large randomized
controlled trials evaluating and elucidating the optimal dosing
regimen and initiation timing considerations, the cost of esmolol
infusion course should be considered as many hospital
formularies restrict its use due to the extensive significant cost
of the drug.

There are numerous retrospective studies that have
investigated premorbid βB exposure prior to admission to the
ICU with a diagnosis for sepsis that have conferred mortality
benefit. Macchia et al. performed a retrospective observational
study in 9,465 septic patients that concluded lower 28-days
mortality in patients previously prescribed βB (Macchia et al.,
2012). As part of a national cohort of Medicare beneficiaries,
Singer et al. determined outpatient βB prescription was associated
with a significantly reduced in-hospital and 30-days mortality,
with no difference in regards to cardioselective compared to non-
selective βB (Singer et al., 2017). In contrast, a recent
observational cohort study by Guz et al. found that antecedent
cardioselective βB were associated with a stronger protective
effect on 30-days mortality rate reduction than
noncardioselective βB for patients admitted with sepsis (Guz
et al., 2021). Based on additional subgroup analyses according to
tachycardia stratification, both patients with absolute and relative
tachycardia on presentation exhibited reduced 30-days mortality
rates with βB use.

Beyond initiation of βB in sepsis or premorbid βB use,
continuation of chronic βB in patients admitted with sepsis
and septic shock remains controversial, with common practice
being to discontinue anti-hypertensive therapy upon admission.
A prospective, observational study evaluated 296 patients
admitted with severe sepsis or septic shock who were on
chronic beta-blocker therapy (Fuchs et al., 2017). Chronic
beta-blocker therapy was continued in 167 patients and was
associated with significant decreases in hospital, 28-days, and
90-days mortality (p < 0.05) compared to βB cessation.
Continuation of beta-blockade therapy was also associated
with decreased crystalloid requirements during the first 24 h
(p � 0.049) without increases in need for vasopressor,
inotropic support, or low-dose steroids. To build on these

results, a systematic review including a total of nine studies
and over 6,500 patients found that premorbid beta-blocker
exposure, regardless of continuation, in patients with sepsis
was associated with reduced mortality (Tan et al., 2019).
Although the precise mechanism of benefit in these settings is
unknown, potential explanations beyond the mechanisms
mentioned previously in this section include the prevention of
rebound effects of tachycardia, hypertension, and arrhythmias
caused by abrupt βB withdrawal.

In summary, Tthe hemodynamic evidence for βB use in sepsis
has been proven as there are numerous studies demonstrating
decreased HR without significant change in MAP, CVP, or
ScVO2. Further, the recent evidence for ultra-short-acting βB,
esmolol and landiolol, especially with regard to decreased
incidence of arrhythmias and 28-days mortality benefit is
clinically significant. In fact, some are realizing a need to
stratify subgroups within septic cohorts based on the potential
benefit of cardiovascular intervention to decrease the negative
consequences of tachyarrhythmias (Morelli et al., 2020). The
inconsistencies in terms of dosing and timing of initiation
within the existing evidence require subsequent investigation
in robust randomized controlled trials. Overall, esmolol was
the most studied βB in sepsis, and initial doses varied over a
wide range of either weight based dosing (most commonly
0.05 mg/kg/min) or standard dosing (most commonly 25 mg/
h) with doses titrated to heart rate reductions of 20% or a heart
rate goal of 70–100 bpm. Additionally, there is ample evidence to
show antecedent βB use confers mortality benefit, but there is
only one RCT evaluating the continuation of chronic βB therapy
in acute sepsis, which warrants supplementation.

Burns
Severe burns lead to catecholamine release and a hypermetabolic
state characterized by increased cardiac output, increased energy
requirements, muscle breakdown, and general catabolism (e.g.,
reduced bone density, etc) (Wilmore et al., 1974; Herndon et al.,
2001). This response lasts for at least 9 months and up to 2 years
and is associated with a hypercatabolic state leading to muscle
and bone loss (Hart et al., 2000; Przkora et al., 2006). β1 receptor
mediated lipolysis and agonism of β2 receptors can cause
glycogenolysis and gluconeogenesis within hepatocytes due to
catecholamine stimulation (Novotny et al., 2009).
Hypermetabolism can negatively impact the function of
skeletal muscle, skin, and the immune system, ultimately
resulting in multiorgan dysfunction and even death (Núñez-
Villaveirán et al., 2015).

