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A B S T R A C T

Objective:Meniscus tear is a common problem in sports trauma, and its imaging diagnosis mainly relies on MRI. To
improve the diagnostic accuracy and efficiency, a deep learning model was employed in this study and the
identification efficiency was evaluated.
Methods: Standard knee MRI images from 924 individual patients were used to complete the training, validation
and testing processes. Mask regional convolutional neural network (R–CNN) was used to build the deep learning
network structure, and ResNet50 was adopted to develop the backbone network. The deep learning model was
trained and validated with a dataset containing 504 and 220 patients, respectively. Internal testing was performed
based on a dataset of 200 patients, and 180 patients from 8 hospitals were regarded as an external dataset for
model validation. Additionally, 40 patients who were diagnosed by the arthroscopic surgery were enrolled as the
final test dataset.
Results: After training and validation, the deep learning model effectively recognized healthy and injured menisci.
Average precision for the three types of menisci (healthy, torn and degenerated menisci) ranged from 68% to
80%. Diagnostic accuracy for healthy, torn and degenerated menisci was 87.50%, 86.96%, and 84.78%,
respectively. Validation results from external dataset demonstrated that the accuracy of diagnosing torn and intact
meniscus tear through 3.0T MRI images was higher than 80%, while the accuracy verified by arthroscopic surgery
was 87.50%.
Conclusion: Mask R–CNN effectively identified and diagnosed meniscal injuries, especially for tears that occurred
in different parts of the meniscus. The recognition ability was admirable, and the diagnostic accuracy could be
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sity-weighted; CA, cartilage tissue; AH_tear, anterior horn tear; PH_tear, posterior horn tear; MBT, meniscus body
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further improved with increased training sample size. Therefore, this deep learning model showed great potential
in diagnosing meniscus injuries.
Translational potential of this article: Deep learning model exerted unique effect in terms of reducing doctors’
workload and improving diagnostic accuracy. Injured and healthy menisci could be more accurately identified
and classified based on training and learning datasets. This model could also distinguish torn from degenerated
menisci, making it an effective tool for MRI-assisted diagnosis of meniscus injuries in clinical practice.
1. Introduction

Meniscus is commonly referred to as the fibrocartilaginous structure
located within the knee joint cavity, between the femur and tibia,
providing strength to the joint and absorbing impact for protection [1,2].
It can be divided into medial meniscus and lateral meniscus. Meniscus
injury is very common, with an incidence rate of 6–7 in 10,000 [3].
Destruction of meniscal integrity due to various conditions such as
dysplasia, chronic strain, and acute sprains can lead to meniscal damage,
accompanied by a series of clinical symptoms such as pain and
dysfunction that severely impact the patient's mobility and quality of life.
Once a meniscal injury is diagnosed, most of the cases need surgical
treatment. Accurate and timely preoperative diagnosis is of great
significance.

Magnetic resonance imaging (MRI) generates high imaging resolution
of soft-tissue. This method allows a clear view of the shape and internal
structure of the meniscus, and is the preferred examination for the
diagnosis of meniscus injuries [4,5]. Fat-suppressed fast spin-echo proton
density-weighted image (FS FSE PDWI), which produces homogeneous
hypointense on MRI sequences, is most commonly used in the detection
of meniscal injuries. A multi-center study showed that analyzing the risk
and prognosis of meniscal injury had important clinical implications [6].
However, the accuracy of MRI diagnosis is limited due to the following
reasons. Firstly, several irregularly shaped tissues are situated around the
meniscus. Secondly, the abnormal signal of a meniscal tear is so small
that it is not easy to be spotted on images. Thirdly, the amount of MRI
data can be extremely huge (about 100 images per patient). Fourthly, the
accuracy of diagnosis is influenced by the doctor's diagnostic experience.
Furthermore, other subjective factors may also affect the diagnostic
results.

In recent years, the application of artificial intelligence (AI) in the
field of medical imaging has become a research hotspot, and it is believed
that AI has the potential to provide accurate diagnosis and treatment.
Deep learning and other AI applications can effectively improve the ef-
ficiency of data processing and reduce human errors through repetitive
learning to identify disease patterns [7,8]. Traditional machine learning
algorithms mainly include neural network, k-nearest neighbor, support
vector machine, naive Bayes classifier, and random decision forest. These
algorithms rely on the shallow features of artificial intelligence. One
advantage of deep learning is that there is no need to specify the features
manually, and machine can learn by itself through dataset training,
bringing a breakthrough in image processing.

