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ABSTRACT
The American Joint Committee on Cancer (AJCC) staging system is insufficiently prognostic for gastric 
cancer (GC) patients and complementary factors are in urgent need. Here we aimed to develop 
a comprehensive model, consisting of both immune signatures and cancer signaling molecules, which 
was expected to accurately improve survival prediction in non-metastatic gastric cancer (GC). We first 
validated the prognostic value of a combination of 18 immune features and 52 cancer-signaling molecules 
in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Then, their expression 
and distribution were analyzed in consecutive 1180 GC patients using immunohistochemistry. We devel-
oped and validated a novel protein-based prognostic classifier using CDH1, an epithelial–mesenchymal 
transition (EMT) marker, and five immune features (CD3, CD4, CD274, GZMB, and PAX5) by Cox regression 
model with group LASSO penalty. We observed significant differences in the overall survival of the high- 
and low-prognostic risk groups (66.8% VS 27.0%, P < .001). A combination of this classifier with age and 
pTNM stage had better prognostic value than pTNM alone. The model was further validated in both 
treatment-naive patients and those treated with neoadjuvant chemotherapy. Moreover, GC patients with 
high-risk score exhibited a favorable prognosis to adjuvant chemotherapy. This integrated classifier could 
be automatically analyzed and effectively predict survival of GC patients and may provide a new clinically 
applicable strategy to identify patients who are more likely to benefit from adjuvant chemotherapy.
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Introduction

Although the incidence of gastric cancer (GC) has declined in 
the recent decades, it remains the third most common cancer 
and the third leading cause of cancer death worldwide.1 More 
than half of these cases occur in East Asia.2 The tumor-node- 
metastasis (TNM) staging system and histological subtype have 
been adopted routinely to predict prognosis and guide treat-
ment decision for GC.3 However, the clinical outcome varies 
significantly among patients with the same TNM stage and 
similar regimens.4-6 Many signaling pathways and key regula-
tors have been identified as abnormal in GC initiation and 
progression, some of which have also been reported to be 
correlated with GC outcome.7-10 Based on gene microarray 
analysis, several prognostic gene signatures have also been 
identified in gastric cancer.2,11-14 However, tumor samples 
usually have a complex composition and tissue heterogeneity. 
These gene expressions (RNA)-based signatures could not 

accurately indicate the expression level and heterogeneity 
among the tumor cells and were not always consistent with 
the expression of proteins, which are the final executors of 
a biological function.

Nowadays, the “immunoscore” tool used for quantifying 
in situ immune cell infiltrates termed has been identified as 
a prognostic tool and may be highly promising as a supplement 
to the TNM classification of various tumors.15-18 An interna-
tional task force has initiated prospective multicentre studies 
aiming to implement TNM-Immunoscore (TNM-I) in 
a routine clinical setting in colorectal cancer.19 Several studies 
have reported immunescore signature showed remarkable 
prognostic value in GC as well.16,18,20 Therefore, in this study, 
we integrated key immune signatures and GC-specific signal-
ing proteins into a multi-protein model and aimed to substan-
tially improve the prognostic value for GC patients. We 
retrospectively collected and analyzed formalin-fixed paraffin- 
embedded (FFPE) GC samples for 18 characteristic 
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immunomarker proteins and 52 signaling proteins involved in 
cancer development in consecutive 1180 GC patients by immu-
nohistochemistry (IHC). Using a machine learning approach, 
we developed an integrative classifier that significantly 
improved the prognostic power for GC patients. This classifier 
could be applicable to patients with or without neoadjuvant 
chemotherapy and showed predictive value to identify GC 
patients who would benefit from post-surgery adjuvant 
chemotherapy.

Results

Prognostic power of selected molecules in TCGA and GEO 
datasets

Before testing these proteins in patients, we performed a pre- 
study in public datasets. We first evaluated the prognostic 
power of our molecular panel including immunomarkers and 
cancer regulators in the TCGA GC patient cohort (n = 299) 
and Singapore GC patient cohort (n = 132). The upper quartile 
fragments per kilobase of transcript per million mapped reads 
(FPKM-UQ) values and the mean mRNA expression values of 
the 70 selected genes were used, respectively. The patients were 
classified into high- and low-risk groups with median fit score 
as the cutoff using standard Cox regression model. In the 
TCGA cohort, the OS gain of the high-risk group was signifi-
cantly lower than that of the low-risk group (p < .001). The 
prognostic power was also validated in the Singapore cohort 
(p < .001). For each TNM stage (I, II, or III), the low-risk group 
also showed a significantly longer OS than the high-risk group 

did (p < .001), indicating the prognostic power of this compre-
hensive molecular panel in GC (Figure S1).