As such, βB are an attractive intervention to prevent the
hyperadrenergic cascade that follows burn injury. Preclinical
animal studies examining propranolol to improve wound
healing following burn injury have noted enhanced wound
healing and reduced activity of local inflammatory pathways
(Romana-Souza et al., 2008; Zhang et al., 2009). Nearly all
studies investigating βB in burn injuries have been conducted
in pediatric patients using propranolol (Núñez-Villaveirán et al.,
2015). Propranolol has been associated with a decrease in HR and
oxygen consumption and the reversal of catabolism, evidenced by
significant reductions in resting energy expenditure (REE) and
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prevention of lean body mass loss (Herndon et al., 2001; Jeschke
et al., 2007; Williams et al., 2011; Herndon et al., 2012).

Baron et al. (Baron et al., 1997) deemed propranolol use safe
and effective for ≥10 days following severe burns (≥40% of total
body surface area [TBSA]) in 22 children aged 1–10 years old. In
this population, propranolol use demonstrated significantly
decreased HR and rate pressure product (RPP), defined as
MAP multiplied by HR, without adverse effects. Herndon
et al. (Herndon et al., 2001) extended this time frame to at
least 2 weeks by evaluating propranolol in 25 pediatric burn
patients (>40% of TBSA). Propranolol showed successful
attenuation of the hypermetabolic response by decreasing REE,
oxygen consumption, and muscle catabolism. Additionally, lean
mass loss at 2 weeks was prevented by propranolol (9% loss vs 1%
loss; p � 0.003). Similarly, Jeschke et al. (Jeschke et al., 2007)
found improvements in REE with propranolol in 245 severely
burned children. In a separate trial, Herndon et al. (Herndon
et al., 2012) investigated propranolol given within 96 h from
admission and continued for a year compared to control in 179
pediatric burn patients with burns >30% of TBSA. While there
was no significant difference in mortality (p � 0.72), propranolol
use did result in reduced cardiac work and improved lean body
mass and bone density without adverse events. In patients
receiving propranolol, the percent of predicted HR was
significantly lower and persisted up to a year postburn;
however, significant reductions in REE and RPP were only
sustained through 6 months, while no difference was seen at
1 year.

A large clinical trial evaluated propranolol’s effects on cardiac
function when started 24–72 h after admission versus control in
406 children with burns >30% of TBSA (Williams et al., 2011).
CO decreased after 2 weeks of starting propranolol and the
reduction continued throughout the trial. SV, when compared
to non-burned children of the same age, was higher in patients
receiving propranolol versus control (112 ± 8% vs. 94 ± 5%; p <
0.02), likely a function of the reduced HR allowing for longer
ventricular filling times. RPP decreased in the group receiving
propranolol, indicating lower myocardial oxygen consumption.
These results suggest that propranolol has a significant
hemodynamic impact on pediatric burn patients.

Data for βB use in burned adults are limited, but the available
evidence supports conclusions comparable to these pediatric
studies. Arbabi et al. (Arbabi et al., 2004) compared three
cohorts: preexisting βB use continued during hospitalization,
new hospital βB use, and no βB use in adult burn patients.
Unlike the pediatric studies, βB selection varied with most
receiving metoprolol, atenolol, and esmolol, and few receiving
propranolol. Preexisting βB was associated with a significantly
lower rate of mortality than βB initiation during hospitalization
and no βB (5 vs. 27% and 13%, respectively). The higher mortality
rate in the hospital-initiated βB group may be due to the presence
of tachyarrhythmias treated with βB and more severe underlying
disease, which was supported by prolonged ICU and hospital
stays in the group. Preexisting βB was associated with a shorter
mean healing time of 21 days when compared to control (p �
0.02). These data suggest antecedent βB use may confer a lower
risk of mortality and accelerated healing time, which

complements the data for improved outcomes in other
adrenergic stress states like sepsis.