Great progress has been made in the in-depth analysis of knee MRI
images using AI, but it is far less used in other critical conditions such as
tumor, nerve damage and pulmonary nodules. Compared to bone and
cartilage, the study on meniscus is limited because image segmentation
and post-processing are not feasible. Among the AI studies regarding
meniscal tears, most studies only analyzed the sagittal plane, and a few
studies analyzed the sagittal plane, coronal plane, and cross-section
simultaneously [9]. The areas under the curve (AUCs) for these studies
ranged from 0.847 to 0.910 [10], meaning that this technology should be
improved to increase the diagnostic accuracy by MRI.

Slice thickness is an important parameter in meniscus MRI exami-
nation. In previous studies, the scanning layer thickness ranged from 0.7
mm to 3.0 mm [5,11], which made the data sources lacking homoge-
neity. This study aimed to utilize the most commonly used sequences and
scanning layer thicknesses in clinical practice for model training,
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providing a wider application range and benefiting future multi-center
studies. After obtaining the feature map of meniscus MRI images
through convolutional neural networks, Mask R–CNN was used to
perform classification, regression, and pixel-level mask diagnosis. To
verify the recognition accuracy of the deep learning model, the results
were evaluated by experienced doctors in conjunction with arthroscopic
surgery. We anticipated that this technology could serve as an effective
tool for clinical MRI-assisted diagnosis of meniscal injuries.

2. Methods

2.1. Process of MRI scanning

This study followed relevant guidelines, and received approval from
the ethics committee of Drum Tower Hospital affiliated to the Medical
School of Nanjing University. All patients underwent MRI in a supine
feet-first position using a 3.0 T MR imaging system (United Imaging Co.,
Ltd., Shanghai, China) with a dedicated knee coil. Sagittal fat-suppressed
proton density-weighted (PDW) MR images were acquired digitally from
the picture archiving and communication system (PACS; Neusoft Medical
Systems Co., Ltd., Shenyang, China) in the Joint Photographic Experts
Group (JPEG) format. The parameters of the MR FS PDW sequence were
set as: 3 mm slice thickness, 0.3 mm gap, 1500 ms time of repetition, 40
ms time of echo, 16 � 16 cm2

field of view, and 1 number of signal
average. Sagittal position lines were set perpendicular to the line of the
posterior femoral condyle on transverse images, and perpendicular to the
articular surface of the tibial plateau on coronal images.

2.2. Inclusion criteria

According to the relevant clinical diagnostic guidelines, the menisci
were divided into meniscus with tear and meniscus without tear. The
diagnostic criteria for a meniscal tear included abnormal meniscal
hyperintensity, and hyperintensity involving at least one articular surface
of the meniscus or reaching the free edge of the meniscus [12]. Data
sources of the study were obtained from the same MRI equipment and
images were scanned by technicians with similar standardized training
experience who were familiar with scanning parameters. In the image
processing stage, the images without motion artifacts or any other
magnetic artifacts were included.

2.3. Image dataset and masking

MRI image dataset was retrieved and produced by combining with
clinical testing. For the recognition of fine results, the size of the acquired
MRI images was selected as 1188 � 1372 pixels. MRI images of 924 pa-
tients (18 images per patient) were collected and labeled to make the
common objects in context datasets, in which 504 individuals were
assigned into the training dataset group, 220 patients were in the verifi-
cation dataset group, and 200 patients were in the internal testing dataset
group. In addition, images of 180 patients from 8 hospitals were consid-
ered as an external testing dataset. To visualize the health of the menisci,
the position and shape of the cartilage tissues (CA) were extracted and
displayed from the images. The marking process was performed under the
supervision of a board-certified radiologist and a board-certified sports
medicine physician to ensure the accuracy of the marking range. Both of
them had more than 15 years of experience in their respective fields.