Study design and patient characteristics

After excluding 74 patients owing to loss to follow-up or 
missing data, a total of 1180 GC patients were enrolled. The 
median age at diagnosis is 60 y (range: 22–89 y) and median 
follow-up was 39 months (IQR 17–63). Their clinical charac-
teristics are summarized in Table 1. All the tissue samples were 
identified as adenocarcinoma mostly with poor or moderate 
differentiation. The 1-, 3-, 5-y OS were 87.3%, 62.0%, and 
52.8%, respectively.

The treatment-naive patients who underwent surgery 
before December 2010 were assigned as the first cohort to 
construct the prognostic classifier, including a training set 
(N = 593) and a testing set (n = 146); the distribution of 
TNM stages was not biased in the two sets. The patients who 
had surgery in 2011–2012 without NAC (n = 179) were tested 
as an internal validation set. All the patients with NAC 
(n = 262) were used as another validation set (Figure 1).

The integrative prognostic classifier construction

Per the datasets of patients in the training set, we applied 
a group Lasso model with bootstrap process (n = 100). 
Considering the importance of clinical risk factors such as 
pTNM stage and age, we combined both the molecular signa-
tures and clinical features to construct the integrative prognos-
tic classifier. The number of selected features (n = 8) was 

Table 1. Clinical characteristics of patients in the training, testing, and validation sets.

Variables
Training set * 
(n = 593)

Testing set * 
(n = 146)

Internal Validation set * 
(n = 179)

NAC 
Cohort** 
(n = 262)

Gender
Male 428 (72.2%) 110 (75.3%) 128 (71.5%) 211 (80.5%)
Female 165 (27.8%) 36 (24.7%) 51 (28.5%) 51 (19.5%)
Age
<60 291 (49.1%) 65 (44.5%) 85 (47.5%) 135 (51.5%)
≥60 302 (50.9%) 81 (55.5%) 94 (52.5%) 127 (48.5%)
pTNM
I 67 (11.3%) 16 (11.0%) 34 (19.0%) 29 (11.1%)
II 187 (31.5%) 46 (31.5%) 52 (29.1%) 103 (39.3%)
III 339 (57.2%) 84 (57.5%) 93 (51.9%) 130 (49.6%)
T status
T1+ T2 106 (17.9%) 25 (17.1%) 45 (25.1%) 48 (18.4%)
T3+ T4 487 (82.1%) 121 (82.9%) 134 (74.9%) 213 (81.6%)
N stage
N0 155 (26.1%) 35 (24.0%) 56 (31.3%) 78 (29.8%)
N1+ N2+ N3 436 (73.5%) 111 (76.0%) 121 (67.6%) 176 (67.1%)
NA 2 (0.4%) 0 (0%) 2 (1.1%) 8 (3.1%)
Vascular invasion
Neg 263 (44.4%) 77 (52.7%) 92 (51.4%) 163 (62.2%)
Pos 321 (54.1%) 67 (45.9%) 85 (47.5%) 93 (35.5%)
NA 9 (1.5%) 2 (1.4%) 2 (1.1%) 6 (2.3%)
Differentiation
Well 14 (2.4%) 5 (3.4%) 5 (2.8%) 4 (1.5%)
Poor 292 (49.2%) 68 (46.6%) 67 (37.4%) 118 (45.1%)
Moderate 252 (42.5%) 68 (46.6%) 96 (53.6%) 120 (45.8%)
NA 35 (5.9%) 5 (3.4%) 11 (6.2%) 20 (7.6%)

*Patients without neoadjuvant chemotherapy (NAC) 
** Patients with NAC 
NA: Not available
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determined based on a trade-off between efficacy of the model 
and convenience of clinical practice in testing (Figure S2). 
Finally, six features including five immunomarkers (CD3, 
CD4, CD274, PAX5, and GZMB, Figure 2), an EMT protein 
marker (CDH1, Figure 2), and two clinical features (pTNM 
and age) were included.