In 2009, Mohammadi et al. (Mohammadi et al., 2009)
randomized 79 adult burn patients to propranolol or control
and assessed wound healing dynamics. Patients receiving
propranolol had more rapid healing times and reductions in
required graft size (13.75 vs 18.75%; p � 0.006) in addition to
shorter hospital length of stay (24.41 vs 30.95 days; p � 0.05). To
build on these results, Ali et al. (Ali et al., 2015) evaluated the
effect of propranolol on wound healing and blood loss in a cohort
of 69 adult burn patients. Patients receiving propranolol initiated
within 48 h of admission had a shorter recovery time with an
average of 10 ± 5 days in between skin grafting procedures,
whereas patients in the control group had an average of 17 ±
12 days in between procedures (p � 0.02). When hematocrit
levels were drawn perioperatively, patients receiving
propranolol showed a 5–7% increase compared to control (p �
0.002). Notably, the propranolol patients required larger grafts,
but no differences in blood transfusions were observed, thus
concluding the utility of propranolol for diminishing blood loss
during skin graft procedures and improving wound healing.
Further investigation in a recent Pakistani clinical trial of
propranolol in 70 patients started day three post-burn
demonstrated similar reductions in healing time (about a
1 week reduction) and time to graft readiness (10 days
reduction) (Cheema et al., 2020). Propranolol also resulted in
shorter hospitalization (26.7 vs. 33.6 days; p < 0.001).

Overall, the evidence suggest βB are effective in improving
burn recovery in both pediatric and adult patients. By mitigating
the adrenergic response at early time points after burns, βB can
lessen the negative effects of the hyperadrenergic burn state. The
2012 American Burn Association (ABA) Burn Quality Consensus
Conference Summary agreed that βB use is beneficial in pediatric
and adult burn patients but recommended further research due to
the lack of level one evidence at that time (Gibran et al., 2013).
The International Society for Burn Injuries (ISBI) released the
Practice Guidelines for Burn Care, Part 2 in 2018 with a
recommendation to use a nonselective βB in burn patients
≤18 years old with the goal of reducing HR to 75% of the
admission HR (Allorto et al., 2018). Since the publication of
the ISBI guidelines in 2018, there has been no new evidence in
pediatric burn patients; however, the Cheema et al. trial in
Pakistan provides additional, robust evidence in adult burn
patients which may lead to increased guidance in this
population. While these guideline statements do make
recommendations for βB use and monitoring including HR
and weight loss, they do not specify timing or dosing. Based
on the studies evaluated, propranolol initiated within one to
3 days after burn injury has the strongest evidence in both
children and adults.

Overall, the evidence suggest βB are effective in improving
burn recovery in both pediatric and adult patients. By mitigating
the adrenergic response at early time points after burns, βB can
lessen the negative effects of the hyperadrenergic burn state.
Dosing evaluated in these studies with the strongest evidence
in both children and adults was propranolol 1–3 mg/kg/day
within one to 3 days after burn injury and titrated based on
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hemodynamic effects. Adults maintained on another βB agent
may be better served continuing their current βB instead of
switching to propranolol; however, no evidence has addressed
head-to-head comparisons of βB providing an area for future
research.

Traumatic Brain Injury
Following traumatic brain injury (TBI), a systemic
hyperadrenergic state develops characterized by adrenal release
of catecholamines and sympathetic activation (Clifton et al.,
1981). The surge in catecholamine levels causes
vasoconstriction, worsened cerebral ischemia, increased
intracranial pressure, all leading to ongoing secondary injury
to brain tissue (Lazaridis, 2017; Rizoli et al., 2017). βB can
theoretically inhibit the catecholamine interaction with beta
adrenergic receptors thus obstructing the detrimental sympathetic
nervous system hyperactivity associated with severe TBI. Benefit
may also be seen from βB by decreasing the cerebral oxygen
demand, thus improving relative ischemia (Clifton et al., 1981).