J. Li et al. Journal of Orthopaedic Translation 34 (2022) 91–101
MRI images were manually segmented into 10 categories: CA, ante-
rior horn tear (AH_tear), posterior horn tear (PH_tear), meniscus body
tear (MBT), anterior horn degeneration (AD), posterior horn degenera-
tion (PD), meniscus body degeneration (MBD), anterior horn intact
(AH_intact), posterior horn intact (PH_intact), and meniscus body health
(MBH). During the marking and labeling process, cartilages without full
display were discarded, and the pixels that could not be used to distin-
guish healthy from injured menisci were also ignored. Fig. 1 demon-
strates the visualization process of the meniscus datasets. Usually, the
cartilage was displayed clearly, and healthy and injured menisci were
marked based on the doctor's diagnosis.

Due to the limited number of patients, the amount of images in the
dataset for training and validation might not be large enough. In the
dataset establishment stage, data augmentation technology was used to
supplement the collected dataset. Based on the labeled MRI image
dataset, geometric transformation, lighting adjustment, Gaussian
filtering and noise addition were used to expand the number of samples
in the dataset. To prevent labeling errors, three geometric transformation
methods were used, including horizontal, vertical and diagonal mirror-
ing. By geometric transformation, one MRI image was converted into
four different images. The four images were processed as follows:
Gaussian filtering, brightness enhancement, brightness reduction and
adding noise (such as salt and pepper noise). MRI images generated by
geometric transformation could simulate differences due to various slice
angles and positions. New images with different brightness could simu-
late different levels of fat suppression. Gaussian filtering blurred the
original MRI images, and noise added increased the disturbance to im-
ages. As shown in Fig. 2, through data augmentation and labeling, the
dataset was expanded by 20 times. Segmentation categories in the
meniscus dataset are shown in Table 1. The total number of labels in the
training, validation and internal testing dataset was 30080, 16520 and
1012, respectively.
Fig. 1. Meniscus MR Image dataset visualization process. (a) The marking proce
learning model.
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2.4. Network architecture

In this process, Mask R–CNN was employed as the deep learning
network structure to classify and segment the MRI images [13]. As shown
in Fig. 3, the process of deep learning for the identification of meniscal
injuries mainly included two stages. The first stage was the generation of
candidate regions, which primarily included feature extraction by con-
volutional neural networks, Region Proposal Network (RPN) [14], and
RoIAlign layer [13]. The second stage included object classification and
regression and mask generation.

Feature map extraction was completed using ResNet50 architecture
as the backbone network. Because ResNet50 had deeper network layers,
it produced abundant feature information after convolution and pooling
of the original images. ResNet50 was combined with Feature Pyramid
Networks and feature maps from the bottom layer to the upper layer,
which was conducive to making full use of the features of different depths
[15]. The purpose of using RPN was to determine the region of interest
(ROI) within the network. Briefly, the MRI image was input into the RPN,
and the ROI of the original image was extracted by a 9-size anchor to
output the region with a recommendation score. Bilinear interpolation
was used in RoIAlign to extract fixed-sized feature maps (for example, 7
� 7 pixel) from each ROI.

Mask R–CNN finally output three branches of the meniscus images:
classification, bounding box regression, and a mask branch (Fully Con-
volutional Networks). In the dataset for the identification of meniscal
injuries, the number of categories was 8 (including background and other
7 categories), the output depth of the classification and regression
network was 8, and the output mask network size was 28 � 28 � 8 pixel.
2.5. Training

ResNet50 was adopted as the backbone network to train the MRI
image datasets. Dataset was trained on a Graphic Processing Unit (RTX
ss of objects on the image, (b) The exported image derived from the deep



Fig. 2. The illustration diagram of dataset augmentation technique.

Table 1
Meniscus dataset and demographic breakdown.

Patients number CA PH_tear AH_tear MBT PD AD MBD AH_intact PH_intact MBH Total

Training dataset 504 19780 1620 860 560 780 820 380 2660 2080 540 30080
Verification dataset 220 7260 1260 840 300 420 700 240 3020 1980 500 16520
Testing dataset 200 348 114 65 33 50 56 22 164 129 31 1012
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2070; NVIDIA, Santa Clara, CA, USA) for 10000 epochs, the initial
learning rate was 0.01 (drop with training), the IMS_PER_BATCH was 2,
and the NUM_CLASSES was 8. During the training process, loss function
was defined as:

L¼ Lrpn þ Lmask (1)

where L cls and L box respectively represented the classification loss and
bounding-box loss:

Lrpn ¼ L cls þ L box ¼ 1
Ncls

X
i

Lcls

�
pi; p*i

�þ λ1
1

Nreg

X
i

p*i Lreg

�
ti; t*i

�
(2)

where N represented the number of corresponding anchors or bounding
boxes; the hyper-parameters λ and γ balanced the training losses of the
regression and mask branch. L cls represented the classification loss
function and was expressed as:

Lcls

�
pi; p*i

�¼ � log p*i pi (3)
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where i was the index of an anchor in a mini-batch; pi was the predicted
classification probability of anchor i; p*i represented the ground-truth
label (correct and positive label) probability of the anchor i; p*i was 1
for positive anchor and 0 for negative anchor.