To obtain a more objective evaluation of CDH1 expression, 
instead of the four expression levels, we categorized CDH1 as 
negative (0) or positive1-3 in the model. An integrated model 
was constructed to calculate a prognosis score (online integrate 
classifier: https://thisbe.shinyapps.io/app-integrate_classifier). 

The cutoff value was estimated as 1.50 to assign a GC patient 
to the high-risk or low-risk group (Figure S3). The value of area 
under the receiver-operating characteristic (ROC) curve (AUC) 
of the signature on the training set was 0.708, thus exhibiting 
a higher prognostic value than that based on the six proteins or 
clinical characteristics (pTNM and age) only (Figure 3(a)).

In the training subgroup, 224 (37.77%) and 369 (62.23%) 
GC patients were stratified into the high-risk and low-risk 
group, respectively (Figure 3(b), Table S6). The 5-year OS 
was 66.8% (95%CI 61.6–71.6%) in the low-risk group, com-
pared with 27.0% (95%CI 21.6–33.7%) in the high-risk 

Figure 1. Outline of the overall study flow. Assignment of gastric cancer patients into subgroups based on surgery times and treatments to construct and validate the 
prognostic classifier. Patients were divided into training, testing, and validation set and NAC cohort.

Figure 2. Six features in the protein expression based classifier, including CDH1 (a and b), and five immunomarkers CD3 (c), CD4 (d), GZMB (e), PAX5 (f), and CD274 (g 
and h). CDH1 were recognized as negative or positive. The immunomarkers were quantified automatically.
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group (HR 3.38 [95%CI 2.68–4.26], p < .001). We validated 
the stratification analysis in 146 GC patients of the testing 
subgroup (Figure 3(c), Table S6). The OS gain of the low- 
risk patients (n = 87) was significantly longer than that of 
the high-risk patients (n = 59, HR 3.31 [95%CI 1.92–5.01, 
p < .001]), with 5-year OS of 70.7% (95%CI 61.7–81.1%) 
versus 31.7% (95%CI 21.7–46.3%). Further, univariate and 
multivariate Cox regression analysis also indicated that the 
classifier is a better prognostic predictor of OS (p < .001, 
Table 2).

Validity of the classifier in validation set

To further confirm the performance of the classifier, we applied 
it to two internal validation sets of GC patients. The eight- 
feature integrative prognostic classifier stratified 56 patients 
(31.28%) into the high-risk group with 3-year OS of 64.3% 
(95%CI 51.6–80.2%), and 113 patients (68.72%) into the low- 
risk group with a significantly higher 3-year OS (89.3% [95%CI 
83.6–95.3%]; p < .001; Figure 3(d), Table S7). The univariate and 
multivariate HR values between the two groups are 3.39 [95%CI 
1.70–6.75] and 2.32 [95%CI 1.03–5.24], respectively (Table S8).

Figure 3. Identification and validation of the integrative prognostic gastric cancer classifier. (a) The receiver-operating characteristic (ROC) curve of the training set. 
Patients of the training set (b), testing set (c), internal validation set 1 (d) and neoadjuvant chemotherapy (NAC) cohort (e) were classified into high- and low-risk groups 
using the classifier. The Kaplan-Meier estimates of overall survival for the two groups are shown. (f) The prognosis score distribution, prognosis prediction using the 
classifier, the overall survival status, and the expression profile of the molecular features of all the 1180 patients involved in the study.
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The classifier in NAC cohort

We also applied the classifier to the subgroups of GC patients 
with NAC and found that the integrative classifier could pre-
dict prognosis. The classifier stratified 82 patients (31.30%) 
into the high-risk group with 3-year OS of 23.6% (95%CI 
15.9–34.9%), and 180 patients (68.7%) into the low-risk 
group with a significantly higher 3-year OS (67.5% [95%CI 
60.8–75.0%]; p < .001; Figure 3(e), Table S9). The prognosis 
score distribution, the survival status, and the expression pro-
file of the six signature proteins for all the 1180 patients are 
presented in Figure 3(f). The individual score distribution (top 
panel) and survival status (middle panel) indicate that the 
classifier accurately predicted the OS of patients.

Prognostic value of the classifier for different TNM stages

We further investigated whether our classifier could predict the 
outcomes of the GC patients in each TNM stage (stage I, II, or 

III). Owing to a limited sample size in each subgroup, we 
combined the treatment-naive patients in the training, testing, 
and validation sets together. The classifier divided all patients 
within stage I into low-risk groups and could clearly divide the 
patients into poor- and good-prognosis groups within stages II 
and III (Figure S5), indicating that our classifier had a better 
prognostic value than the TNM stage alone.