Substantial pre-clinical evidence has collectively found that βB
reduce cerebral ischemia and increase cerebral perfusion
following traumatic insult (Goyagi et al., 2006; Ley et al., 2009;
Goyagi et al., 2010; Iwata et al., 2010; Ley et al., 2010; Umehara
et al., 2010; Goyagi et al., 2012; Song et al., 2014). Neurological
deficit scores and infarct volumes were decreased in rats or mice
that were treated with βB. Differences in the route of
administration, agent chosen, dose, and timing varied but
globally use of βB appears to confer benefit. Propranolol
(Goyagi et al., 2006; Ley et al., 2009; Iwata et al., 2010; Ley
et al., 2010), esmolol (Goyagi et al., 2006; Goyagi et al., 2010; Iwata
et al., 2010; Umehara et al., 2010; Goyagi et al., 2012), landiolol
(Goyagi et al., 2006; Goyagi et al., 2010; Iwata et al., 2010;
Umehara et al., 2010; Goyagi et al., 2012), carvedilol (Goyagi
et al., 2006), and betaxalol (Song et al., 2014) have all been
investigated. Goyagi et al. (Goyagi et al., 2006) found no
difference between intravascular versus intrathecal
administration, Song et al. (Song et al., 2014) only investigated
intraventricular administration, and all other studies used
intravascular administration. Iwata et al. was the only study to
indicate medication preference where esmolol and landiolol
showed superior neuroprotection compared to propranolol in
postischemic treatment. (Iwata et al., 2010). Higher doses of
propranolol (4 mg/kg) were preferred to lower doses (1 mg/kg)
(Ley et al., 2010), while no difference was observed amongst
varying doses of esmolol and landiolol (Goyagi et al., 2012).
Conflicting evidence exists for the timing of βB administration,
where Ley et al. (Ley et al., 2010) observed that initiation of βB
treatment pre-TBI was equivalent to post-TBI while Iwata (Iwata
et al., 2010) found only post-TBI initiation benefit.

To date, only one RCT regarding beta-blocker use in TBI has
been conducted by Cruickshank et al. (Cruickshank et al., 1987)
Secondary to unclear randomization and allocation concealment
method in addition to incomplete outcome data reported, the
trial has largely been discounted due to a high risk of bias;
however, it did show a positive correlation between arterial
noradrenaline concentration and cardiac damage.
(Cruickshank et al., 1987) (Alali et al., 2017) Additionally,

fewer βB-group patients experienced supraventricular
tachycardia (6 vs. 28; p < 0.0001) and ST-segment and T-wave
changes (15 vs. 26; p � 0.062). βB use also inhibited further
increases in myocardial isoenzyme of creatine kinase (CKMB)
and abolished focal myocardial necrotic lesions compared to
placebo. The remainder of the clinical evidence regarding βB
use in TBI is from one multi-institutional, prospective,
observational study and nine observational cohort studies, but
overwhelmingly, this evidence concludes a mortality benefit for
use of βB in TBI (Alali et al., 2017; Chen et al., 2017).