L box was bounding-box loss defined over a tuple of true bounding-box
regression targets:

Lreg

�
ti; t*i

�¼ smoothL1
�
t*i � ti

�
(4)

smoothL1ðxÞ¼
�
0:5x2 ; if jxj < 1
jxj � 0:5 ; otherwise

(5)

where t*i ¼ ðt*x ; t*y ; t*w; t*hÞ indicated the differences between the ground-
truth label box and the positive anchor in four-parameter vectors (the
horizontal and vertical coordinate values of the center point in the
bounding box; the width and height of the bounding box); ti ¼ ðtx; ty ; tw;
thÞ represented the difference between the diagnostic bounding box and
the ground-truth label box:



Fig. 3. Architecture of the deep learning network for the identification of torn menisci.
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L mask ¼ Lmask pi; p*i ; ti; t
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(6)

Definition of L mask allowed the network to generate masks for every
class without competition among classes. L mask was defined as the
average binary cross-entropy loss used by a per-pixel sigmoid. Mask
branch had a Km2-dimensional output for each ROI (K was the number of
classes). L mask was only defined on the k-th mask.

2.6. Model performance evaluation

To estimate the identification effect, MRI image testing dataset was
used for testing and evaluation. Intersection over Union (IoU) was used,
which was the ratio of intersection to union of candidate bound area (C)
and ground truth bound area (G).

IoU¼ areaðCÞ \ areaðGÞ
areaðCÞ [ areaðGÞ (7)

Precision and recall of the formulas were:

Precision¼ TP
TPþ FP

(8)

Recall¼ TP
TPþ FN

(9)

where True Positive (TP) represented the resultant number of IoU values
greater than the threshold values (generally 0.5). False Positive (FP)
represented the number of IoU values less than the threshold values.
False Negative (FN) represented the number of unrecognized targets.

Average Precision (AP) was used to measure the identification accu-
racy. For multi-class diagnosis, AP was the average precision of multiple
categories. The formula was:
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AP¼
Z1

PdR ðIoU¼ 0:50:0:95Þ (10)

0

AP50 and AP75 were APs when IoU threshold was greater than 0.5
and greater than 0.75, respectively. APs, APm, and APl were represented
as the AP for small objects (area <322), medium objects (322<area
<962), and large objects (962<area), respectively.

2.7. Diagnostic accuracy evaluation

The identification accuracy was evaluated by comparing the output
results with the assessment by a board-certified radiologist with 15þ
years of experience. Briefly, images from 200 patients having meniscus
tears, meniscus degeneration, and intact meniscus were identified as the
internal testing dataset using the AI model. Additionally, images from
180 patients with definitive MRI diagnosis reports from 8 hospitals were
regarded as the external testing dataset. In accordance with routine
diagnostic procedure, each MRI diagnostic report could be provided with
the same diagnostic opinion by two board-certified radiologists to ensure
its reliability. Among them, images from 90 patients (30 healthy, 30 with
meniscus degeneration, and 30 with meniscus tear) were captured using
1.5T MRI, and 90 patients (30 healthy, 30 with meniscus degeneration,
and 30 with meniscus tear) were scanned using 3.0T MRI. The scanning
parameters are listed in Table 2. Different results between AI and manual
reports were assessed by the experience radiologist. Moreover, 40 dis-
charged patients who underwent arthroscopic surgery and MR test and
were diagnosed with meniscus tear were randomly selected to verify the
diagnostic accuracy of the AI model.

3. Results

3.1. Mask R–CNN training

Loss function and accuracy in the training process of Mask R–CNN are
shown in Fig. 4. After 10,000 iterations, loss function was relatively low,
and the accuracy increased to 0.96. More training and larger datasets



Table 2
MR imaging system and scanning parameters.