The classifier and adjuvant chemotherapy

Adjuvant chemotherapy (AC) is recommended for routine use 
in stage II and III GC patients. However, a considerable num-
ber of patients do not benefit in terms of OS. To test whether 
our classifier could be helpful in selecting patients who would 
benefit from AC, we performed an exploratory analysis of its 
predictive value in GC outcome. The characteristics of patients 
treated with (n = 539) and without (n = 344) postoperative AC 
are shown in Table S9. In the high-risk group, patients with AC 
(n = 200) gained a significantly longer OS (33.3% [95%CI 
26.8–41.3%]) than those without AC did (n = 122, OS 24.9% 
[95%CI 17.9–34.7%], p = .006, Figure 4(a)). In the low-risk 
group, the 5-year OS in patients with (n = 339) or without AC 
(n = 222) was not significantly different (66.6% [95%CI 61.2–-
72.4%] vs. 73.5% [95%CI 67.6–79.9%], p = .170, Figure 4(b)). 
These results indicate that the integrative classifier could suc-
cessfully identify the candidates suitable for AC in the high-risk 
group among non-metastatic GC patients.

Discussion

Multiple-advanced molecular techniques have been used for 
molecular subtyping of GC; however, these techniques are not 
cost-effective.21-23 IHC is currently the most practical method of 
estimating the expression status of a diagnostic and prognostic 
protein, showing both the intensity and the visible location of 
protein expression in tumor or stroma cells. For breast cancer, 
the combination of three protein markers (ER, PR, and HER2) 
has been successfully utilized for molecular subtyping and clin-
ical decision-making.24 Nowadays, recommendations for the 
evaluation of TILs have also been proposed considering its 

Table 2. Cox regression analysis of overall survival in the training and testing sets.

Variable Univariate analysis Multivariate analysis

　 HR (95%CI) p value HR (95%CI) p value
Integrate classifier
high-risk vs low-risk 3.31 

(2.69–4.08)
<0.001 2.22 

(1.74–2.84)
<0.001

Gender
male vs female 1.27 

(1.00–1.61)
0.050 1.28 

(0.99–1.65)
0.061

Diameter
≥5 cm vs <5 cm 1.90 

(1.54–2.34)
<0.001 1.32 

(1.06–1.65)
0.013

Differentiation
Moderately vs Poorly 0.89 

(0.72–1.10)
0.294 1.03 

(0.79–1.34)
0.818

Well vs Poorly 0.31 
(0.12–0.85)

0.022 0.50 
(0.18–1.38)

0.181

Vascular Invasion
pos vs neg 1.99 

(1.61–2.47)
<0.001 1.26 

(0.99–1.60)
0.059

N status
N1+ N2+ N3 vs N0 2.90 

(2.15–3.90)
<0.001 1.34 

(0.93–1.93)
0.119

T status
T3+ T4 vs T1+ T2 4.10 

(2.73–6.15)
<0.001 2.07 

(1.30–3.30)
0.002

Figure 4. Survival curve based on the classifier for patients treated with adjuvant chemotherapy in the high-risk (a) and low-risk (b) groups.
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prognostic significance in multiple cancers.15 Here, we identified 
a novel integrated prognostic classifier consisting of an epithe-
lial–mesenchymal transition (EMT) marker CDH1 and five 
immunomarkers (CD274, CD3, CD4, GZMB, and PAX5), 
which could be performed by IHC and analyzed automatically 
thus being more practical in future. Together with pTNM stage 
and age, its value was validated in both treatment-naive and 
NAC-treated non-metastatic GC patients. Furthermore, it may 
enable oncologists to identify the potential GC candidates who 
would benefit from AC. There are no existing guidelines on TILs 
assessment in clinical or translational research. Based on the 
International TILs Working Group, TILs’ assessment requires 
only H&E staining slide and reported as an overall percentage of 
the stromal area within the borders of the invasive tumor that is 
covered by mononuclear immune cells. This semiquantitative 
method could not distinguish the different types of immune cells 
and takes much work from pathologists.25 Although there are no 
established thresholds for TILs assessment, it is recommended 
that TILs be analyzed as a continuous variable. Here, the score of 
the immune marker was calculated as continuous variables via 
digital image analysis, which might be useful for standardization 
in the future. Despite we used tissue array to estimate TILs rather 
than the whole slide, percentage immunoreactivity (positive 
cells/(positive cells + negative cells) *100) from all three available 
cores from different regions per case was averaged taking hetero-
geneity into account. Immunohistochemistry (IHC) and multi-
plexed immunofluorescence-based TILs staining and digital 
assessment were utilized in other solid tumors.26,27 But there 
are still some issues remained, such as the relative importance of 
stromal TILs and intra-tumoral TILs or the delineation of the 
central tumor and invasive margin. Standardized methodology 
and scoring systems are critical to the integration of information 
about TILs into future research.