Within the nine retrospective cohort studies conducted, eight
analyzed a primary outcome of in-hospital mortality (Arbabi
et al., 2007; Cotton et al., 2007; Inaba et al., 2008; Schroeppel et al.,
2010; Schroeppel et al., 2014; Mohseni et al., 2015; Ko et al., 2016;
Murry et al., 2016; Zangbar et al., 2016). After adjustments, βB use
after TBI was associated with statistically significant lower
mortality in seven out of the eight studies with primary
outcomes of in-hospital mortality (Arbabi et al., 2007; Cotton
et al., 2007; Inaba et al., 2008; Schroeppel et al., 2010; Mohseni
et al., 2015; Ko et al., 2016; Zangbar et al., 2016). Schroeppel et al.
(Schroeppel et al., 2014) showed similar adjusted odds of
mortality amongst all subjects, but subgroup analysis revealed
lower odds of mortality in patients who received propranolol. The
βB cohorts typically were comprised of older subjects (Arbabi
et al., 2007; Inaba et al., 2008; Schroeppel et al., 2010; Mohseni
et al., 2015) with more severe head injuries (Arbabi et al., 2007;
Inaba et al., 2008; Schroeppel et al., 2010; Mohseni et al., 2015) as
indicated by lower GCS levels (Arbabi et al., 2007; Ko et al., 2016)
and therefore investigators adjusted for potential confounding
factors. In-hospital mortality was a secondary outcome in Murry
et al. (Murry et al., 2016) where no difference was observed,
although no adjustments were made. A meta-analysis of all nine
cohort studies, which included 8,245 patients, revealed a
statistically significant mortality reduction when patients were
exposed to beta-blockers after TBI (pooled OR � 0.39; p <
0.00001) (Alali et al., 2017). In all of the cohort studies, βB
were initiated during hospital stay after the TBI had occurred and
continued for varied durations. Two of the more recent studies
from 2016 made an effort to administer propranolol earlier in the
time course (within twelve (Murry et al., 2016) or twenty-four
(Ko et al., 2016) hours of admission). Various βB were used
amongst the studies with no preference cited between agents
except in the aforementioned Schroeppel et al. study where
propranolol reduced mortality compared to atenolol,
carvedilol, esmolol, labetalol, metoprolol, and sotalol
(Schroeppel et al., 2014). In 2017, based on a meta-analysis of
these observational cohort studies, the Eastern Association of
Surgery and Trauma (EAST), made a conditional
recommendation for in-hospital use of βB in adults admitted
to the ICU with severe, acute TBI and no contraindications to βB
(Alali et al., 2017). The recommendation requires that
hypotension (systolic blood pressure [SBP] < 90 mmHg) and
symptomatic bradycardia (HR < 50 bpm) are avoided, but there is
no formal recommendation on when to initiate βB, which βB to
use, and how to titrate the βB therapy (Alali et al., 2017). In
general, hypotension should warrant βB discontinuation or dose
reduction.
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In 2018, to build on the optimistic findings of these small
single-center trials, the American Association for the Surgery of
Trauma (AAST) conducted a multi-institutional, prospective
observational trial (Ley et al., 2018). After analysis of 2,252
patients, the trial concluded that patients who received βB
after TBI had a significantly lower adjusted (adjusted OR �
0.35; p < 0.001) and unadjusted mortality rate (13.8 vs. 17.7%;
p � 0.013) in congruence with the 2017 EAST guideline
recommendation. Further investigation revealed a reduction in
mortality associated with propranolol use compared to all other
βB (9.3 vs. 15.9%; p � 0.003). This study revealed no difference in
neurological outcomes associated with βB use and patients who
received propranolol had increased length of stay despite the
aforementioned survival advantage.

NCT02957331, a randomized, open-label interventional trial,
released study results on June 4, 2020 investigating the use of
propranolol after TBI (Rizoli et al., 2017). The results show a
difference of 7.7% propranolol arm versus 33.33% non-
propranolol arm for all-cause 30-days mortality, although no
analysis has been published. Propranolol was dosed to target a HR
< 100 bpm and was held if the patient became hypotensive (SBP
<100 mmHg) or bradycardic (HR < 60 bpm). The DASH After
TBI trial (NCT01322048) is an ongoing, randomized, double-
blind trial comparing propranolol and clonidine use to placebo
(Patel et al., 2012). The primary outcome is ventilator-free days
supplemented by multiple secondary outcomes, including all-
cause mortality and neuropsychological outcomes. Interim data
demonstrates decreased ventilator-free days and decreased
percentage of all-cause mortality associated with adrenergic
blockade (propranolol and clonidine) (Ley et al., 2009). No
neuropsychological outcomes have been reported at this time.
Only one propensity-matched case control study has addressed
neuropsychological outcomes thus far, where beta-blockade was
associated with shorter length of hospital stay and reduced risk of
poor long-term functional outcome (Ahl et al., 2017).