Types Model Field strength MR sequence Field of view Time of repetition Time of echo Slice Thickness Matrix

Philips Intera 1.5 FS-T2W 18 cm*18 cm 1800 ms 30 ms 4 mm 200*160
United Imaging uMR790 3.0 FS-PDW 16 cm*16 cm 1500 ms 40 ms 3 mm 320*288
Siemens Skyra 3.0 FS-PDW 17 cm*19.6 cm 2600 ms 36 ms 3.5 mm 384*384
Siemens Avanto 1.5 FS-PDW 16 cm*16 cm 3000 ms 31 ms 4 mm 640*640
Philips Multiva 1.5 FS-PDW 16 cm*16 cm 2000 ms 25 ms 4 mm 288*224
GE Architect 3.0 FS-PDW 16 cm*16 cm 2500 ms 38 ms 4 mm 512*512
Siemens Avanto 1.5 FS-PDW 22.2 cm*16.6 cm 2000 ms 19 ms 4.5 mm 640*640
Siemens Skyra 3.0 FS-PDW 16 cm*16 cm 2800 ms 32 ms 3.5 mm 352*288
GE 750 3.0 FS-PDW 18 cm*18 cm 1941 ms 35 ms 3.5 mm 352*224

Fig. 4. Loss function and accuracy in the training process of Mask R–CNN.
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were conductive to improve accuracy and avoid overfitting.

3.2. Image identification of meniscus

Fig. 5 shows the classification and instance segmentation of a
meniscus MR image, and the targeted objects were marked by both
bounding box and pixel. The reorganization diagnosis results of Box and
Fig. 5. Classification and instance segmen
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Mask are shown in Fig. 6 and Fig. 7, respectively. Box represented the
bounding box containing the target objects (Fig. 6). Mask represented the
predicted pixels of the tissues, like cartilage and meniscus (Fig. 7).
Different colors were employed to distinguish the cartilage from
meniscus: watchet blue bounding boxes and pixels represented CA, red
bounding boxes and pixels represented injured menisci (PH_tear, AH_tear
and MBT), yellow bounding boxes and pixels represented degenerated
menisci (AD, MBD and PD), and green bounding boxes and pixels rep-
resented healthy menisci (AH_intact, MBH and PH_intact).

Box diagnosis results demonstrated that the meniscus horns (Fig. 6a)
and the body (Fig. 6b) were precisely divided into three categories:
healthy meniscus, degenerated meniscus, and meniscus with tear.
Coverage of the CA on each layer was also included in the Box. According
to Mask diagnosis results, degeneration occurred at both anterior and
posterior horns of meniscus (Fig. 7a), tears occurred at posterior horns
(Fig. 7b), tears occurred at the meniscus body (Fig. 7c), and healthy
meniscus (Fig. 7d) was accurately identified.

AP of Mask R–CNN was tested with Resnet50_FPN as the backbone
network, as exhibited in Table 3. The results indicated that when the IoU
shoulder value was greater than 0.5, AP of Box and Mask was 99.55 �
0.41% and 99.47 � 0.28%, respectively. As the IoU threshold exceeded
0.75, Box and Mask APs dropped slightly but were still greater than 88%,
exhibiting extremely high accuracy. APs for objects of different sizes
were also acceptable, with all values above 50%. Due to the deep
network layers of Resnet50, the AP identification accuracy was relatively
tation results of meniscus MR images.



Fig. 6. Bounding box diagnosis results on meniscus MR images. (a) Meniscal horns, (b) Meniscal body.

Fig. 7. Mask diagnosis results on meniscus MR images. (a) Degenerations at meniscal anterior and posterior horns, (b) Tears at meniscal body, (c) Tears at the
posterior horn, (d) Healthy meniscus.
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Table 3
AP for identification of meniscus injuries.

Backbone
network

(%) AP50 AP75 APs APm APl

Resnet50_FPN Box 99.55
� 0.41

97.67
� 1.21

76.86
� 4.82

82.07
� 5.82

88.45
� 4.11

Mask 99.47
� 0.28

88.15
� 5.16

69.60
� 5.33

74.99
� 4.91

45.20
� 6.56

Table 5
Sensitivity for identification of meniscus injuries.