Using a signature of multiple proteins will likely overcome 
the limitation of using single proteins as prognostic predictors 
because multiple protein signatures may reflect the heteroge-
neity of tumorigenesis. Loss of CDH1 may indicate EMT and 
malignant transformation and contributes to the high-risk 
group of the classifier. It has also been reported as 
a susceptible gene in hereditary diffuse GC.28-32 The other 
validated immune classifier genes were CD3, CD4, CD274, 
GZMB, and PAX5. Tumor-infiltrating immune cells have 
diverse effects on tumor progression depending on the cancer 
type.15 Not only does the quantity of lymphocytic infiltration 
but also the phenotype of the immune cells determine clinical 
outcome. Interestingly, the most consistent positive prognostic 
impact has been reported for T-cells, especially cytotoxic 
T-cells.15,18,25 The five markers selected in this study were 
related to T-cell development. While CD3 is a pan T cell 
marker, CD4 functions primarily as a coreceptor for MHC 
class II molecule-peptide complex, which recruits the Src 
kinase LCK to the vicinity of the TCR-CD3 complex. On one 
hand, CD4 + T-helper 1 (Th1) cells facilitate antigen presenta-
tion through cytokine secretion and activation of antigen- 
presenting cells. On the other hand, type 2 CD4 + T-helper 
cells (Th2), including Forkhead box P3 (FOXP3) CD4+ regula-
tory T-cells (Treg cells), inhibit cytotoxic T cells function, 
support proliferation of B-lymphocytes, and may promote an 
anti-inflammatory immune response and hinder effective 

immune responses against cancer cells.33,34 Abundant Treg 
cell infiltration into tumors is associated with poor clinical 
outcomes in various types of cancers.35-37 However, the role 
of Treg cells remained controversial. Functionally distinct sub-
populations of tumor-infiltrating CD4 + T cells contributing in 
different ways warranted further investigation. CD274 is 
a ligand that binds to the receptor PD1, commonly found on 
T-cells, and blocks T-cell activation. We have reported its 
prognostic value previously.38 GZMB is secreted by CTLs and 
proteolytically processed to generate the active protease, which 
induces target cell apoptosis.39,40 PAX5 plays an important role 
in B-cell differentiation.41,42 Jiang et al. have detected 27 
immune features and constructed an immunoscore signature 
in 879 GC patients with AUC of 0.800 in the training cohort. 
Another study from 166 patients has also exhibited that a four- 
factor immunoscore system including PDL1 in tumor cells, 
PDL1 in immune cells, PD1 and CD8 could predict clinical 
outcome for stage II and III gastric cancer.20 In contrast with 
them, our study has 1180 patients, including patients with 
neoadjuvant chemotherapy. Besides, our classifier contained 
EMT features, which could improve its predictive accuracy. 
However, our AUC value is relatively lower than the previous 
model, possible reasons might be somewhat missing informa-
tion due to tissue arrays, such as the TILs distinguished assess-
ment from tumor center or the invasive margin.

In TCGA project, GC was divided into four subtypes based 
on the molecular classification: Epstein-Barr virus-positive 
tumors, microsatellite-instable tumors, genomically stable 
tumors, and tumors with chromosomal instability.22 