In summary, βB use after TBI has been associated with
decreased in-hospital mortality in one multi-institutional,
prospective, observational trial, and nine retrospective cohort
studies. Only one RCT has been conducted where mortality was
not investigated; however, existing evidence supports the most
recent 2017 EAST guideline recommendations of using βB
following TBI. Studies evaluated a variety of both selective and
nonselective βB in patients with a TBI; however, dosing was not
reported in a majority of cases. Continued investigation in more
robust trial designs may aid with clarification of preferred agent,
dosing, titration, timing for initiation.

Cardiac Arrest
Epinephrine is part of the algorithm to treat pulseless ventricular
tachycardia (VT) and ventricular fibrillation (VF) (Panchal et al.,
2020); however, epinephrine, itself a catecholamine, can increase
oxygen requirement of an already strained heart and may
potentiate VF risk (Monroe and French, 1960). Thus, in
addition to endogenous catecholamine release that can occur
during ischemia, the cycle of catecholamine administration
during VF may lead to refractory VF (RVF) or electrical storm
(Nademanee et al., 2000; Lee et al., 2016). βB have been

hypothesized to improve outcomes in VF by inhibiting
elevated catecholamine levels to decrease myocardial oxygen
demand and lower the threshold for VF (Lee et al., 2016).
Animal studies have shown that βB have improved rates of
resuscitation when used in cardiac arrest (Ditchey et al., 1994;
Cammarata et al., 2004; Huang et al., 2004; Killingsworth et al.,
2004). Several small trials evaluated the use of βB in refractory VF
and electrical storm treatment and concluded that their use
increases the rates of ROSC and overall survival (Nademanee
et al., 2000; Skrifvars et al., 2003; Driver et al., 2014; Lee et al.,
2016).

A small study evaluated the use of esmolol versus control on
the incidence of sustained ROSC in patients with RVF (Lee et al.,
2016). Sustained ROSC was greater in patients who received
esmolol compared with those in the control group (56 vs. 16%;
p � 0.007). Although there were significantly more patients who
received esmolol that survived to ICU admission, survival and
neurological outcome at 30 days, 3 months, and 6 months was
not significant (p � 0.36). Similarly, Driver et al. (Driver et al.,
2014) assessed the outcomes of 6 patients receiving esmolol
versus 19 control patients who had RVF that started as VT or
VF either outside of the hospital or in the emergency department.
Patients in the esmolol group had greater incidence of sustained
ROSC (67 vs. 32%) and survival to ICU admission (66 vs. 32%).
Differing from the previous trial, patients receiving esmolol in
this study had increased frequencies of survival to hospital
discharge (50 vs. 16%) and discharge with fair neurologic
outcome (50 vs. 11%), although these results were not
statistically significant due to small sample size.

Nademanee et al. (Nademanee et al., 2000) studied the effects
of sympathetic blockade in 27 patients vs. anti-arrhythmic agents
in 22 patients with electrical storm. These patients had a
myocardial infarction between 72 h and 3 months prior to
developing electrical storm. Patients in the sympathetic
blockade group received either propranolol, esmolol, or left
stellate ganglionic blockade (LSGB). Because patients receiving
beta blockers were analyzed in a combined group with those
receiving LSGB, this limits our interpretation of the statistical
analyses from the trial. No subgroup analysis of βB use alone was
presented. Patients in the control group received lidocaine,
procainamide, and/or bretylium tosylate as the anti-arrhythmic
agent. Patients receiving a sympathetic blocker had a significantly
higher survival rate at 1 week than patients who received an anti-
arrhythmic (22 vs. 82%; p < 0.0001). Survival rate at 1 year was
also greater in patients who received a sympathetic blocker versus
an anti-arrhythmic (67 vs. 5%; p < 0.0001).

These three studies by Lee et al. (Lee et al., 2016), Driver et al.
(Driver et al., 2014), and Nademanee et al. (Nademanee et al.,
2000) were recently analyzed in a systematic review and meta-
analysis by Gottlieb et al. (Gottlieb et al., 2020) Cumulatively, 115
patients were included with similar results to the individual studies
of beta-blockade association with improved outcomes ranging
from ROSC to survival with favorable neurologic outcome. The
risk of bias was considered moderate to severe given the influence
of confounding factors and selection of participants.