Backbone
Network

(%) Overall
Sensitivity

Area
¼ Small

Area
¼
Medium

Area
¼ Large

Resnet50_FPN Box 83.77 � 5.29 78.16 �
3.37

86.30 �
5.28

95.77 �
2.89

Mask 74.43 � 3.41 73.54 �
4.92

78.22 �
4.36

59.67 �
2.72

Table 6
Verification of external dataset.

Field strength Meniscus type Recognition rate diagnostic accuracy

3.0 Intact 93.33% (28 of 30) 82.14% (23 of 28)
Degeneration 76.67% (23 of 30) 73.91% (17 of 23)
Tear 86.67% (26 of 30) 92.31% (24 of 26)

1.5 Intact 80.00% (24 of 30) 79.17% (19 of 24)
Degeneration 66.67% (20 of 30) 70.00% (14 of 20)
Tear 76.67% (23 of 30) 60.87% (14 of 23)

J. Li et al. Journal of Orthopaedic Translation 34 (2022) 91–101
good. For higher AP, the number of iterations was increased.

3.3. Diagnosis of meniscus injures

Table 4 represents the AP evaluation results of each category in MRI
images. Box AP of the CA was above 84%. Meniscus tear Box AP was
higher than 68%, and the AP value for degenerated meniscus was greater
than 79%. As for healthy meniscus, the AP value exceeded 80%.
Although mask diagnosis was made at the pixel-level, the AP value of
Mask was similar to that of Box.

Sensitivity results at IoU ranging from 0.50 to 0.95 are shown in
Table 5. Overall sensitivity for Box and Mask was 83.77 � 5.29% and
74.43 � 3.41%, respectively. Sensitivity for target objects in different
areas was also admirable. For small- and medium-sized areas, the values
were all above 75%. For large areas, the sensitivity for Box was as high as
95.77 � 2.89%. Since the detected objects were relatively concentrated
in small and medium areas, Mask sensitivity for large area was relatively
low, but still exceeded the critical value of 50%.

Compared to the diagnosis by experienced doctors, the identification
and diagnosis accuracy of the model was also quite high. Among the 200
patients from the internal testing dataset, 6 samples were unrecognized
(3%). Besides, 49 of 56 healthy samples (including 3 unrecognized torn
and 4 unrecognized degenerated samples), 80 of 92 torn samples
(including 3 unrecognized healthy and 9 unrecognized degenerated
samples), and 39 of 46 degenerated samples (including 3 unrecognized
torn and 2 unrecognized healthy samples) were identified by deep
learning model. Therefore, the diagnostic accuracy was 87.50% for
healthy meniscus, 86.96% for torn meniscus, and 84.78% for degen-
erated meniscus.

For external testing dataset, the 3.0T MRI group demonstrated better
recognition rate and diagnostic accuracy compared to the 1.5T MRI
group (Table 6). Briefly, the healthy meniscus showed the highest
recognition rate in both the 3.0T and the 1.5T MRI groups. The lowest
recognition rate was found for degenerated meniscus by using MRI with
both field strength. Torn meniscus could be effectively diagnosed in the
3.0T MRI group, but 1.5T MRI revealed the lowest diagnostic accuracy
for torn meniscus among the three meniscus types.

The verification results of arthroscopic surgery were also optimistic,
among 40 patients with a diagnosis confirmed by the gold standard,
87.50% of them (35 of 40) obtained corrected diagnosis using this model.

4. Discussion

Meniscal injury is one of the most common sports injuries worldwide
[16]. MRI test generates a high soft-tissue image resolution, and is the
first diagnostic test choice for meniscal injury [3]. However, the diag-
nostic accuracy of meniscal injury depends on the experience of the
Table 4
Per-category Box/Mask AP for identification of meniscus injuries.

Backbone
network

(%) CA PT AT MBT

Resnet50_FPN Box 84.64 �
4.78

71.35 �
3.66

68.84 �
5.37

69.813 �
3.49

Mask 53.13 �
6.39

75.50 �
5.29

68.65 �
4.72

63.69 �
4.26
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diagnostician. The popularization of multi-center studies on meniscus
injury is hampered by the objective criteria of diagnosis, the subjective
errors of doctors, and the diagnostic efficiency. These limitations put
forward the objective demands on standardized interpretation and
automated classification of meniscal MRI images. Herein, we proposed a
deep learning network based on Mask R–CNN to address the demands
mentioned above. We adopted the most commonly used conventional
sequence and routine scanning parameters to ensure that the model could
be widely used in different hospitals, and the anatomical images gener-
ated from different MRmachines were consistent. The results proved that
this method could recognize the injured meniscus with high accuracy.
Thus, we believed that this deep learning network could be regarded as
an effective measure in clinical application.