However, this subtyping did not show differences in outcomes. 
The Singapore study identified three distinct molecular signa-
tures based on genetic and epigenetic expression of drug- 
responsive clusters.21 Another study from the Asian Cancer 
Research Group used the proposed classification of gastric 
adenocarcinoma into microsatellite-instable GC, microsatel-
lite-stable adenocarcinomas (with no EMT gene signature), 
and microsatellite-stable adenocarcinomas with EMT gene sig-
nature, which showed the worst prognosis.23 It has also been 
reported that GC patients could be stratified into immune, 
stem-like, and epithelial subtypes with a single patient classifier 
based on a group of genes (GZMB, WARS, SFRP4, and 
CDX1).20 Compared to these models, our model showed better 
performance and applicability. Identification of EMT markers 
and TILs with IHC might also be a straightforward and clini-
cally applicable procedure. Moreover, it could indicate the bio- 
immunological characteristics of GC and provide additional 
information from TNM staging and identify high-risk patients 
more likely to benefit from AC. Although further validation is 
essential, our results suggest that GC patients with the same 
TNM stage might be stratified into different risk groups using 
this classifier, and thus be treated with different approaches to 
improve their outcome. Nevertheless, the mechanisms under-
lying the immune responses and EMT marker functions in AC 
for GC have not been thoroughly elucidated, and further 
investigation may provide additional information and novel 
therapeutic strategies.

Our study has some limitations. It was a retrospective study 
from patients only in China. However, the significant contri-
bution of China to the worldwide burden of GC supports the 
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performance of an initial investigation in a Chinese population. 
However, prospective studies with larger sample size cohorts 
from multiple centers, especially those including non-Asian 
cohorts, are warranted to further validate the performance of 
the signatures. Further studies should also investigate whether 
the classifier can predict the responses of GC patients to 
immunotherapy.

Materials and methods

Study population and sample collection

Samples from patients treated with curative gastrectomy for 
adenocarcinoma of the stomach or oesophago-gastric junction 
at Peking University Cancer Hospital between January 2000 and 
December 2012 were retrieved. Inclusion criteria for the 1180 
patients were primary diagnosis of gastric adenocarcinoma, no 
metastatic disease at diagnosis, with available FFPE tissue and 
follow-up information. All the samples were independently 
inspected by two pathologists to confirm the existence of 
tumor cells and to confirm that the identified pTNM stages of 
the samples. Clinical information and follow-up data were 
obtained from the prospectively maintained database in the 
hospital. The overall survival time was defined to be the period 
of time in months from the date of surgery to the date of death 
from any cause. This study was approved by the institutional 
review boards, and appropriate written informed consent was 
obtained from all patients. The pTNM stage was determined 
according to the 7th edition of the UICC guidelines.

Proteins detection

We first included common immunomarker proteins, including 
CD3 (pan T-cells), CD8 (cytotoxic T-lymphocytes (CTL)), CD4 
(helper T-cells), CD20 (B-cells), CD45RO (memory T-cells), 
CD45RA (naïve T-cells), CD57 (natural killer cells), CD66b 
(neutrophils), CD68 (macrophages), and FoxP3 (regulatory 
T-cells). We also included the cytotoxic T-lymphocyte- 
associated serine esterase 1 (GZMB), B-cell lineage-specific acti-
vator (PAX5), and negative regulator of T-cell responses 
(CTLA4, IDO1, TIM3, and PD1). CD274 and PDL2 were also 
included, as we previously reported their potential for predicting 
outcomes in GC patients.24 Next, we empirically selected a list of 
well-recognized cancer regulators, including proteins function-
ing in cell cycle (CDK1, CDK4, CCND1, CCNE1), stem cell 
(CD44, LGR5, CXCR4), DNA damage repair (TP53, BCL2, 
MDM2, PTEN), mismatch repair (MSH2, MLH1, MSH6, 
PSM2), and cell adhesion and junction (CDH1, CTNNB1, 
VIM). Protein kinases and phosphatases (AKT, MET, KIT), 
growth factor-related genes (ERBB2, EGFR, VEGFA) were also 
selected (Table S1).

IHC staining was performed and evaluated as previously 
described.32 Details of the protocols and scoring schema are 
presented in supplementary documents.

Data processing and model construction

After data processing with the missing data exclusion and 
imputation calculation by random forest model, the patients 

were assigned to a disjoint training set, testing set, and valida-
tion set by using the “caret” package in R (version 3.5.1). We 
applied the group Lasso model to all the features (proteins and 
clinical characteristics) and used the Cox regression model to 
develop the model for the classifier in the training set. To 
ensure a robust selection, we applied a bootstrap process 
wherein group Lasso implementation was repeated 100 times, 
and the most prevalent features were selected. Detailed meth-
ods and cutoffs for data processing and model construction are 
described in the supplementary methods.
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