Propranolol was compared to metoprolol for electrical storm
in combination with amiodarone for patients who had congestive
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heart failure and an implantable cardioverter-defibrillator (ICD)
to assess the last VT or VF event that required the ICD for
arrhythmia termination (Chatzidou et al., 2018). Patients
receiving propranolol had 2.67 times fewer events of VT or
VF (p � 0.001), as well as 2.34 times less incidences of ICD
firings (p � 0.004). After 24 h, more patients receiving
propranolol than metoprolol had not had an arrhythmia (p �
0.03). Propranolol was associated with higher likelihood of
arrhythmia termination (p < 0.001), faster arrhythmia
termination (p < 0.05), and decreased hospital length of stay
when compared to metoprolol (p < 0.05). As such, non-selective
β1 and β2 blockade appeared to result in more significant
decreases in catecholamines and cardiac norepinephrine
spillover leading to improvements in electrical storm control,
whereas β1-selective blockers have been associated with increased
cardiac norepinephrine spillover.

Metoprolol was also studied in patients resuscitated from out-
of-hospital VF in a forward multiple logistic regression analysis to
predict survival conducted by Skrifvars et al.(Skrifvars et al., 2003)
Out of 102 patients total, 79 received beta-blocking agents (80%)
which included the use of either metoprolol (intravenous or oral)
or bisoprolol (oral). βB use during the first 72 h of post-
resuscitation care was associated with survival at 6 months
from the event in both the univariate (p < 0.001) and multiple
logistic regression analyses (p � 0.002).

The 2017 AHA/ACC/HRS Guideline for the Management of
Patients with Ventricular Arrythmias and Prevention of Sudden
Cardiac Death (SCD) support the use of βB as first-line
antiarrhythmic therapy for the treatment of ventricular
arrhythmias and reducing the risk of SCD (Al-Khatib et al.,
2018). Additionally, βB use is associated with a significant
reduction in mortality in the setting of acute myocardial
infarction (AMI) in addition to suppressing recurrent VF in
patients with recent MI. The 2018 AHA Focused Update on
ACLS Use of Antiarrhythmic Drugs During and Immediately
After Cardiac Arrest does not recommend βB use immediately
following cardiac arrest given limited evidence (Panchal et al.,
2018). Upon review, esmolol 300–500 μg/kg loading dose
followed by 0–100 μg/kg/min infusion was the most evaluated
βB in the cardiac arrest studies, but propranolol, bisoprolol and
metoprolol at variable doses were additionally studied. There is
also some controversy as one study used a loading dose of esmolol
300–500 μg/kg while another studied esmolol 300–500 mg/kg
accounting for a substantial one-thousandfold difference.

In summary, Tthe demonstration of improved rates of ROSC
and sustained outcomes in addition to increased survival from
βB (most notably with esmolol) use in patients with RVF is
promising; however, larger studies are necessary to offer
increased guidance on βB use during and after cardiac arrest
in the coming years. Furthermore, additional research is needed
to compare specific βB agents in cardiac arrest to build on
existing evidence that non-selective agents may lead to fewer
arrhythmias, improved arrhythmia termination, and decreased
hospital length of stay when compared to β1-selective βB.
However, once hemodynamic stabilization is achieved,
current evidence is in line with guideline recommendations
to initiate βB therapy to reduce risk of repeated VF (Al-Khatib
et al., 2018).

CONCLUSION

Although negative inotropes appear counterintuitive in
hemodynamically compromised critical illness, dampening
catecholamine signaling may confer a wide range of benefits,
dependent on etiology. In Sepsis, immediately post fluid
resuscitation and initial stabilization, re-initiation of home βB
therapy should be strongly considered. Additionally, existing
evidence suggests βB use may improve recovery following
burn injury, reduce mortality rate in TBI, and increase
achievement of ROSC in RVF cardiac arrest. Further,
promising new data in sepsis suggest a potential role as well as
further inquiry.
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