We used a deep learning method based on Mask R–CNN to realize
identification and diagnosis of meniscal injuries. After annotation and
classification, MRI images from 924 patients were collected. Substantial
amount of images (nearly twenty thousands) were used in this study with
admirable sensitivity and diagnostic accuracy. The images were
segmented into 10 categories to estimate meniscus injuries. Compared to
similar studies using deep learning model to diagnose meniscus injuries,
this study had the largest label numbers (Table 7), indicating that the
model could help the doctors to recognize more subjects on MRI images
[17–22]. In addition, although most of the previous studies could reach a
sensitivity of higher than 90%, the verifying process was performed using
the internal dataset. Only one study enrolled an external dataset to verify
the effect of the model, and the sensitivity was 81% [22], which was
slightly lower than that in our study. Besides, only one or a few images
were selected from each patient for the training dataset in some studies
[18,19,22]. These images showed typical features of healthy or torn
meniscus, which might lead to missed diagnosis of meniscal injuries with
non-typical characteristics or not appearing in the corresponding scan
plane. Moreover, these studies did not take into account the distinction
between degenerated and torn meniscus, which was difficult to diagnose
clinically, even by experienced radiologists. The model established in this
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Table 7
Comparison of AI studies for meniscus tear diagnosis.

Study Reference standard Label No. Network
structure

Sequences Field
strength

Patients
No.

Image
No.

Verification
method

This study Radiologists/
Arthroscopic
surgery

10 (intact/tear/degeneration/
horn/body/cartilage//anterior/
posterior)

ResNet SAG FS PDW, SAG FS
T2

1.5/3.0 1104 19872 External dataset
(87.50%)

Bien et al.
[17]

Radiologists 2 (intact/tear) MRNet SAG T2, COR T1, ax
PD

1.5/3.0 1088 �33000 Internal dataset
(74.10%)

Couteaux
et al. [18]

Radiologists 4 (intact/tear/anterior/posterior) ConvNet FS-T2W 3.0 / 1128 Internal dataset
(90.60%)

Roblot et al.
[19]

Radiologists 3 (intact/horizontal tear/vertical
tear)

Fast-RCNN/
faster-RCNN

SAG T2 1.5/3.0 / 1123 Internal dataset
(90.00%)

Pedoia et al.
[20]

Radiologists 2 (intact/tear) U-Net SAG 3D PDW COR
and SAG FS sensitive
MRI

3.0 302 1478 Internal dataset
(89.81%)

Fritz et al.
[21]

Arthroscopic
surgery

2 (intact/tear) DCNN COR and SAG FS
fluid-sensitive MRI

1.5/3.0 100 20520 Internal dataset
(91.20%)

Rizk et al.
[22]

Radiologists 2 (intact/tear) MRNet SAG FS PDW, COR FS
PD

1.0/1.5/
3.0

10401 11353 External dataset
(81.00%)

Figure 8. Diagnostic result highlighting and processing on meniscus MR images. (a) Meniscal horns, (b) Meniscal body.
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study could assist the radiologists to improve the diagnostic accuracy for
meniscus degeneration and meniscus tear.

In the deep learning networks, Resnet50_FPN was used as backbone
network, which had more network layers to integrate the features of the
image at different depths. RPN used a 9-size anchor to extract the ROI
99
from the original image, and output category scores and box scores. Mask
R–CNN finally delivered classification, bounding box regression and
mask diagnosis. After realizing classification and recognition, the pixel-
level diagnosis with MRI was carried out. Through the training on MRI
image datasets, AP of the bounding box regression was greater than 97%,
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and AP of pixel-level diagnosis was greater than 88%. In the visualized
diagnosis results, the size and location of the meniscus injury were dis-
played and marked, which facilitated better diagnostic estimation.

In the validating process, three types of menisci were well identified.
The most common problem was mistaking a degenerated meniscus as a
torn meniscus. According to the imaging principle, there might be two
main reasons for this misidentification. The first reason was similar signal
intensity. Meniscal degeneration and meniscal cleft were actually at
different stages of the same pathological process. The distinction be-
tween the two stages was not obvious, leading to the confusion between
severe meniscal degeneration and meniscal spallation [23,24]. The sec-
ond reason was related to the complex anatomy of meniscus. The shape
of meniscus was irregular, its free edge was very slender with a thickness
less than 0.5 mm, which was not easy to identify. In addition, when a
meniscal tear occurred, the broken fragments could shift to the femoral
intercondylar notch, and the original anatomical area of the meniscus
was replaced by fluid signal, whichmight result in erroneous recognition.

Except the validation using internal dataset, images of 180 samples
from 8 hospitals scanned by MRI with different brands and field strength
were used as the external dataset. The results demonstrated that this
model had admirable recognition rate in 3.0T group, especially for intact
and torn menisci. But the recognition and diagnosis accuracy of the 1.5T
group was not as good as those of the 3.0T group. One possible reason
was that the images obtained by the 1.5T MRI equipment were not
employed in the learning and training process. The image quality pa-
rameters including matrix and signal noise ratio differed between the
1.5T and 3.0T images. The recognition rate for degenerated meniscus
was limited due to the ambiguous boundary between degeneration and
tear. In addition, images of 40 samples diagnosed as meniscus tear
through arthroscopic surgery were tested by this model to further verify
the reliability of the results, and the diagnostic accuracy rate was nearly
90%. Of the relevant studies, only one of them employed arthroscopic
surgery as the reference standard. The introducing of this gold standard
could improve the confidence of orthopaedic specialists in applying this
model and promote the clinical application of this technique.

Artificial intelligence has a broad application prospect for efficient
analysis and classification of medical images. At present, there are great
challenges in the application of artificial intelligence in diagnosing knee
joint abnormalities. Except for the model algorithm and other technical
factors, the biggest challenge is to establish a homogenized standard
dataset, and adopt it on different people and by different MRI equipment.
This requires a trade-off between diagnostic accuracy and generaliz-
ability. Herein, in this study, the training dataset was only collected from
one 3.0T MRI equipment using the general scanning sequence. To
enhance the learning and training effects, data augmentation technique
was used in the training process. This technique could simulate different
slice angle, position, and fat suppression level by using geometric
transformation, lighting adjustment, Gaussian filtering and noise addi-
tion. Through this operation, the dataset could be expanded by 20 times,
implying that the images number reached hundreds of thousands. But
more importantly, the dataset could be further expanded by modifying
the parameters of the currently used data augmentation methods.

In addition to improving diagnostic accuracy, AI can also help doctors
clearly distinguish the diagnosis. Herein, image processing was per-
formed to highlight the health status of meniscus. As shown in Fig. 8,
after removing the soft tissue background and cartilage, the deep
learning model could differentiate the situation of the meniscus. The
green, yellow, and red pixels respectively represented healthy, degen-
erative, and torn meniscus. The horns (Fig. 8a) and body (Fig. 8b) of the
meniscus, and the cartilage were easily recognized in this process.

There were several limitations in this study. First, only meniscal
injury was identified, and no distinction was made between different
types of meniscus tears. Moreover, the diagnostic accuracy of sagittal,
coronal, and transverse views was not compared in the analysis. In future
studies, we will analyze the accuracy of this model for meniscus tears at
different positions by including more cases and investigating the
100
influence of different layer thicknesses on the diagnosis of meniscus tears
using AI. Additionally, the validation method also needed to be
improved. Only a few sample diagnoses in this study were confirmed by
arthroscopic surgery. This result might partially reflect the effect of the
deep learning model, but was not statistically representative. In future
research, rigorous comparison of arthroscopic diagnostic results with the
data used for training and verification is required to further improve the
accuracy of the model.

5. Conclusion

In summary, a Mask R–CNN model was employed in this study to
identify and predict meniscus tears on MRI images. This deep learning
model effectively detected the meniscus and cartilage, especially tears
that occurred at different parts of the meniscus. The recognition accuracy
was greater than 84%. With increased training sample size, the diag-
nostic accuracy could be further improved. The application of this
techniquemay help reduce themisdiagnosis rate of meniscus injuries and
alleviate the burden on doctors.
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